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INTRODUCTION

Pattern Recognition (PR)

e Statistical PR

e Syntactic PR

e Fuzzy logic PR
e Neural PR

Example - basketball players and jockeys
We will keep practical applicability in mind:

e Are PR techniques suitable to the problem?

e Can we develop useful models and determine
model parameters?

e Are there available formal tools and applicable
heuristics?

e Does a computationally practical solution exist?
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Applications
e Image processing, analysis, machine vision

e Seismic analysis

e Radar signal analysis

e Face recognition

e Speech recognition

e Fingerprint identification
e Character recognition

e Medical diagnosis

® ctcC.
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PR process:
information reduction
information labeling
information mapping

class membership space
pattern space
measurement space

relations between classes and patterns
relations between patterns from P and
measurements from F

20 mMOAO

Class membership (Realized) pattern World observation
or description space space or measurement space
L P F

Figure 1: Mappings in an abstract representation of pattern genera-
tion/classification/interpretation systems.
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PR problem (StatPR and SyntPR):
Given measurements m;, we look for a method to
identify and invert mappings M and G; for all 1.

Unfortunately, these mapping are not functions and
are not “onto” ==> are not invertible.

Different patterns may have the same
measurements ==> ambiguity.

e M reflects our view of the world ... good
measurements are more likely to produce good
classification.

e Patterns from the same class are “close” in the
P space.

e Measurements from the same class are (often)
not close in the F space.

Example ... red and blue cars are close in P; while
red and blue color are far in F.

100% correct classification may not be feasible.
Apples vs. hand-grenades example ... sometimes it

1s also useful to consider the cost of mis-
classification.



Sonka: Pattern Recognition Class

Structure of a typical PR system

Observed world
pattern data p;

e s o

Possible algorithm feedback or interaction

BT

|

(Statistical)

Sensor/
transducer

Preprocessing

Figure 2:

and
enhancement

Measurement, m;

Feature/
primitive
extraction
algorithm

el

Classification
algorithm

— (lassification

(Syntactic)

N

Description
algorithm

Description

Typical pattern recognition system structures.
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Patterns and Features:

Pattern ... a set of measurements, often 1n a vector
form (StatPR) or graph/grammar form (SyntPR).

Features ... Any extractable measurements used.
e numerical S1ze

e symbolic color

e complex primitives

Feature extraction - measurements extracted from
data.

e may require significant computational effort
(e.g., extracting shape properties of 3D objects)

e extracted features may be “noisy” ... may have
€Irors

Extracted features:

e computationally feasible

¢ good discriminative power
¢ good descriptive power

Feature selection - selection of features from the
set of available features.
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Pattern Distortion

Measurements may be “noisy’ ... color varies with
lighting, shape varies with viewing angle, etc.

e Features should be invariant to such changes

sz_
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Figure 6: Example of 2-D regions for RST feature extraction.
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RST-1nvariant moments (well-known 7 features
based on statistical central moments)

Table 1.1: Moment-Based RST Invariant Features
$1 = M20 + No2
¢2 = (n20 — Mo2)? + 40},
= (n30 — 3m2)® + (3n21 — Mo3)?
¢4 = (m30 +ma2)* + (n21 + 103)*
= (m30 — 3m2)(n30 + m2)[(n30 + Mm2)* — 3(n21 + nos)?]

+(3n21 — 103) (n21 + 103)[3(M30 + M2)* —
d6 = (m20 — Mo2)[(m30 + Mm2)* —
7 = (3n21

(21 + 103)?)
(n21 + 103)*] + 4mi (30 + 72) (921 + Mo3)
— n03)(m30 + m2)[(M30 + M2)? — 3(n21 + Mo3)?]

—(m30 — 3m2)(n21 + 103)[3(M30 + Mi2)? — (W21 + Mo3)?]

¢; 1nvariant to RST transforms

Table 1.2: Moment-Based Features ¢; for R;1 =1,2,...7;7=1,2,...6
Feature R, Rs Rs R4 Rs Rs
1 1.67F — 01 1.94FE — 01 2.083F — 01 1.67FE — 01 1.94F — 01 1.94F — 01
b2 0.00E+00 6.53E—-03 1.56E—02 0.00E+00 6.53FE—-03 6.53E—-03
d3 0.00E+00 1.02E—-03 0.00E+00 0.00E+00 1.02E—-03 1.02E —-03
P4 0.00E+00 4.56E —05 0.00E+00 0.00E+00 456E —05 4.56E —05
b5 0.00E+00 425E—-09 O0.00E+00 0.00E+00 425E—-09 4.25FE-09
6 0.00E+00 1.70E—-06 0.00E+00 0.00E+4+00 1.70E-06 1.70FE — 06
o7 0.00E +00 —8.85E—09 0.00F+00 0.00E+00 —8.85FE —09 —8.85FE — 09
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Concept of Similarity

Patterns from one class are similar to each other.

