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Improved Model-Based Magnetic Resonance
Spectroscopic Imaging

Mathews Jacob*, Xiaoping Zhu, Andreas Ebel, Norbert Schuff, and Zhi-Pei Liang

Abstract—Model-based techniques have the potential to reduce
the artifacts and improve resolution in magnetic resonance spec-
troscopic imaging, without sacrificing the signal-to-noise ratio.
However, the current approaches have a few drawbacks that limit
their performance in practical applications. Specifically, the clas-
sical schemes use less flexible image models that lead to model misfit,
thus resulting in artifacts. Moreover, the performance of the current
approaches is negatively affected by the magnetic field inhomo-
geneity and spatial mismatch between the anatomical references
and spectroscopic imaging data. In this paper, we propose efficient
solutions to overcome these problems. We introduce a more flexible
image model that represents the signal as a linear combination of
compartmental and local basis functions. The former set represents
the signal variations within the compartments, while the latter cap-
tures the local perturbations resulting from lesions or segmentation
errors. Since the combined set is redundant, we obtain the recon-
structions using sparsity penalized optimization. To compensate
for the artifacts resulting from field inhomogeneity, we estimate the
field map using alternate scans and use it in the reconstruction.
We model the spatial mismatch as an affine transformation, whose
parameters are estimated from the spectroscopy data.

Index Terms—Constrained reconstruction, inhomogeneity com-
pensation, prior information, spectroscopic imaging.

I. INTRODUCTION

MAGNETIC resonance spectroscopic imaging (MRSI) is
emerging as a very useful technique for the diagnosis

and staging of various diseases such as cancer [1], [2], sclerosis
[3], and epilepsy [4]. Unfortunately, the practical utility of this
technique has been hampered by its poor sensitivity because of
the low in vivo concentrations of the metabolites; the use of
standard acquisition-reconstruction schemes leads to clinically
unacceptably long scan times and noisy reconstructions.

The classical MRSI acquisition scheme is chemical shift
imaging (CSI) [5]–[7], where one excitation is required to
acquire each spatial phase encode. This limits the number of
acquisitions possible in a clinically acceptable scan time. In
this context, the standard IFFT-based reconstruction technique
provides poor spatial resolution, leading to significant truncation
artifacts. Specifically, the slow decay of the sinc point-spread
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function results in cross talk between spectra from adjacent spa-
tial regions. This artifact, known as spectral leakage, makes the
intrapretation of the reconstructed data difficult. Moreover, mag-
netic susceptibility differences between air and tissue introduce
strong local variations in the magnetic field, leading to spectral
line-shape distortions and signal loss. All the above adverted
to errors propagate to the subsequent quantification step, thus
affecting the reliability and reproducibility of the results.

Recently, several methods that use readout gradients to
provide extended k-space coverage in the same scan-time were
proposed [8]–[12]. The smaller voxel size offered by these
schemes provides a reduction in spectral leakage and inhomo-
geneity induced signal losses. However, these techniques suffer
from a proportional decrease in signal-to-noise ratio (SNR).
Moreover, since images have a decaying power spectrum, the
higher k-space points often have significantly lower SNRs as
compared to the lower k-space samples. Thus, the performance
gain in using these techniques is limited.

An alternative approach is to exploit the information ex-
tracted from anatomical scans to provide the spatial localization
[13]–[17]. These schemes use side information to generate a
compartmentalmodel.Sincespatial localization isensuredby the
model, the scan time can be devoted to acquire the lower k-space
encodes with higher SNR. Thus, the model-based schemes offer
an attractive framework to ameliorate spatial resolution (and
thus eliminate the associated artifacts) without compromising
the SNR. In spite of their advantages, the use of the model-
based schemes in spectroscopic imaging applications is limited,
mainly because of some of the technical problems that limit their
performance. The main goal of this paper is to identify some of
these problems and propose efficient solutions to them, thereby
developing a new scheme that is useful for in vivo applications.

The current model-based schemes [13]–[15] limit the number
of basis functions to obtain well-posed reconstructions. This re-
stricts the flexibility of the model, thus leading to model misfit
and consequently artifacts. Since these approaches use basis
functions that are different from the measurement functions,1
the model-based schemes are more vulnerable to the model-
misfit than the Fourier schemes. The signal components that
are not captured by the model alias back to the reconstructions
as artifacts. We propose a more flexible model with both com-
partmentalized and shift-invariant basis functions; the compart-
mental basis functions represent the smooth variations inside the
compartments, while the shift-invariant functions capture the lo-
calized perturbations because of lesions or segmentation errors.

1Since we are sampling on the Fourier space, the measurement functions are
Fourier exponentials; the measurements are the inner products of the signal with
the exponentials.
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We then use a sparse reconstruction scheme to ensure robust and
unique reconstruction. Since this scheme adaptively selects the
basis vectors from a large class to represent the signal, we ob-
tain fewer artifacts than standard schemes.

The inhomogeneity of the magnetic field often leads to local
spatial variations that the model is not able to capture, thus de-
grading the performance of the model-based schemes. In stan-
dard MRSI schemes (e.g., SLIM [13], GSLIM [14], and Fourier
inversion [18]), it is a general practice to ignore the field map in
order to have a simple reconstruction algorithm [18], [19]. As
discussed previously, this may lead to line-shape distortions and
signal losses. Following our early work [20], we propose to es-
timate the field inhomogeneity using additional scans and use
it in the reconstruction procedure. This approach leads to fewer
artifacts and more accurate results, even when used with simple
image models. This scheme can be viewed as the generalization
of the inhomogeneity compensated SLIM approach introduced
in [21] and [22].

