
Non-Iterative Regularized reconstruction Algorithm for Non-CartesiAn MRI:
NIRVANA

Satyananda Kashyap, Zhili Yang, & Mathews Jacob∗

Department of Electrical & Computer Engineering
Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627.

Abstract

We introduce a novel non-iterative algorithm for the fast and accurate reconstruction of non-uniformly sampled MRI data.
The proposed scheme derives the reconstructed image as the non-uniform inverse Fourier transform of a compensated
dataset. We derive each sample in the compensated dataset as a weighted linear combination of a few measured k-
space samples. The specific k-space samples and the weights involved in the linear combination are derived such that
the reconstruction error is minimized. The computational complexity of the proposed scheme is comparable to that of
gridding. At the same time, it provides significantly improved accuracy and is considerably more robust to noise and
undersampling. The advantages of the proposed scheme makes it ideally suited for the fast reconstruction of large multi-
dimensional datasets, which routinely arise in applications such as f-MRI and MR spectroscopy. The comparisons with
state of the art algorithms on numerical phantoms and MRI data clearly demonstrate the performance improvement.
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1. Introduction

Non-Cartesian sampling schemes continue to play very
important roles in several fast MR imaging applications.
These schemes are preferred due to their improved sam-
pling efficiency, robustness to under sampling, and insensi-
tivity to motion. The widely used algorithm to recover the
image is termed as gridding, which reconstructs the images
by weighting the non-uniform k-space samples by appro-
priate density compensation factors (DCF), followed by
the the evaluation of the non-uniform Fourier transform.
Most of the gridding methods rely on the non-uniform fast
Fourier transform (NUFFT) approximation [1, 2] to accel-
erate the evaluation of the inverse Fourier transform [3, 4].
Several authors have focussed on the design of DCF us-
ing analytic [5] and convolutional formulations [6, 7]; all
of these methods compute the DCF as the inverse of the
sampling density in k-space to compensate for the varying
density.

The use of regularized least-squares (RLS) schemes was
recently advocated by several authors for the reconstruc-
tion of non-uniformly sampled data [2]; Regularization
provides a tradeoff between bias and variance, which en-
ables to suppress the artifacts and reduce noise amplifi-
cation, especially when k-space is sampled at sub-Nyquist
rate. The iterative conjugate-gradient algorithm is often
used to realize the RLS reconstruction. The main limita-
tion of this scheme is its computational complexity, espe-
cially while dealing with large multi-dimensional datasets.
For example, a typical functional MRI dataset has around
1000 images. The reconstruction of each of these images

using CG will require several hours. It is thus desirable
to have algorithms that are computationally as efficient as
gridding, while providing more accurate reconstructions.

The RLS solution to Ax = b can be mathematically
expressed as x∗ = AHQb, where Q =

(
AAH + λI

)−1

is termed as the compensation matrix. Here, A and AH

correspond to the non-uniform Fourier transform (NFT)
and the inverse non-uniform Fourier transform (INFT) re-
spectively. These operators are often approximated us-
ing NUFFT schemes, when we refer them as NUFFT and
INUFFT respectively. Here, b and x are the vectors of
k-space measurements and the unknown image, respec-
tively. Sedarat et. al. have recently shown that the grid-
ding scheme is essentially an approximation of the RLS
method with λ = 0, where the compensation matrix is ap-
proximated by a diagonal matrix [8]; the diagonal entries
of the matrix are the density compensation factors.

The main focus of this work is to derive a fast algorithm
that closely approximates the RLS reconstruction scheme.
If the trajectory is oversampled, the derivation of the com-
pensation matrix is underdetermined. The compensation
matrix is often evaluated using the pseudo-inverse, which
often results in a dense matrix (most entries being non-
zero). The multiplication of the measured data vector b
with a dense compensation matrix will be computation-
ally expensive; each element in the intermediate data set
will have to be evaluated as a weighted linear combination
of all the measured non-uniform samples, weighted by the
corresponding row entries of the compensation matrix. To
minimize the complexity, we propose to derive a compen-
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sation matrix that results in a computationally efficient
algorithm. Specifically, we propose to restrict the number
of non-zero elements in each row of the matrix to a small
number. This approach results in a computational com-
plexity that is more or less comparable to gridding. We
search for the optimal sparsity pattern and the entries of
the matrix such that the algorithm closely approximate
the RLS scheme.