However, quantification of similarity is often
difficult.

Feature Vector and Feature space

Feature vector x ... d-dimensional

Feature space R ... if features are unconstrained
d . :
subspace of R" ... if features are constrained

Feature vectors ... used in StatPR, NeurPR
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Definitions

e Classification assigns input data to one or more
of ¢ prespecified classes based on extraction of
significant features or attributes and the analysis
of these attributes

e Recognition the ability to classify

e Don’t know class a dummy c+1st class

e Description  structural description of the input
pattern

e Class set of patterns known to originate from the
same source 1n C.

e Noise resulting from non-ideal circumstances
® measurement errors
e feature extraction errors
e training data errors

The Kkey to success is often to identify suitable
attributes (features, descriptions) and to form a
good measure of similarity and an associated
matching process.
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Classifiers, Discriminant functions
(StatPR, NeurPR)

Nonoverlapping regions in RY. Border of each
region 1s a decision boundary.
Discriminant functions gi(x) partition RY, i=1,..,c.

Decision rule:
Assign x to class wy, (Region Ry,)
if gm(x) > gi(x) for all 1; 17 m

Then, gi(x) = gi(x) defines a decision boundary
between classes k and 1.
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(a) (b) (c)

Figure 9: Sample decision regions (2-D example).
(a) Linear (piecewise).
(b) Quadratic (hyperbolic).
(c) (Relatively) general.

g1l) =llx-x

&alx) =1lx-x; |l

(a) (b)

Figure 10:  Discriminant function and corresponding decision regions (min-

imum distance classifier).
(a) Discriminant functions.

(b) Corresponding partition of R2.
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Training and Learning in PR Systems

Maximum available (and useful) information
should be employed in the designed PR system.
Supervised learning approaches serve as an
example.

Training set H - a pair of a pattern & class info.
In Synt PR we also need a set of counter-examples.

Although, unsupervised approaches exist - cluster
analysis.

PR approaches

Statistical

Structural (Syntactic)
Fuzzy

Neural
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Raw data as features
"Structural® approach

Feature extraction

. = Extract primitives

g Extract: and relations:

0 # intersections

1 #/ .

g - \_ /
X1 = 1 #\ s

1 # "holes’ N

- - 3 e

a 2 \ /

1 52 = 1 r

1 2

0 1

+
- _ /
Extensions: / \
\ —

¢ SRT invariant
X3= /& To parser

Figure 14: Example of PR approaches.
(a) Input pattern.
(b) Possible feature extraction approaches.
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Table 1.3:

15

Comparing StatPR, SyntPR, and NeurPR Approaches

StatPR SyntPR

NeurPR

. Pattern Generation

(Storing) Basis

. Pattern Classifica-

tion (Recognition/
Description) Basis

. Feature Organization

. Typical Learning
(Training) Approaches

Supervised:

Unsupervised:

. Limitations

Probabilistic Models Formal Grammars

Estimation/ Decision Parsing
Theory

Feature Vector Primitives and
Observed Relations

Density/distribution Forming grammars
estimation (usually  (heuristic or gram-

parametric) matical inference)
Clustering Clustering
Difficulty in Difficulty in
expressing learning
structural structural rules

information

Stable State or
Weight Array

Based on (Predictable)
Properties of NN

Neural Input or
Stored States

Determining NN system
parameters (e.g., weights)

Clustering

Often little semantic
information from
network




Step 1:

Step 2:
Step 3:

Step 4:
Step 5:

Step 6:

Step 7:
Step 8:
Step 9:

Sonka: Pattern Recognition Class 16

Procedures for PR system engineering

Study the classes of patterns under consideration to develop possible
characterizations. This includes assessments of (quantifiable) pattern
structure and probabilistic characterizations, as well as exploration of
possible within-class and interclass similarity/dissimilarity measures. In
addition, possible pattern deformations or invariant properties and char-
acterization of ‘noise’ sources should be considered at this point.