Spatial mismatch between the anatomical scans and MRSI
data can lead to significant distortions in the model-based
schemes. One reason for the mismatch is the incoherence
between the sequences used to acquire the anatomical and
MRSI scans. Even when the discrepancy is small, it can lead
to severe contamination of the brain spectra by extra-cranial
lipid signals. We propose to model this deformation as an affine
transformation; the affine parameters are iteratively estimated
from the MRSI data during the reconstructions.

The rest of the paper is organized as follows. In the next sec-
tion, we briefly review the image formation and the standard
model based reconstruction procedure. In Section III, we in-
troduce the improvements over the standard model based ap-
proach. In Section IV, we pose the problem as an optimization
algorithm; we use an iterative reconstruction procedure to solve
for the coefficients and the affine parameters simultaneously. In
Section V, we perform an analysis of the reconstruction error
in a general model-based reconstruction scheme that provides
more insight on model based reconstruction schemes. Finally, in
Section VI, we validate the algorithm using both experimental
and simulation data.

II. PRELIMINARIES

The image formation in MRSI is mathematically modeled as

(1)

Here, indicates the phase encoding location
and denotes the sampling location along the readout axis
(time). , , and are the conjugate axes of , , and ,
respectively. We denote the set of acquired phase encodes as

. Similarly, the sampling locations
along the readout axis are indicated by .

specifies the magnetic field inhomogeneity map and
is the gyromagnetic ratio. Note that if the magnetic field is

homogeneous , (1) reduces to a simple Fourier
transform.

A. Model-Based Reconstruction

The reconstruction of the continuous domain from the finite
set of measurements (1) is an ill-posed problem. The standard
approach is to use a parametric image model, with finite de-
grees of freedom, to constrain the reconstructions. All the cur-
rent MRSI image models are linear

(2)

where are arbitrary basis func-
tions. Here, and

. are the unknown coefficients that
are estimated from the data. The widely used Fourier model
corresponds to , where
is the vector of Fourier exponentials. is the Hermitian
(conjugate transpose) of . The SLIM model corresponds to

, where

if; is in the tissue class
otherwise

(3)

Plugging (2) into (1) and setting , we obtain

(4)

where denotes the 3-D Fourier transform of and is the
Fourier transform of . The reconstruction problem is now
posed as a least square minimization problem; we minimize the
discrepancy between the simulated measurements (4) and the
experimental measurements

(5)

Here, indicates the sampling locations along time of axis.

B. Point-Spread Functions

When the spatial basis functions are independent of , the
estimation of , for a specified , can be considered in-
dependently of the coefficient vector at other time points; it is
obtained as the minimization of in (5)

(6)

where is an appropriate reconstruction matrix and indi-
cate the vector of measurements corresponding to the specified

. Computing the inverse Fourier transform of (6) along ,
and since , we get

(7)

(8)
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Here, is the vector of the exponentials
and indicates its conjugate. In the above equations,
is the inverse Fourier transform of . Thus, we obtain
the coefficients as the inner-product between and the corre-
sponding (termed as point-spread functions [15]).

III. PROPOSED APPROACH

In this section, we describe the new method with several im-
provements over the standard model-based approaches to im-
prove the reconstructions.

A. New Image Model

The proposed model represents the MRSI signal as a linear
combination of two sets of functions: 1) compartmental basis
functions and 2) local basis functions. These sets have comple-
mentary properties as discussed later; by considering the linear
combination, the proposed scheme benefits from the advantages
of both.

1) Compartmental Basis Functions: Our goal is to intro-
duce a compartmental model that can represent smooth varia-
tions in the compartments while being flexible to capture the
abrupt transitions at the compartment boundaries. While a single
band-limited model can capture the smooth signal variations
reasonably well, it is often not sufficient to represent the discon-
tinuities (unless the bandwidth is sufficiently large). We propose
to represent the signal as a weighed sum of band-limited
functions

(9)

where is the number of compartments, is the charac-
teristic function of the th compartment, and

(for a specified frequency ) are band-limited
functions. Here, we represent the signal at a specified frequency

as the weighted sum of band-limited functions; the binary
weights are specified by the characteristic functions. While

capture the smooth variations within the
th compartment, weighting them by enables us to represent

the discontinuities at the compartment boundaries, if any.
Replacing the band-limited functions by a linear combination
of exponentials, we get

(10)

In the above equation, are the exponen-
tials of the band-limited model for the th compartment. Note
that (10) is still a linear model with the basis set as

(11)

In general, the number of exponentials in each compartment can
be chosen differently. However, in our applications, we choose

. Note that if we select and set , we
obtain the standard SLIM model.

The assumption of voxels belonging to any one of the tissue
class is valid only when we have very high-resolution anatom-
ical references. In 2-D CSI, it is common to choose a thick slab
(e.g., thickness of 15 mm) to obtain a reasonable SNR. In this
case, a voxel in the reconstructed image would comprise of con-
tributions from multiple tissue classes. Hence, we replace the
characteristic function in (10) by the partial volume func-
tion of the th compartment: ; it indicates the
relative concentration of a tissue class at the spatial location .
These functions are obtained by the classification of the anatom-
ical references using standard segmentation algorithms. When
we image a thick slab, a few nonoverlapping anatomical slices
of the same region are acquired. These slices are segmented and
averaged along the dimension to get the partial volume func-
tions.