This paper is inspired by the work on Sedarat et. al.,
where they derived the optimal DCF to minimize the error
in approximating Q in the least squares sense. [8]. They
also generalized this scheme to linearly structured matri-
ces, where the structure is pre-specified (eg. Toeplitz, diag-
onal, Hankel, Banded). The proposed work is fundamen-
tally different from [8]; in contrast to pre-specifying the
structure, we determine the optimal structure and the cor-
responding matrix entries to minimize the approximation
error. Our experiments show a significant improvement in
optimizing the structure over banded structured matrices.
There are also some similarities between the proposed ap-
proach and the block uniform resampling scheme (BURS)
[9], even though this approach is fundamentally different
from the proposed algorithm. The BURS method avoids
the use of INUFFT by directly recovering the uniform
Fourier samples of the image as a weighted linear combi-
nation of the measured non-uniform samples in a small cir-
cular neighborhood. While this approach is computation-
ally efficient, it is difficult to use this scheme for regular-
ized reconstruction. The lack of regularization makes this
method sensitive to measurement noise and model misfit,
which is reported by several authors [10]. Our experiments
also show the noise sensitivity of this method, inspite of
the use of the truncated singular value decomposition as
described in [11].

2. Background

The measured non-Cartesian samples, ρ̂(ki), are the
non-uniform Fourier measurements of the object ρ(x):

ρ̂(ki) =
∫
x∈R2

ρ(x) exp
(
j2πkH

i x
)
dx; i = 0 . . . , L−1(1)

where ki; i = 0, .., L− 1 are the non-uniform Fourier sam-
ples. Assuming square voxels, the discretization of the
above integral gives

ρ̂(ki) =
∑

m∈Z2

ρ[m] exp
(
j2πkH

i m
)

; i = 0 . . . , L−1.(2)

where ρ[m] are the image samples. This summation can
be expressed in the matrix form as

b = Ap, (3)

where the entries of the L ×M system matrix A are the
Fourier exponentials. Since this system of equations is of-
ten ill posed, the standard approach is to formulate the

recovery of p as a regularized reconstruction (RLS) prob-
lem:

p∗ = arg min
p
‖Ap− b‖2 + λ‖p‖2, (4)

The above equation can be solved analytically to obtain

p∗ =
(
AHA + λI

)−1
AHb

= AH
(
AAH + λI

)−1︸ ︷︷ ︸
P−1

b (5)

This expression can be interpreted as p∗ = AHs, where
each element of the vector s = P−1b is obtained as a
weighted linear combination of the non uniform samples
b. The weights for the non-uniform samples are specified
by the corresponding row of P−1. The major challenge
in evaluating (5) is the large size of the system matrix A,
which makes the evaluation and storage of P impossible
for problems of practical value. Due to these challenges,
the standard approach is to solve (4) using a conjugate
gradient optimization algorithm [12]. The main drawback
of this approach is its computational complexity, which
makes the reconstruction of large multidimensional MRI
datasets using this scheme impractical.

3. Materials and Methods

We propose to approximate P−1 by a sparse compensa-
tion matrix, which closely approximates the RLS scheme.
Specifically, we will derive the appropriate square matrix
Q, such that

QP ≈ I. (6)

3.1. Image reconstruction
Once an appropriate Q is obtained, the image is eval-

uated as

p∗ = AHQb. (7)

The computational complexity in the evaluation of s = Qb
is dependent on the number of non-zero entries of Q. For
example, if the nth row of Q has only N non-zero entries,
the nth element of s is determined as the weighted linear
combination of N samples of b. Once s is obtained, we
reconstruct the image using the INUFFT. The combined
scheme is illustrated in Fig. 1.

3.2. Pre-computation of the compensation matrix
We precompute the sparse compensation matrix Q for

a specified trajectory and regularization parameter and
store it. It is then used to reconstruct all of the images
acquired with the same trajectory and similar noise statis-
tics. This approach is analogous to the pre-computation
of the density compensation factors in standard gridding
algorithms. This provides us with a simpler reconstruc-
tion scheme, at the expense of a more complex one-time
pre-computation step.
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We denote the class of matrices, whose rows have N
non zero elements as N -sparse matrices. To obtain a com-
putationally efficient solution, we formulate the derivation
of the approximate matrix Q as

Q = arg min
Q∈N-sparse

‖QP− I‖2F . (8)

We rewrite the above metric as

‖QP− I‖2F = ‖PQH − I‖2F (9)

Here, we used the property that P is a symmetric matrix.
Thanks to the use of the Frobenius norm, this expression
can be simplified as