Determine the availability of feature/measurement data.

Consider constraints on desired system performance and computational
resources (e.g., parts/minute, classification accuracy).

Consider the availability of training data.

Consider the availability of suitable and known PR techniques (e.g.,
StatPR, SyntPR,and clustering). an overall PR system structure.

Develop a PR system simulation. This may involve choosing models,
grammars, or network structures.

Train the system.
Simulate system performance.

Iterate among the above steps until desired performance is achieved.
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Statistical PR

Approaches to statistical classifier design

e calculating a posteriori probabilities from a priori
probabilities ... Bayesian Theory
e minimizing classification losses

Both strategies can be implemented using discriminant
functions

Bayesian theory

- fundamental statistical approach

- quantifying trade-offs between classification
decisions using probability and costs accompanying
such decisions
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Specific example — classifying sea bass and salmon
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fish appears randomly on a belt, let w denote state of
nature

W=W] ... sea bass

W=W> ... salmon

state of nature is unpredictable, therefore must be
probabilistically described

How likely 1s it that salmon appears?

... there 1s some a priori probability
P(w) that next fish on conveyor is a sea bass
P(w,) that next fish on conveyor 1s a salmon

assuming no other fish can appear, then
P(w1) + P(wy) =1

A priori probabilities may be known 1n advance, e.g.,
based on the time of the year, location, etc.

bJ

Assume that we must make a decision without “seeing’
the fish ...

# of classes c=2, no features ... d=0, a priori
probabilities of classes P(w;)=0.9, P(w;)=0.1
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Discriminant function:
if P(w;) > P(w;) ... choose w; otherwise choose w,

P(error) =
P(choose w;|wi)P(w) + P(choose w;|w,)P(w,)

if we always choose w; ...
P(error)=0*09+1*0.1 =0.1
Probability of error ... 10% ==> minimal error

Works well if P(w;) >> P(w»),
not well at all if P(w;) = P(w,).

To improve classification correctness, we use features
that can be measured on fish.

Assume a single continuous feature x,

X 1S a continuous random variable,

p(x|w) 1s class-conditional probability density function,
its distribution depends on the state of nature (class) w.
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Difference between p(x|w;) and p(x|w>) ... difference in
feature value between populations of sea bass and
salmon:

Assume that we know a prior1 probabilities P(w;) and
densities p(x|w;), suppose that we measure x ...

... what can be said about w ... the status of nature =
classification of fish?
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Joint probability density of having a pattern from
category w; that has a feature value x:

p(wj, x) = P(wjlx) p(x) = p(x|w;j) P(w;)

==> Bayes rule:

P(wjlx) = p(x|w))[P(W;) / p(x)]

and here (for 2 classes):
p(x) = p(x|w1) P(w1) + p(x|w2) P(w2)

Bayes rule 1s informally:
posterior = (likelihood x prior)/(evidence)

p(x|w;) 1s likelihood of w; with respect to x
==> other things being equal, x 1s more likely to happen
for class w;

p(x) 1s common to all class conditional probabilities and
can be eliminated

p(x) 1s mostly a scaling factor and can be omitted for
classification purposes (scales sum of a posteriori probs

to 1)
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Likelihood graph:

x| )

a4

a I I 1

if P(w) = 2/3 and P(w,)= 1/3 then:

11 id 15

Piu)x)

I L 9

23
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==> by observing x, a priori probability P(w;) can be
converted to a posteriori probability P(w;|x).
Error assessment
P(error) = P(x 1s assigned to a wrong class)
for c=2
P(error) = P(w,|w)P(w) + P(W1|w,)P(w>)
Classification error:
Minimization of error:
deciding w; for P(w|x) > P(w;|x)
and deciding w, otherwise

Minimization of the classification error:

choose w; if p(x|w)P(w;) > p(x|w2)P(w>)
choose w, 1f p(x|w)P(w;) < p(X|w2)P(w>)
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Rigorous solution to the problem ... calculating a
posteriori probabilities using a priori probabilities:

Special cases:
1f p(x|w1) = p(x|w2)
... decision only depends on prior probabilities

if P(wy) = P(w>)
... decision only depends on likelihood
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Generalization:

e more than one feature

e more than 2 classes

e allow other action than classification

e introducing loss function more general than
probability of error

more features than 1
- replaces scalar x with a vector x from a d-
dimensional feature space R¢

more classes than 2
- deciding wy for P(wy|x) > P(w,|x) for all m<>k

allow other action than classification
.. = allows not to classify = don’t know class

loss function
—> weighting decision costs (apples/hand-grenades)
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[W1, Wa, ... W] ... finite set of ¢ classes