2) Local Basis Functions: It is clear that the piecewise ex-
ponential model (10) captures the smooth variations within the
compartments and the discontinuities at the region boundaries.
However, when there are blob-like local perturbations inside
the compartments because of lesions or segmentation errors, the
piecewise band-limited model is not very efficient to represent
them; we require a high value of to approximate them reason-
ably well.

However, shift-invariant representations such as the B-spline
scheme [23] are capable of capturing local perturbations effi-
ciently. Intuitively, a localized perturbation can be represented
by a few B-spline functions around that point. If we use an ex-
ponential model, such a perturbation would lead to significant
values for all the Fourier coefficients. The cubic B-spline repre-
sentation of a general 2-D signal is

(12)

where indicate the points on grid on
which we reconstruct the signal, and is the cubic B-spline
function on the specified grid. We denote the corresponding
basis set as

(13)

3) Optimality Criterion: As mentioned before, we represent
the signal as a linear combination of basis vectors in the set

(14)

The individual sets and have complementary advantages
and disadvantages. is efficient to capture the smooth varia-
tions in the compartments and sharp transitions at the region
boundaries. However, it is not very efficient to capture local
perturbations; we would require a large order model to repre-
sent them. At the same time, while can represent the local
perturbations using few coefficients, we would require all the
basis functions of to capture the entire signal. By consid-
ering the joint set, we profit from the advantages of both these
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schemes. However, since this set is redundant, the standard cri-
terion (5) for solving the coefficients will give nonunique recon-
structions. Hence, we pose the reconstruction as a sparse opti-
mization problem. The objective is to choose the smallest subset
of that is optimal to represent the measured data. Clearly, the
smallest subset is linearly independent and hence leads to a ro-
bust reconstruction. Note that is subject-adaptive and is ef-
ficient to capture local perturbations. Hence, we expect a good
fit to the measured data using a few basis functions.2 We formu-
late the reconstruction as the minimization of the criterion

(15)

where indicates the number of nonzero coefficients in .
Here, is a regularization parameter that controls the number of
nonzero coefficients. In (15), we obtain by using (1), where

is given by

(16)

Note that by minimizing (15), we choose a subset from the
over-complete basis (14) that is efficient to represent the signal.
This subset is linearly independent; for every linearly depen-
dent subset, there exists a linearly independent set that offers a
sparser representation.

Equation (15) is a nonconvex optimization problem; its min-
imization would involve a combinatorial search, whose compu-
tational complexity is prohibitive for practical applications. To
make the reconstruction procedure computationally tractable, it
is common [24], [25] to approximate (15) by

(17)

where

(18)

The equivalence of the solutions of (17) and (15) is a research
area that is extensively researched [24], [25]. In this paper, we
do not dwell on such issues. The penalty is a widely used
tool in image processing in the context of total-variational de-
noising, and it has been demonstrated to give robust reconstruc-
tions. While being motivated by sparsity, obtaining the sparsest
representation is not crucial for our scheme; our main objective
is to get a robust solution that the approach can guarantee.

The only parameter to be adjusted in the proposed algorithm
is ; it provides the tradeoff between sparsity (model order and
thus the robustness) and approximation error. We derive the op-
timal value of using the L-curve3 method [26].

2We expect that the subset would contain mostly the piecewise exponential
basis vectors and a few local basis vectors at the locations of the perturbations.

3This approach performs the reconstructions for different values of and
makes a plot of the data consistency error versus the regularization term. The
plot resembles the shape of an L; the lambda corresponding to the vertex of the
L provides a good compromise between the two terms.

Fig. 1. Illustration of effect of magnetic field inhomogeneity. We consider a
synthetic that conforms to the SLIM model. [This signal was estimated
from experimental data obtained from a human subject (see Fig. 5(d)]. We then
generated shifted signal using magnetic field inhomogeneity map estimated
from reference water scans obtained from subject. Nonshifted and shifted
signals are shown in (a) and (b), respectively. Field inhomogeneity often creates
shifts of a few tens of Hertz at 1.5 T. Combined with narrow spectral resonances
of metabolites, this shift could lead to substantial spatial variations within
compartments. Experiment indicates that even if spectral distributions conform
to image model, the observed signal could have drastic signal variations
because of magnetic field inhomogeneity. (a) . (b) .

B. Magnetic-Field Inhomogeneity

The standard schemes assume to obtain simple
reconstruction algorithms. We now show that this approach
could lead to substantial distortions. Making a change of vari-
able in (1), we obtain

(19)

where and is the gyromagnetic ratio. The
above expression implies that the measurements correspond to
the Fourier transform of the shifted function

rather than itself. Note from Fig. 1 that
may vary spatially (in ) quite significantly, even when con-
forms to the piece-wise constant assumptions; since the spec-
tral resonance lines are quite narrow, even small field inhomo-
geneities could give rise to substantial spatial variations. If left
unaccounted for, this could lead to a model misfit, thus resulting
in significant distortions. The other option is to use a more flex-
ible model to accommodate for the inhomogeneity induced spa-
tial variations. However, a higher model order could be less ro-
bust to measurement noise, as seen later in the paper.

We propose to estimate from alternate scans and use
it in the reconstruction procedure. In the experiments described
in this paper, we estimate the field map from water reference
scans. These scans are routinely acquired during MRSI scans
to quantify the spectral information [18], [27]. Alternatively,
high-resolution field maps estimated using three-point Dixon’s
scans [28] can be used to obtain a finer and accurate correction.
Since we use a more elaborate model than SLIM, the nonitera-
tive reconstruction procedure described in [21] and [22] is not a
very attractive option in our case.4

4It would involve the inversion of large matrices repeatedly, while the spatial
mismatch is corrected. Moreover, the kernels have to be recomputed within the
iteration loop.
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C. Spatial Mismatch

The anatomical reference images and the spectroscopy data
are acquired using two different sequences. This often results
in imperfect spatial correspondence between the two data
sets. Subject motion could be another source of mismatch.
Even small misalignments between these data sets could lead
to significant spectral leakage artifacts, especially from the
extra-cranial lipid regions.