‖PQH − I‖2 =
M−1∑
i=0

‖Pqi − δi‖2 (10)

where qi is the ith row of Q and δi is the Kroneker delta
function, defined as

δi[m] =
{

1 if m = i
0 else . (11)

Each of the terms in the summation in (10) are indepen-
dent of each other. Hence, we decouple the sparse matrix
approximation problem, specified by (8), as a series of sim-
pler sparse vector optimization problems:

qi = arg min
q;q∈N-sparse

‖Pqi︸︷︷︸
pi

−δi‖2, for i = 0, . . . ,M−1.(12)

If the sparsity pattern of the weights qi are known apriori
(eg. the N k-space samples that are the closest to ki),
the weights can be determined as a simple least square
optimization problem as in (16). However, we find that
evaluating the optimal pattern provides an algorithm that
is significantly more accurate than relying on the nearest
neighbors.

Sparse vector optimization problems similar to (12)
are well studied in signal processing literature [13, 14].
We propose to use the matching pursuit algorithm to de-
rive the optimal weights (qi; i = 0, ..,M − 1), mainly due
to its simplicity and computational efficiency [14]. This
greedy forward selection algorithm proceeds sequentially
by adding entries to the vector, starting with the initial-
ization qi = 0. At each iteration, the algorithm searches
over all the non-zero entries of qi to determine the one
that gives the biggest reduction in the residual error en-
ergy: ‖ri‖2 = ‖Pqi − δi‖2. This is often done by evaluat-
ing the element with the maximum magnitude of the error
gradient:

∇
(
‖ei‖2

)
= 2PH (Pqi − δi) . (13)

The above function is often termed as the proxy. Once
the support is updated, we recompute the entries of q on
the specified support using a least squares minimization.
The sequential algorithm is terminated once the desired
number of elements are added to the vector. The steps of

the matching pursuit algorithm to determine a specified
row of the Q matrix are described below:

Start with qi = 0.

1. Determine the proxy as

y = PH (Pqi − δi)︸ ︷︷ ︸
ri

.

For large images, the computation and storage of
P =

(
AAH + λI

)
is not possible, even on modern

computers. Hence, we propose to compute the proxy
using “on the fly computations”:

Pqi = NUFFT (INUFFT (qi)) + λqi (14)

and PHr as

PHr = NUFFT (INUFFT (r)) + λr (15)

These simplifications allow us to search over all non-
uniform samples to minimize the error. This inturn
enables us to obtain significant reductions in the ap-
proximation error.

2. The index corresponding to the maximum value of y
is used to update the support T as T = {T, arg maxi |yi|}.

3. Update the weight vector qT,i, assuming the support
to be T . We perform this update as

qT,i = arg min
qT,i

‖PT qT,i − δi‖2. (16)

Here, PT is a sub-matrix of P obtained by picking
the rows of P specified by the support T . qT,i is the
subvector of qi, obtained by picking the correspond-
ing entries of q. Again, since it is often not feasible
to compute and store the matrix P, we compute the
ith row of PT as

PTi = PδTi = NUFFT (INUFFT) (δTi) + λδTi

(17)

The above equation is implemented by setting the
T th

i non-uniform sample as one and then computing
its INUFFT and NUFFT. We determine qi as qi =
P#

T δi, where P# indicates the pseudo-inverse of P.
4. Repeat the steps (1), (2), and (3) until the number

of samples in qi is equal to N .

We observe that the first point that is added to qi is the
ith sample itself. Thus, the Q matrix is diagonal if N = 1.
Hence, the optimal gridding algorithm [8] is a special case
of the proposed algorithm.

4. Results

We first focus on illustrating and optimizing the key
aspects of the algorithm in Section 4.1. We determine the
computational advantages and the improved accuracy of
the proposed algorithm by comparing it to the existing
methods in Section 4.2.
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4.1. Illustration and optimization of the algorithm
The key aspect of the proposed algorithm is the deriva-

tion of the optimal sparsity pattern using matching pur-
suits. This approach is drastically different from the intu-
itive approach of selecting the immediate neighbors of the
sampling location; we denote this approach as the near-
est neighbor (NN) scheme. To determine the utility in
optimizing the sparsity pattern, we now compare the op-
timized pattern with the NN method. The sparsity pat-
tern of the Q matrices corresponding to the spiral trajec-
tory with six interleaves and N = 25 are shown in Fig.2.
Fig.2.(a) corresponds to the NN pattern, while (b) corre-
sponds to the optimized sparsity pattern. Since the neigh-
bors of any specified point fall on different interleaves, the
NN matrix has a banded structure as seen from Fig. 2.(a).
Fig. 3 shows the relation between the sparsity pattern of
the matrix and the k-space sampling locations involved in
the weighted linear combination. Note that the optimal
patterns are drastically different from the NN cases. To-
wards the k-space center, where the sampling density is
high, the optimal samples are more or less aligned along
straight lines that intersect at the specified point. How-
ever the optimal samples are more clustered for samples
in the edge of k-space.