[0, 0, ... 0] ... finite set of a possible actions

Moi|w;) ... loss function
- loss resulting from taking action o;
when the class 1s w;

X ... d-component feature vector (random variable)

p(X|w;) ... state-conditional probability density function
where w; is the true class assignment

P(wj) ... A priori probability of class w;
A posteriori probability from Bayes formula:
P(w;lx) = p(xIwj) P(wj) / p(X)

where

p(X) = Zj=1..c p(X|w;) P(w;))
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Let x be classified as belonging to w;. Then
P(GHOT|X) = Zkzlc(kii) P(Wk‘X)

However, Bayes formulation of the classification error
may not always represent the risks well.

Remember the example of apples vs. hand-grenades

General Measures of Classification Risk

Loss function

class 1 class 2 class ¢
class 1 7\41 }\42 7\vlc
class 2 7\421 }\Qz 7\vlc

class ¢ Ael Aeo Aec
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Then, the expected classification risk (conditional risk)
for feature vector X 1is:

R(0i|X) = Zj=1...c Mou[w;) P(wj|X)
For each particular observation X, the classification risk
can be minimized by choosing action a; that minimizes

the conditional risk.

for 2 classes ... action dependent on X [action o(X) ]

R[OL(X) —> OLl] = R((‘L1|X) = 7L11 P(W1|X) + 7\42 P(W2|X)
R[OL(X) —> OLQ] = R((‘Lle) = 7L21 P(W1|X) + 7L22 P(W2|X)
A1 and Ay, are “rewards” for correct classification,

A2 and A, are losses from incorrect classification
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For c classes, the expected risk R[ou(x)] that x will be
classified incorrectly (using the total probability
theorem):

R[o(x)] =] R[oux)[x] p(x) dx

Therefore, minimizing the conditional risk R[a(x)|x] also
minimizes the expected risk R[ou(x)].

Usually, A;; =0, no loss associated with a correct
classification.

Consider unit loss functions Aj.= 1 for 1#]
... all errors are equally costly.

Then, (unit losses)
Rlou(X) = o] = Zie1” Aik P(wi|x) =
= 2z P(W|X) = 1- P(Wj|x)
—> to minimize the conditional risk, the decision rule has

to choose the a; that maximizes P(w;|x), that is to choose
the maximum a posteriori probability.
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—

MAXIMUM A POSTERIORI PROBABILITY
CLASSIFIER

choose w;
P(wix) > P(wg|x) forall k #1

For general formulation of risk:

choose a;
R(aix) > R(oy|x) forall k #1
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R, R, | R. | R,
y-axis shows the ratio of a priori probabilities

Using zero-one loss functions Aj;.= 1 for 1#], decision
boundaries are identical to those based on a posteriori

probabilities (below)

LY i ) 2 I3 Id I3
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decision function is dependent on loss functions A

If classification errors of misclassifying w; are greater
than for w,, threshold increases and region for class w
shrinks:

x| )
pix u_r‘.}
|
Hlk ﬁ
g r7 A r-————- i St i
: | | 1

| | |
/ | | 1

| | |

I I I

| | |

1 | X
R R, R. R
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Classifiers, discriminant functions, decision
surfaces

Assign feature vector x to class wy,
if  gn(x)> gi(x) for all 1; 1 m

Then, g (x) = gi(x) defines a decision boundary
between classes k and 1.

Classifier can be viewed as a machine computing
discriminant functions:

et

(e.g., classification)

discriminant
Junctions

it
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Bayes classifier fits this representation well

gi(x) = - R(ay[x)

and maximum of discriminant function corresponds to
minimum risk

or directly

gi(x) = P(wj[x)

| WP

Two-class case (dichotomy):

g(x) = gi(x) — g2(x)



Sonka: Pattern Recognition Class 36

Bayes classifier behavior is determined by
1) conditional density p(x|w;)
2) a priori probability P(w;)

Normal (Gaussian) probability density function was
studied extensively

Why normal?