The anatomical and the CSI data-sets are drastically different
in contrast and resolution. This makes it difficult to align the
two using standard registration algorithms (prior to the recon-
struction). We propose to include the registration step into the
reconstruction algorithm; the new scheme jointly estimates the
optimal deformation map and the coefficients from the CSI data
set. We model the deformation as an affine transformation

(20)

where and are the parameters of the affine transformation.

IV. OPTIMIZATION ALGORITHM

Combining the field-inhomogeneity correction in (19) and the
affine transformation given by (20), we obtain as

(21)

Note that in (21), we assume the field map to be spatially aligned
with the MRSI data. This is because it is obtained by a water
reference scan that uses the same pulse sequence that is used to
obtain the MRSI data. Furthermore, we assume to be speci-
fied by (16). The reconstruction problem boils down to the min-
imization of (17). The unknowns are: a) the coefficient vector

and b) the affine parameters . We propose the fol-
lowing two-step alternating optimization algorithm to solve for
the unknowns.

Initialize and . Alternate between the following
steps until convergence.

a) Estimate the optimal and assuming and
from the previous iteration

(22)

b) Update and assuming from the pre-
vious step

(23)

A. Estimation of Optimal Coefficient Set:

Since the affine parameters are assumed to be constants
during this step, we omit them from the equations in this

section. Since the coefficients and are complex variables, it
is difficult to use the standard linear programming techniques
to solve the minimization problem as in [24] and [25]. We
instead rely on a half quadratic regularization method intro-
duced in [29], after a slight modification of the definition of the

penalty

(24)

where is a small constant. Note that this metric is dif-
ferentiable and converges to (18), when . In practice, we
choose an that is high enough for the algorithm to be numer-
ically stable. The half-quadratic approach enables us to refor-
mulate the reconstruction problem as a sequence of quadratic
optimization problems. We alternate between the minimization
of

(25)

where indicate the weighted norm

and the update of the weights

(26)

to minimize (22). We start with .
Since (25) is a quadratic criterion and the forward model is

linear (see from [21]), we use the conjugate gradients optimiza-
tion algorithm to minimize (25). We derive the expression for
the gradient of the criterion with respect to the coefficients in
Appendix C. The half-quadratic optimization algorithm is guar-
anteed to converge to the minimum of (17) [29].

B. Estimation of Affine Parameters

We use a steepest descent algorithm to derive the optimal
affine parameters. Since this minimization problem is non-
linear, the algorithm is not globally convergent. Equation (16)
has many parameters, and hence the cost function may have a
lot of local minima. To make the criterion well behaved, we
run the two-step algorithm with a high value of for a few
iterations to initialize the affine parameters. Since high values
of imply sparser models,5 we expect the cost function to have
fewer local minima. This procedure ensures the convergence to
the global minimum, analogous to the multiresolution strategy
used in nonlinear registration algorithms [30].

Note that the two-step approach is only needed if there is a
spatial mismatch between the anatomical and MRSI data sets.
If the pulse sequences are matched so that there is perfect corre-
spondence, the second step of the two-step alternating algorithm
(solving for the affine parameters) can be omitted.

5Models with more coefficients will lead to a higher value of criterion; models
with fewer parameters are preferred when a high value of is chosen.
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V. ERROR ANALYSIS OF GENERAL MODEL-BASED SCHEMES

The reconstruction problem in MR spectroscopic imaging
is somewhat different from the standard MR imaging setup
because of the limited number of spatial Fourier encodes. In
standard MRI, the dominant term in the reconstruction error is
the variance of the estimate resulting from measurement noise.
In contrast, the main part of the reconstruction error in MRSI is
the bias (systematic errors due to finite number of measurements,
which are also termed as truncation artifacts). In this context, it is
highly desirable that the errors resulting from the different terms
in a general model-based reconstruction schemes are analyzed.

We restrict our attention to schemes that use linearly indepen-
dent basis sets for simplicity; we derive a general expression for
the error for such schemes. Even though the superset is lin-
early dependent, the minimization of (15) will lead to signal re-
construction using a linearly independent subset of . Thus, the
error expression derived in this section is applicable to our algo-
rithm by considering this subset as the set of reconstruction basis
functions . In the strict sense, the applicability of the analysis
to the proposed algorithm depends on the equivalence of (15)
and (17), since our algorithm is based on (17) rather than (15).

Since the (readout) dimension is acquired at a sufficiently
high sampling rate in CSI, the truncation effects in this dimen-
sion can be safely ignored. Hence, we restrict the analysis to the
reconstruction of a 2-D spatial function (for a specified

) from its Fourier samples. In the current form, the error ex-
pression is general enough to be applicable to a wide range of
Fourier inversion problems.

Note from (7) that estimating the coefficients from the mea-
surements (in the absence of noise) is equivalent to evaluating
an inner product between the original function and the point-
spread functions (denoted by ). In MRSI, the measurements
are constrained to be Fourier samples of . Hence, the point-
spread functions (denoted by ), in general, are not the same
as the corresponding reconstruction basis functions (denoted by

). only when we have a band-limited model. Thus,
in the general case, the reconstruction procedure is a biorthog-
onal projection and hence is conceptually similar to the sam-
pling framework considered in [31], [32]. We now quantify the
approximation error in reconstructing an arbitrary signal in the
model based framework using similar tools.