We determine the utility of the optimized sampling
patterns in minimizing the reconstruction errors in Fig. 4.
Here, we reconstruct a 32x32 Shepp Logan phantom using
different values of N assuming NN and the optimal sam-
pling patterns. The reconstruction errors are plotted in
4. Note that this optimization gives a significant decrease
in reconstruction errors, thus demonstrating the benefit in
using optimal sampling patterns. It is also interesting to
see that the proposed scheme with N = 25 gives almost
a factor of eight decrease in errors over N = 1, which is
the optimal gridding reconstruction [8]. We observe that
the performance improvement saturates around N = 20.
Hence, we limit our range of supports between N = 15 to
N = 25 in all the experiments in this paper.

4.2. Comparison with existing methods
We compare the proposed scheme with four existing

reconstruction techniques:

1. Gridding with optimal least-squares DCF [8]; we
will also refer this scheme as the optimal gridding
scheme,

2. Gridding with the DCF evaluated using [6]; we will
also refer this scheme as the standard gridding scheme,

3. BURS algorithm [9], and
4. Regularized least square (RLS) algorithm [2].

We use (i) the Shepp-Logan numerical phantom, assuming
interleaved spiral trajectories and (ii) experimental data
acquired from a grid phantom on a 3T Siemens Trio scan-
ner to validate the scheme. In the numerical simulations,
we compare the reconstructions to the ground truth as well
as the results obtained from the RLS reconstruction. We

quantify the performance of the reconstructions using the
signal to error ratio metric

SE = −10 log
(
‖xrec − x‖2

‖x‖2

)
. (18)

Here, xrec is the reconstructed image and x is the image
we are comparing against. We refer to SE1 as the com-
parison with the ground truth and SE2 as the comparison
with the RLS reconstruction. Note that both of the above
trajectories fail to sample the corners of k-space, resulting
in information loss. Since it is impossible for any algo-
rithm to provide perfect reconstruction from the measured
k-space data, we expect the comparisons with the RLS al-
gorithm to be more realistic. Since the ground truth is
not available for the experimental data, we rely only on
the comparisons to the RLS scheme.

The RLS reconstructions are often evaluated using the
iterative conjugate gradients algorithm, which takes sig-
nificantly more time than the non-iterative algorithms.
Specifically, each iteration of the CG algorithm requires
two NUFFTs and one INUFFT; a NUFFT-INUFFT pair
is needed is to compute the gradient, while one NUFFT is
used to compute the optimal step size. In contrast, all of
the non-iterative schemes use only a single INUFFT. Since
the evaluation of the NUFFT is the most computationally
expensive component, the computation time of CG algo-
rithm with 20 iterations is roughly sixty times of that of
the non-iterative schemes. We also report the execution
times of the MATLAB implementations of the algorithm
on an iMac with a 2.4 GHz Intel Core 2 Duo processor
and 2 GB of RAM. We quantify the reduction in com-
putational complexity in terms of the acceleration factor
(A), which is defined as the ratio of the time taken by the
proposed algorithm to the time taken by CG algorithm
to converge. While these measures are dependent on the
specific implementations, this figure provides a feel for the
practical benefits obtained from the use of the proposed
scheme.

4.2.1. Validation using the numerical phantom
To perform the numerical simulations, we evaluate the

exact Fourier transform of the numerical phantom on the
sampling locations specified by the sparsely sampled in-
terleaved spiral trajectories with two interleaves. These
experiments enable us to determine the accuracy of the
algorithms and their robustness to under-sampling. We
also evaluate the robustness of the algorithms by testing
them using noise corrupted data. [11]

We study the robustness of the algorithms to under-
sampling by comparing the reconstructions of 128x128 phan-
tom sampled on a spiral trajectory with two interleaves.
(see Fig. 5). We set N = 25 for the proposed scheme,
while we assume λ = 0.5 for the RLS and the proposed
methods. As expected, the reconstructions using the pro-
posed and the RLS schemes are more or less similar and
provide acceptable image quality. In contrast, the BURS
scheme exhibit significant structured artifacts. This may
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be attributed to the lack of regularization in this frame-
work and the larger spacing between the k-space samples.
It is also seen that the optimal gridding scheme, which is
a special case of our approach, gives a 4 dB improvement
over standard gridding.