- 1t 1s well behaved and analytically tractable

- it 1s an apprpriate model for values randomly distributed
around mean L.
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Gaussian models for p(x|w;)
- multidimensional Gaussian distribution
x 1S a d-dimensional vector d x 1
u 1s the mean vector
> 1s the covariance matrix d x d

=» complete specification of p(x)
using d+d(d+1)/2 parameters

Having class-specific mean vectors L; and class-specific

covariance matrices X;, class-dependent density functions
p(x|wi) can be calculated.

How to estimate mean vectors ; and covariance matrices
2;? It will come later when we discuss training.
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Discriminant functions in this case:

1-th class:

gi(x) = P(wilx)
Classification ... finding the largest discrimination
function:

More generally, any monotonically increasing function of
gi(x) can be used as a valid discrimination function.

Assuming equal a priori probabilities,

P(wi|x) = p(x|w;)
and

gi(x) = log[p(x|w;)]

Let’s assume equal 2 for all classes, different mean
vectors L.

General multivariate normal density:
p(x) = 1(2m)™ [X[") exp[-1/2 (x-p)' ¥ (x-p)]

>
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->
g’ (x) =-1/2 (x-pi) " =7 (x-p) - (d/2)log(27) - (1/2)log|Z|
class-independent biases can be eliminated

What remains is the squared distance of feature vector x
from the i1-th mean vector y; weighted by the inverse of
the covariance matrix

For 2 =1, Euclidean norm results.

g’i(x) 1s largest if (x—ui)T >l (x-u;) 1s smallest

... minimum distance concept for the same X for all
classes ...

Linear discriminant functions
T
gi(X) =wi X+ Wi
_ T _
wio = -1/2 Wi W and Wi = Ui

Thus, p; 1s a template for class wi.
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1-D case:

i

lI'\.

2-D and 3-D cases:

=>» linear discrimination functions.

(However, 2 =1 1s not necessary to achieve linear
discriminant functions.)
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> = X = covariance matrices identical but arbitrary

g’ (x) = - (x-p)' T (x-py)
=» measure squared
Mahalanobis distance (x-p;)' = (x-1)
from x to to each of the mean vectors
assign class according to the nearest mean
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Generalized result ... %; 1s class dependent (=arbitrary)

gi(x) = -12(x-l)" i (x-) - (d/2)log(27) - (1/2)log|Z|
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or, using the Bayes formula:

gi(x) = log[P(wix)p(x)] = log[p(x|w;)] + log[P(w;)]
If components are uncorrelated with equal variance 67,
1.€.,

Y =01

and after eliminating the class-independent bias log(%;),

gi(x) = -(1/20%)(x-1) " (x-p;) + log[P(w;)]

In that case, loci of constant ||x-p;||* are hyperspheres,
cach centered at the class mean ;.
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Previously, Z=I, now assume:
unequal variances
uncorrelated components

The covariance matrix for class 1:

611°0 0 0

0 0222 0
Y= 0 0 0

0 0 .0

0 0 0 Gad

/o> 0 0

0 1/oy° 0
>h= 0 0 0

0 0 .0

0 0 0 1/644°

Thus, the decision rule yields a weighted distance
classifier ... more emphasis on features with smaller o;;°.

Decision surfaces are hyperellipses (hyperquadrics).
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Prxjw;)
4

nir

R, R, R,

FIGURE 2.13. Non-simply connected decision regions can arise in one dimensions for
Gaussians having unequal variance. From: Richard O. Duda, Peter E. Hart, and David
C. Stork, Pattern Classification. Copyright @© 2001 by John Wiley & 5ons, Inc.
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FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John

Wiley & Sons, Inc.
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FIGURE 2.15. Arbitrary three-dimensional Gaussian distributions yield Bayes decision boundaries that are

two-dimensional hyperquadrics. There are even dege

erate cases in which the decision LN 1 A

From: Richard Q. Duda, Peter E, Han, and David G, Stork, Pattern Classification. Copyright @ 200
Wiley & 5ons, Inc.
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Bayes decision theory — discrete features
until now, feature vector x was from R¢
frequently, x can only have one of m discrete values

=» probability density functions is singular and integrals

J p(x|wy) dx

must be replaced by summation over all values of x 1n
discrete distribution

Z P(X‘Wj)

Bayes formula then uses probabilities instead of
probability densities:

P(wj|x) = P(X|w;) P(w;) / P(X)
where

P(X) = Zj=1...c P(X|w;) P(W))
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Definition of conditional risk remains unchanged

=» so the fundamental Bayes decision rule is still the
same.