Proposition 1: Let denote a -dimensional vector of lin-
early independent basis functions. Then, the expected error in
reconstructing an arbitrary signal from its noisy
Fourier samples (variance ) in using (6) and
(2) is given by

(27)

The positive-definite correlation matrix6 is given by
. The basis set spans and

6If forms an orthogonal basis set, .

Fig. 2. Illustration of first two error terms in (27). Consider representation of
vector indicated by in terms of basis vector . Best possible reconstruction
corresponds to orthogonal projection of onto . Reconstruction error in this
context is indicated by that corresponds to the first term in (27). To achieve
this minimum possible error, we have to perform an orthogonal projection of
onto ; this requires evaluation of the inner product between and . Now,
assume that we could only perform an inner product between and . In this
case, the reconstruction is given by : an oblique projection of , orthogonal
to , giving the extra error term . In this case, we will be making an extra
error indicated by .

they are orthogonal to each other (i.e., ).
Similarly, spans and they are biorthogonal to
(i.e., ); they are termed
the dual basis functions of .

The proof of the proposition is given in Appendix A. We term
the orthogonal projection error. in (12) is the

norm of the inner products of with . Since is the
orthogonal basis set of , this term corresponds to the
norm of the orthogonal projection of onto . Thus,
depends only on ; given the reconstruction basis functions, it
is the lower bound of the achievable error.

We term the biorthogonal projection residue. Note from
(27) that this term would vanish for any if . However,
when the measurements are constrained to be Fourier samples,
this is achieved only when ; i.e., when the reconstruc-
tion basis functions can be represented as linear combination of
the Fourier exponentials. Thus, only band-limited models give

, for any input. However, as the number of Fourier sam-
ples tends to infinity, for any model7; as
the number of measurements increase. Thus, can be visu-
alized as the truncation error (error due to the number of mea-
surements being limited).

A signal can be expressed as , where is an
arbitrary set of coefficients. Now,

. Similarly, we have .
Hence, and consequently when

. This can also be seen geometrically from Fig. 2. Hence,
, if the signal is in the span of the reconstruction func-

tions; if there is no model misfit, will also vanish, even when
.

The first two terms in (27) are the systematic error compo-
nents; they contribute to bias in the reconstructions. The last

7Any can be represented by a linear combination of exponentials, as the
number of exponentials tends to infinity.
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term is a measure of the reconstruction error resulting from mea-
surement noise. The noise would be amplified by the reconstruc-
tion matrix . Note that is independent of , while
vanish if the model represents the signal well (i.e., ).
Thus, for well-designed models, the main error term that is de-
pendent on is . Thus, we derive the optimal reconstruc-
tion matrix as the one that minimizes , subject to the
data-consistency criterion

(28)

Here, the measurement matrix ( is the number of mea-
surements and is the number of basis functions) is defined
as

(29)

Note that when the basis functions are orthogonal , we
have that is the widely used solution. The
use of this solution for nonorthogonal could lead to increased
variance. With (28) as the reconstruction matrix, we get

(30)

A. Inferences

Since the signal model in the Fourier scheme is matched to
the measurements, it gives reconstructions with and no
noise amplification (since , , where

is the number of exponentials). These properties, coupled
with its computational efficiency, make it an attractive option for
high resolution scans. However, the convergence of the Fourier
model to piece-wise smooth signals is very slow. This leads to
a high value of , when the number of Fourier samples (and
consequently the number of exponentials in the model) is small.

However, if designed properly to reduce misfit, the model-
based techniques can provide low and a much lower
than Fourier schemes. Moreover, these schemes can also sig-
nificantly reduce the noise contribution. We show that for large
number of spatial encodes, we have

(31)

where is the number of reconstruction basis functions (see
Appendix B for the proof). When the number of phase encodes
is limited, the growth of as a function of is faster than
linear since becomes ill conditioned. Since model-based
schemes give good signal representation using fewer basis
functions than the Fourier model, it can significantly reduce

.
In summary, model-misfit could result in biased reconstruc-

tions, while noise variance scales with the number of basis
functions (free parameters). Thus, a scheme that provides a
good representation using fewer basis functions would provide
a low value of combined error (bias/systematic error vari-
ance). Conventional model-based schemes such as SLIM use
few basis functions to obtain a low noise variance (well-posed
reconstructions); in practical applications, this results in misfit

and hence the bias is the dominant error component. The
number of basis functions in Fourier schemes scale linearly
with the number of encodes. Hence, this approach may lead
to large variance, thus degrading the overall performance as
the number of encodes increase (in noisy situations). We can
also see it from the simulation studies in the next section. The
proposed scheme of picking the best (linearly independent)
subset from an over-complete dictionary is more flexible than
the conventional model-based algorithms. Being an adaptive
scheme, it provides a better representation to the signal at hand
using fewer basis functions, thus lowering the overall error.

VI. RESULTS

In this section, we present validations of the proposed tech-
nique with both simulated and experimental data.