The comparisons in the presence of noise (input SNR
of 16 dB) are shown in Fig. 6. We added white Gaussian
noise to the simulated k-space measurements, evaluated
on the spiral trajectory with two interleaves. We observe
that the BURS scheme is very sensitive to measured noise,
even with the truncated SVD implementation. This is
consistent with what is reported in the literature [10]. We
assume λ = 0.5 for the RLS and the proposed schemes; the
value of this parameter was determined using the L-curve
method [15]. It is seen that the regularized methods are
considerably more robust to measurement noise.

The above experiments show that the gridding meth-
ods are surprisingly more robust to undersampling and
measurement noise than the BURS scheme. One reason
may be fewer degrees of freedom in choosing the Q matrix,
making this scheme significantly more constrained than
BURS. This may act as an implicit regularization, result-
ing in improved robustness. In contrast, the explicit regu-
larization in RLS and the proposed scheme enables them
to be robust to noise and undersampling, while providing
significantly more accurate reconstructions than gridding.

4.2.2. Validation using the MRI phantom
We show the reconstructions of a grid phantom, ac-

quired using a Nyquist sampled polar trajectory in Fig. 7.
We used a polar trajectory with 128 spokes and 256 sam-
ples/spoke to sample the phantom. We used a regulariza-
tion parameter of λ = 1.0 for the RLS and the proposed
method which was determined using the L-curve. For the
proposed method, we chose a support size of N = 25. We
observe that the BURS has the lowest S/E, which may be
attributed to its sensitivity to undersampling and model
mismatch (due to eddy currents and field-map effects). It
is seen that the standard gridding reconstructions exhibit
some ringing and intensity variations. The errors with
optimal gridding are more subtle visually. However, the
proposed scheme provides a 3 dB improvement in SNR
over the optimal gridding results. The precomputation of
the sparse Q matrix in the proposed scheme takes approx-
imately 90-100 minutes on an iMac with a 2.4 GHz Intel
Core 2 Duo processor and 2 GB of RAM.

All of the above experiments demonstrate that the pro-
posed scheme is capable of closely approximating the RLS
algorithm with a significantly reduced computational com-
plexity. Unfortunately, it is not straightforward to gen-
eralize the proposed scheme to Tikhonov regularization
schemes with gradient based penalties. The proposed scheme
can be generalized to reconstruct parallel MRI data.

5. Conclusions

We introduced a fast and non-iterative algorithm for
the accurate reconstruction of non-Cartesian MRI data.
The algorithm obtains the reconstructed image as the non-
uniform inverse Fourier transform of a compensated dataset,
whose samples are obtained as linear combinations of a few
of the measured samples. The reconstruction scheme has
computational complexity that is comparable to gridding,
while it provides reconstructions that are comparable to
the regularized least square schemes. This scheme is ide-
ally suited for MRI applications such as MR spectroscopy
and f-MRI, where large volumes of data have to be recon-
structed.
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Figure 1: Outline of the proposed reconstruction scheme: The reconstruction involves two steps: (a) compensation, and (b) INUFFT. The
compensation step involves the derivation of each sample in the intermediate non-uniform dataset: s = Qb. Each element of s is derived as a
weighted linear combination of the entries of b. The specific entries and their weights are determined by the sparsity pattern and the entries
of the corresponding row of Q. The reconstructed image is obtained as the INUFFT of the compensated dataset s. The INUFFT consists
of three steps: interpolation from the non uniform to the uniform/Cartesian grid using an interpolation kernel, IFFT, and multiplying by a
weighting function to compensate for the finitely supported interpolation kernel.