Extensions:

How to determine parameters of the probability density
functions (PDF)?

May be based on training samples from a training set H.
(Coming soon)

Maximum likelihood classification is not the only one.

A) Nearest neighbor classification
B) Decision Trees
C) Unsupervised learning approaches
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Chapter 3
Supervised Learning

Maximum likelihood classification

P(wix) = p(x|wi) P(wj)
requires knowledge of p(x[wi), P(w)), c
always easy for P(w;), c

frequently difficult for p(x|w;), especially if
dimensionality is high =» never enough samples

... If we can assume that the distribution 1s normal
—> Gaussian densities, we need L;, %; for each class
—> much simpler than estimating an unknown function.

This information must be derived from the training set.

Assume that the FORM of densities 1s known, then we
have to ESTIMATE the density parameters.
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Parameter Estimation

A) Maximum likelithood estimation
assuming that parameters are fixed but unknown

B) Bayesian estimation
assumes random variables with known a priori
distributions
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Maximum Likelihood Estimation
Training set in the form of ¢ subsets H;, H,, ..., H

Samples are assumed to be generated by the density
function for class 1 ... probability density p(x|w;).

Let the set of parameters to be estimated be denoted ®;
In the Gaussian case, ®; = [L;, %i].

Let’s denote the parameter dependency p(x|w;,®;).
where ©®; 1s unknown but fixed ... not a random vector

Additionally, assume that H; gives
no information about O; if 1#]
=» we can work with each class separately.
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=» we have ¢ separate problems as follows (we can
remove class dependency from notation, since problems
are separated):

A set of H training samples drawn independently from
the probability density p(x|®) and the goal is to estimate
the unknown parameter vector ®.

General case 1s described on p. 86-87,
... but special Gaussian case 1s more frequently used ...

Gaussian case

Consider samples drawn from a multivariate normal
population with mean p and covariance matrix .
A) Only p 1s unknown

w= 1/n Zkzln Xk

=» maximum likelihood estimate for the unknown
population mean is the arithmetic average of training
samples.

In n-D .. u is centroid of a cloud of samples.
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B) u and ¥ are unknown
This 1s a more usual case than case A.

. . . 2
Univariate case .. estimate pu and o

=2 u=1/mnX-"x (same as before)

> o=1nZ " (x- )’

Multivariate case ... estimate p and X

=2 u=1/nX"x¢ (same as before)

> I=1/nZ" Xe- )X - )
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Blas

The maximum-likelihood estimate of 6~ is biased
=>» the expected value over all data sets is not equal true
variance

Check the above statement for n=1:
S>=1/M3 e X - Wk - ) = 0

while the entire distribution has a non-zero covariance
matrix =2 result cannot be trusted for small values of n

Such estimators are asymptotically unbiased ... give
correct results for large-enough training sets.

Elementary unbiased estimator:
Zunbiased =1/ (n'l) 2 k=1n (Xk - H)(Xk - H)T

If estimator 1s unbiased for all distributions (like the one
right above) =» absolutely unbiased estimator

Existence of 2 estimators = neither of them is perfect
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Another problem i1s that if we have an unreliable model
for underlying distributions, the classifier based on
maximum likelihood will not be optimal =» model
selection 1s crucial.

Bayesian Parameter Estimation

Objective: Given H;, form P(w;[x, H;)
(obviously, a posteriori probability depends on the
training set)

Using the Bayes formula, the BEST density parameter is
chosen based on the maximum a posteriori probability of
the parameter.

However, reaching the solution in a general case 1s not
straightforward.

In special cases of Normal distribution, the situation i1s
much easier
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A) Known %, unknown p

How to calculate ; for class 1 from the training set?
a) Max. likelihood: Use the recursive formula:
pitk+1) = 1/(k+1) [k pi(k) + xpe1]

b) Using the Bayes approach:
assume the a priori covariance matrix for class i:

known %; = (1/a) o;
Then, the recursive formula
pik+1) = [(atk)/(atk+1)Jui(k) + [1/(atk+1)]xpe
Parameter a represents the confidence in the a priori
estimate of u. In training, it specifies the number of steps
in which we believe more in the a priori estimate than in
the measured mean.

For a=0, u = mean(x)

B) Unknown X, known
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a) Max. likelihood; recursive formula:

Si(k+1) = 1/(k+1) [k Zi(k) + (X1 - )X - )]

b) Bayes approach:

Let K be the number of samples in the training
set. Let @;(0) be the a priori estimate of the covariance
matrix. Let 2;(K) be calculated as in a) above.