A. Simulations

We used the segmentation of an anatomical data set (con-
sidered in Section VI-B) to create a numerical phantom. Using
the parameters from [33] and the software package GAMMA
[34], we created the line shapes of NAA, Creatine, Choline, and
myo-Inositol; these line shapes were broadened to simulate
decay. We also modeled the lipid spectrum with a broad peak
around 3.5 ppm. The piece-wise exponential model (10) with
5 5 exponentials per compartment was used to generate the
spatial spectral function . The coefficients were
obtained as a linear combination of the lines shapes as

(32)

where are the spectral line shapes of the
metabolites, are random coefficients, and is the total
number of metabolites in each compartment. Since in practice,
we do not get any signal from the cerebral spinal fluid region
[white region in the center in Fig. 3(a)], we set for this
compartment. Similarly, the extra-cranial region was assumed
to have only lipids. The slice at 2 ppm (corresponding to NAA
peak) is shown in Fig. 3(c). Using the inhomogeneity map from
the scan considered in Section VI-B, we developed a realistic
forward model. White Gaussian distributed noise was added to
the simulated measurements. To test the robustness of the al-
gorithms to segmentation errors, we considered the perturbed
segmentation map shown in Fig. 3(b); we changed the compart-
mental structure at the region indicated by the arrow. Although
this is a more drastic situation than expected in practical cases,
we use this example to illustrate the ability of the algorithm to
compensate for segmentation errors.

Using the above-mentioned setup, we compare the new
approach, SLIM with inhomogeneity compensation, and the
Fourier scheme. We reconstruct the signal from 16 16-phase
encoded CSI data using these schemes and the results are
shown in Fig. 3(d)–(f). Note that the new scheme recovers the
smooth signal variations in the compartments and the signal
variations in the regions corresponding to wrong segmentations
reasonably well. It captures the signal in the wrongly segmented
regions using a few local basis functions, thus preventing it
from aliasing back to the other regions. However, the SLIM
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Fig. 3. Comparison of algorithms on simulated data. We generated numerical spectroscopy phantom, whose peak at 2 ppm is shown in (c), using template obtained
by segmentation of anatomical scans, discussed in previous section. Slice of template is shown in (a). To simulate effect of segmentation errors, we use template in
(b) (by changing the region indicated by the arrows) to perform the reconstruction. New, SLIM, and Fourier reconstructions from 16 -16 encoded data with SNR
of 10 dB are shown in (d), (e), and (f), respectively. Note that the new reconstructions gave good reconstructions, successfully capturing the signal variations within
the compartments as well as the regions with the segmentation errors. This indicates that model can accommodate for a wide range of region inhomogeneities and
segmentation errors. (a) Original template. (b) Reference template. (c) Ground truth. (d) New 16 16; dB. (e) SLIM 16 16; dB.
(f) Fourier 16 16; dB.

Fig. 4. Comparison of reconstruction schemes (New approach, Fourier reconstruction, and inhomogeneity compensated SLIM) for different number of phase
encodes and different noise levels. Note that signal to error ratio of the SLIM is fairly constant indicating that it is very robust to measurement noise. However,
the main source of error in this case is approximation error/bias resulting in poor results. New method gave the best overall performance, with its signal to error
ratio saturating after 25 25-phase encodes. For higher noise levels, performance of Fourier scheme decreased as number of phase encodes increase. See text for
details. (a) Input SNR dB. (b) Input SNR dB. (c) Input SNR dB.

reconstructions suffer from artifacts, mainly because of the vio-
lated spatial homogeneity assumptions and segmentation errors.
Similarly, the Fourier reconstructions are extremely blurred
and thus do not provide much useful information. Also note the
lower SNR figures with SLIM and Fourier reconstructions.

In Fig. 4, we studied the effect of varying the number of
phase encodes and the noise level on the algorithm. It is seen
that the performance of the SLIM scheme is unaffected by the
noise level, mainly resulting from fewer model parameters, thus
giving a low value of . Unfortunately, the dominant error

term is the bias or systematic error components ( and );
since there is a significant misfit of the model to the original
signal, it gives poor reconstructions. The performance of the
Fourier scheme improves with the number of encodes at low
noise level, while it declines at high noise levels. The model
order (number of exponentials) of the Fourier reconstruction
scheme is equal to the number of phase encodes. Since the en-
ergy of typical images are concentrated at the low end of the
Fourier spectrum, the SNR of the high-frequency samples is
much lower than that of the low-frequency samples. Thus, as
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Fig. 5. Comparison of algorithms on experimental data. Fourier reconstruction of image corresponding to NAA peak (2 ppm) from 34 34 encoded CSI data
is shown in (a). Considering this data set as a reference, we now compare performance of reconstruction schemes from 16 16 encodes. Reconstructions using
Fourier scheme, SLIM without and with inhomogeneity compensation, and new approach are shown in (b)–(e), respectively. (a) Fourier 34 34. (b) Fourier
16 16; dB. (c) SLIM without inhomogeneity compensation 16 16; dB. (d) SLIM with inhomogeneity compensation 16 16;

dB. (e) New 16 16; dB.

we increase the number of Fourier samples beyond a point, the
model order increases (thus considerably increasing ). On
the other hand, the newly added samples provide limited infor-
mation (do not reduce significantly). Thus, in a noisy sce-
nario, the performance of Fourier reconstructions will degrade
as we increase the number of acquisitions beyond a particular
number, as seen in Fig. 4.

The performance of the new approach ameliorates with the
number of encodes, saturating around 25–30 encodes at high
noise levels. The model order of the new algorithm varies with
the number of Fourier samples, but it is not linearly proportional
to the number of encodes. The order of the model is determined
by the choice of that is derived using the L-curve method [26].
Thus, the proposed reconstruction scheme gives a good compro-
mise between approximation error and robustness. It adaptively
chooses the model to obtain a good compromise. Note that the
performance of the new approach saturates after a while; this
indicates that increasing the number of measurements (so the
scan-time) beyond the saturation point is not beneficial.