(a) NN (b) Proposed

Figure 2: Sparsity patterns of the compensation matrices for a spiral trajectory with six interleaves: (a) indicates the sparsity pattern
corresponding to the nearest neighbor selection, while the pattern derived using the proposed scheme (matching pursuits) is shown in (b).
Since the neighbors of a specified point falls on different interleaves, the NN matrix has a banded structure. Note that the pattern determined
using the proposed scheme is very different. The flexibility in selecting the sparsity pattern results in lower errors, as seen in Fig. 4. We show
the relation between the sparsity pattern of Q and the samples involved in the weighted linear combination (for two specific rows, indicated
by 1 and 2 in the above figures) in Fig. 3.
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(a) Nearest neighbor (b) Proposed

Figure 3: Relation between the sparsity pattern of the Q matrix and the entries involved in the weighted linear combination. We focus on
the evaluation of two points in the compensated dataset s, one at the centre of k-space and another in the outer k-space. These green points
correspond to the rows of the matrix marked in Fig. 2. The non-uniform samples involved in the sparse weighted linear combination are
denoted by colored circles (black for NN and red for proposed algorithm), along with the green point. In the nearest neighbor case, each
sample in the compensated dataset is derived as a weighted linear combination of its immediate neighbors; since these samples fall on different
interleaves, the corresponding Q matrix (shown in Fig. 2.(a)) has a banded structure. In contrast, the proposed scheme selects patterns that
are very different, thus resulting in significantly lower reconstruction errors. Note that for the sample in outer k-space (shown in the bottom
row), the linear combination also involves a sample in from the center of k-space.

Figure 4: Error with increasing support sizes.We see that for each support size the error due to choosing supports by Nearest Neighbor is
more that that for proposed method.
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(a) Optimal gridding (b) Standard gridding (c) BURS (d) Proposed Method (e) RLS

(f) Optimal gridding:
SE1=11.58 dB

(g) Standard gridding:
SE1=7.33 dB

(h) BURS: SE1=10.23
dB

(i) Proposed Method:
SE1=13.72 dB

(j) RLS Method, SE1=14.64
dB

(k) Optimal grid-
ding:A=76.43,
SE2=12.26 dB

(l) Standard grid-
ding:A=76.43, SE2=7.45
dB

(m) BURS:A=141.59,
SE2=13.83 dB

(n) Proposed
Method:A=74.13, SE2=15.05
dB

Figure 5: Reconstruction of the Shepp Logan phantom from its spiral samples with two interleaves: The reconstructed images are shown
in the first row, the comparisons with the original phantom in the second row, and the comparisons with the RLS method is shown in the
bottom row. As mentioned in the text we see that the proposed and the RLS reconstructions are comparable. Note that the BURS scheme
gives structured artifacts. The results of the optimal gridding scheme is more comparable to the RLS scheme than the standard gridding
method. We used λ = 0.5 for the RLS and the proposed algorithms.
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(a) Optimal gridding (b) Standard gridding (c) BURS (d) Proposed Method (e) RLS

(f) Optimal gridding:
SE1=11.40 dB

(g) Standard gridding:
SE1=7.37 dB

(h) BURS: SE1=9.64 dB (i) Proposed Method:
SE1=13.13 dB

(j) RLS: SE1=13.91 dB

(k) Optimal grid-
ding:A=76.43,
SE2=12.48 dB

(l) Standard grid-
ding:A=76.43, SE2=7.66
dB

(m) BURS: A=141.59,
SE2=9.56 dB

(n) Proposed
Method:A=74.13, SE2=14.60
dB

Figure 6: Reconstruction of Shepp-Logan phantom from its noisy Fourier samples on a spiral trajectory with two interleaves: The comparisons
of the reconstructions to the original phantom are shown in the second row, while the comparisons with the RLS solution are shown in the
last row. White Gaussian noise of 16 dB was added to the computed k-space samples, prior to the reconstructions. It is seen that the BURS
is highly sensitive to noise as reported in the literature. The proposed scheme and the RLS scheme are the most robust to noise due to the
explicit regularization in the framework. We used λ = 0.5 was used for RLS and the proposed schemes.

9



(a) Optimal gridding (b) Standard gridding (c) BURS (d) Proposed Method (e) RLS: Gold Standard

(f) Optimal gridding:
A=82.78, SE2=7.49 dB

(g) Standard gridding:
A=82.78, SE2=3.69 dB

(h) BURS: A=320.84,
SE2=2.79 dB

(i) Proposed Method: A=76
SE2=10.62 dB

Figure 7: Reconstruction of a grid phantom from its polar samples using different methods. The reconstructions obtained from the measured
data is shown in the first row, while the errors (in comparison with RLS) are shown in the second row. Note that the reconstructions obtained
with the proposed scheme are in close agreement with the RLS reconstructions and has minimal aliasing artifacts. Here, we used λ = 1.0
for the RLS and the proposed scheme. The reconstructions provided by the BURS scheme and standard gridding scheme exhibit significant
artifacts. The performance improves with least square evaluation DCF, although the SNR is around 3 dB lower than the proposed method.
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