B. Experimental Results

Experimental MRI and MRSI data were obtained from an
Alzheimer’s disease patient, who was scanned using a 1.5-T
Siemens Vision system (Siemens Medical System, Germany).
The study was approved by the Committee of Human Research
at UCSF and written informed consent was obtained from the

volunteer before the study began. We used the pulse sequence
introduced in [18] to extract the 34 34 encoded MRSI data;
it uses a spin echo 34 34 CSI acquisition with parameters
TE-25, s, bandwidth , We then used a
subset (16 16 encodes) of these spatial phase encodes to verify
the algorithm. The MRI intensities were segmented into tissue
classes of gray matter, white matter, CSF, and non-brain tissue
classes using a segmentation program developed in house [35].
The magnetic field inhomogeneity map is generated by a refer-
ence water scan [18].

The Fourier reconstruction scheme involved zero-padding
the phase encoded data to 64 64 k-space samples, 3-D Fourier
reconstruction, and post correction of inhomogeneity artifacts
using the estimated inhomogeneity map. We considered the
SLIM approach with and without the inhomogeneity com-
pensation. Finally, we used the new method with (81
exponentials per compartment). Note that this number decides
the size of the over-complete basis set and not the final model
order. The order selection is part of the reconstruction, thanks
to the minimization of (17). As discussed before, we choose the
optimal using the L-curve approach. For illustration purposes,
we display a slice of the reconstructions corresponding to a
chemical shift of 2 ppm (location of the NAA peak8) in the

space in Fig. 5.

8Note that this image is not the NAA image after metabolite quantification.
The lipid peak being very broad can still be seen in this image since the ampli-
tude of the lipid signal is about ten times stronger than the signal from NAA.
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Fig. 6. Averaged spectra from voxels indicated by squares in (a). Note that FOV was 280 280 and slice included lipid regions as well. We just chose this subset
for illustration purposes. (b) Corresponds to Fourier reconstructions from 34 34, while (c) is Fourier reconstruction from 16 16 encodes. (d) Spectra obtained
from 16 16 encodes using proposed approach. Note that Fourier reconstructions both from 34 34 and 16 16 encodes suffer from a lot of leakage artifacts
at lipid resonant frequency. However, new scheme gives a reasonable suppression of lipid peaks (normal subjects will not have lipid signals from the voxels inside
the brain). Also, note that the line shapes of the peaks are lower for new reconstructions. Line shape variations seen in new reconstructions result from uncorrected
intravoxel field variations; we are assuming a low-resolution field map (derived using water reference scans).

Since the ground truth is not available, we compare the
Fourier coefficients of the reconstructed signal from 16 16
encodes with the available 34 34 measurements. The metric
we used for quantitative comparison is

(33)

where indicates the set of available measurements (34
34 in this case). is obtained by injecting the reconstruction
into the measurement (21).

It is seen that the Fourier reconstruction from 34 34 en-
codes, shown in Fig. 5(a), still suffers from significant leakage
and ringing artifacts (note the oscillatory bands around the lipid
region and the contamination of the spectral shapes in Fig. 6).
The reconstructions using the SLIM model without and with in-
homogeneity compensation from 16 16 encodes is shown in
Fig. 5(c) and (d) respectively. The improvements in Fig. 5(d)

over Fig. 5(c) clearly illustrate the improvement in using in-
homogeneity compensation. The reconstruction using the pro-
posed method from the same number of phase encodes is shown
in Fig. 5(e). Note that the new approach gives significantly better
results, thus illustrating the utility of this scheme in practical
applications.

The average spectra from the squares (corresponding to 3 3
pixels) are displayed in Fig. 6. Note that the acquisition was per-
formed on the entire slice, including the lipid regions. A zoom
of three of these spectral lines is shown in Fig. 7. Note that the
spectra reconstructed using the new algorithm displays much
lower leakage artifacts and better line shapes as compared to
the Fourier reconstructions (both from 34 34 and 16 16)
encodes. It is seen that the Fourier reconstructions exhibit sig-
nificant spectral leakage, even when the number of Fourier en-
codings is large (34 34).

The magnetic field is inhomogeneous in the region around
box 3 in Fig. 6(a), because of its proximity to the sinus regions.
This explains the line shape variations and reduced amplitude
of the metabolite peaks in these regions in both the Fourier
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Fig. 7. Zoomed versions of averaged spectra in regions indicated by gray boxes in Fig. 6(a). We have labeled prominent peaks in normal proton spectra in (a). First
and the second columns consists of Fourier reconstructions from 34 34 and 16 16 encodes, respectively. Last column indicates spectra obtained from 16 16
encodes using proposed approach. Rows correspond to spectra in boxes 1, 2, and 3 in Fig. 6(a), respectively. Note that new algorithm provides better line shapes
and reduced noise. Region around box 3 in Fig. 6(a) corresponds to very inhomogeneous magnetic field. This is seen from line shapes and decreased amplitudes
(due to intra-voxel dephasing) of both Fourier reconstructed spectra in the last row. Note that new approach corrects most of these artifacts. (a) Fourier 34 34.
(b) Fourier 16 16. (c) New 16 16. (d) Fourier 34 34. (e) Fourier 16 16. (f) New 16 16. (g) Fourier 34 34. (h) Fourier 16 16. (i) New 16 16.

reconstructions. This is due to intravoxel field map variations
that are not accounted in the reconstruction. However, the pro-
posed technique corrects most of these variations and restored
the amplitudes.

VII. DISCUSSION

A general concern with the model-based schemes that use
anatomical constraints is that they would bias the reconstruc-
tions, thus making the results insensitive to metabolic variations
that are not reflected in the anatomy. The proposed scheme
uses a richer basis set; unlike standard model-based schemes,
it contains local basis functions that are independent of the
anatomy, in addition to the compartmental basis functions. The
compartment basis functions capture a large part of the signal
that corresponds to lipids, residual water, and components that
are smoothly varying in space. This enables the local basis
functions to capture the rather subtle metabolic variations that
may be indicative of the pathology. We have demonstrated
the potential of this scheme to account for such variations in
simulation studies as well as phantom studies. However, the
application of this scheme to real problems is the ultimate test.

The only free parameter in the reconstruction procedure is
. Currently, this parameter is determined using the L-curve

method. In practice, the optimal parameter value varies little
across data sets that are acquired using same parameter settings.
This parameter can be chosen from a training set and can be used
in later studies.

Although the proposed algorithm is designed for CSI data, it
can also be adapted to fast-scan schemes that use readout gra-
dients [8]–[12]. Since the model order of this scheme does not
increase linearly with the number of encodes, as with the Fourier
reconstructions, it can efficiently compensate for the lower SNR
associated with these schemes. In the current implementation,
we only considered a 2-D problem. This scheme can be gener-
alized to the 3-D case, where the scan time reduction in com-
parison to conventional CSI would be more appreciable.

The effect of the artifacts resulting from the magnetic field in-
homogeneity will become more prominent with increasing mag-
netic field strength. Hence, accounting for these imperfections
in the forward model is especially important for MRSI studies
at 3 T and higher.

In this paper, we did not concentrate on the choice of the
k-space samples. An optimization of the sampling pattern as in
[15] and [16], or random sampling as in [24] and [25] is worth
investigating. Good sampling patterns could lead to a better con-
ditioned system of equations and consequently better recon-
structions.

The current MATLAB implementation takes roughly 10 min
to reconstruct a spatial spectral volume on an
aging 3.06-GHz Intel Pentium processor with 1.5-GB RAM.
A more optimized implementation could lower the execution
time. Since the use of a high-resolution field map would further
increase the reconstruction time and memory demand, a more
efficient implementation is desirable to accommodate them.



1316 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 10, OCTOBER 2007

VIII. CONCLUSION

We have identified some of the technical problems that lim-
ited the performance of standard model-based MRSI schemes
and proposed efficient solutions to rectify them. Specifically,
we introduced a new image model that is more efficient to
reduce the model misfit in comparison to the standard schemes.
We also accounted for the nonideal assumptions that negatively
affected the performance such as magnetic field inhomogeneity
and spatial mismatch. Experimental and simulation results
clearly demonstrated the performance improvement of the the
new scheme. The new approach gave fewer artifacts and better
quality spectral information, even from fewer numbers of phase
encodes. The results suggest that a properly designed model can
efficiently exploit the available spatial priors, thus significantly
improving the performance in in vivo MRSI applications.

APPENDIX A

We consider the error in reconstructing from
the available measurements

(34)

where is the noise vector of variance . The optimal coeffi-
cients are derived from these measurements as

(35)

In the above expression, the noise component of the measure-
ment is denoted by . Thus, the expectation of the measurement
error is given by

(36)

We moved the expectation to the second term since the first term
does not have any random components. We simplify the second
term as

(37)

We now simplify the first term of (36) as

(38)

Since forms a linearly independent basis, the ma-
trix is positive definite and hence can be decom-
posed as . We denote and

(39)

The basis set spans the same space as and
they are orthogonal to each other (i.e., ).
Similarly, spans the same space as and they are
bi-orthogonal to (i.e.,
); we call them the dual basis functions. Hence, the second term

in (39) can be simplified as ; since indicates the
orthogonal basis of , this term corresponds to the norm of
the orthogonal projection of onto the span of . Thus

(40)

Combining (40) and (37), we obtain (27). In the above expres-
sion, we denote the weighted norm .

APPENDIX B

Here, we show that the variance of the reconstructions in-
creases, as indicated by (31), as the number of basis functions
in the model increase. From (27) and (28), we have

(41)

(42)

The th row of is , where is the vector of orthonor-
malized basis functions. Thus

(43)
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Here, is the number of phase encodes. As , the
above sum9 becomes

(44)

where is the Kroneker delta function.
Thus

(45)

(46)

where denotes the identity matrix.

APPENDIX C

As discussed previously, we use a two-step optimization al-
gorithm to update and the affine parameters and . For
the ease of notation, we define the operator that denotes a
shift along the frequency axis as . The
adjoint of this operator is . Again, we
denote the operator that maps to the Fourier transform eval-
uated at the sampling locations as ;

. The adjoint of this operator is
denoted as . Both

and are implemented using fast Fourier transform.
In the first step, we estimate the optimal , assuming
and from the previous iteration. We start by initializing

and , where
is the determinant of . As mentioned previously, we estimate
the coefficients using conjugate gradients optimization.

We now compute the gradient of that is needed for the con-
jugate gradients update. Substituting (2) in (1) on the image
model using the above notations, we get

(47)

We now consider a perturbation in and
derive the corresponding perturbation in the criterion

(48)

(49)

9Note that as , we are considering the entire Fourier series of the
basis functions. Hence, we use the Parseval’s relation to obtain (44).

Note that in (48) and (49), the domains over which the inner
product is defined are different. We thus obtain the gradient of
the coefficients as

(50)
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