Then,
D;(K) = [b ®;(0) + K Zi(K)] / [b + K]
and @;(K) 1s considered the Bayes estimate of 2;(K).

Parameter b represents the confidence in the a priori
estimate of X.
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C) Unknown X, unknown p (most often the case)

a) Max. likelihood; recursive formula:
pi(k+1) = 1/(k+1) [k pi(k) + X1

Ti(k+1) = 1/k [(k-1) Zik) +
+ (Xier1 - Wik 1) (Xierr - pi(k+1))" +
+ k(ui(k) - wik+1)( pik) - pik+1)" ]

b) Bayes approach:

Let K be the number of samples in the training set.

Let 1i(0) be the a priori estimate of the mean vector for
class 1.

Let ®;(0) be the a priori estimate of the covariance
matrix.
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Using pi(K) and 2i(K) calculated according to the
maximum likelithood formulae in A) and B), respectively:

Mi(K) = [a wi(0) + K wi(K)] / [a + K]

®;(K)=[1/ (b +K)]
{ bdy0)+au0)m0) +(K-1) Z(K) +
+ K pi(K) p(K)' - (a+K) Mi(K) My(K)" }

M;(K) is considered the Bayes estimate of ;(K).
®;(K) is considered the Bayes estimate of Z;(K).

Parameters a,b represent the confidence in the a priori
estimates of u and .
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When do Maximum Likelihood and Bayes methods
differ?

- identical for infinite numbers of training samples
- but # of training samples is finite, so which approch is
better and when?

Criteria:
- computational complexity
(Max. likelihood 1s easier ... differential calculus, no
multidimensional integration as may be needed by Bayes
techniques)
- interpretability
(max. likelihood gives single best model,
Bayesian methods give a weighted average of
models = more difficult to understand)
- confidence 1n prior information
e.g., in form of p(x|w;,®;) ... Bayesian methods use
more such a prior1 information
=> if a priori information is reliable,
Bayesian approach is typically better
=» Max Likelihood and Bayesian approaches are
identical for uniform priors = no specific prior info
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Sources of error in final classification system:

1) Bayes (or Indistinguishability) error
error due to overlapping densities p(x|w;)
—> can never be eliminated

2) Model error
error caused by having an incorrect model
=» better model 1s needed but is it known?
model error in maximum likelihood
and Bayes methods rarely differ

3) Estimation error
consequence of having a finite sample
—> can be decreased by increasing the training sample

There are theoretical and methodological arguments
supporting Bayesian methods

- but in reality, maximum likelithood estimation is simpler
and leads to classifiers nearly as accurate as the more-
difficult-to-design Bayes classifiers.
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Problems of Dimensionality

- classification problems with tens or hundreds of
features are common

- let’s assume that no features are intentionally redundant

—> how classification accuracy depends on
dimensionality and amount of training data

—> what is computational complexity of classifier design
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A) Accuracy, dimension, training sample size
- the most useful are features for which the difference
between means is large relative to the standard deviations

=» Mahalanobis distance r is used, the larger the distance,
the better classification

= (- ) 2 (- )

so for conditionally independent case when
> = diag (6%, 655, ..., Od)

... squared Mahalanobis distance is
r =Y [ (Wit - pi) / o T

. . 2
=» cach feature contributes to an increase of r° ...
improve classification

- but it also says that no feature 1s useless as long as its
means differ ... BUT ...
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.. BUT ...

beyond certain point, adding new features frequently
causes decrease of performance, not improvement.

B) Computational Complexity
gi(x) = -1/2(x-pi)T > (x-L) - (d/2)log(2m) - (1/2)log|Z|]
A O(dn)
A O(ndz)
~O(1)
A O(d?n)
=>» this is done for each class

- Overall complexity for Bayes learning O(cd’n)

=» carlier we saw that we need large training samples
—> obvious “cost” associated with large n
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—> Classification complexity is much lower
[computing (x-;) ] = O(d) complexity= linear

plus

multiplication of inverse covariance matrix by separation
vector ... O(d?)

plus
do it for all ¢ classes ... for small “c” it is still O(d?)

=> MUCH less costly than learning
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C) Overfitting

If a number of available samples is not sufficient, the
number of features may be too large to be supported by
the small sample set =» overfitting occurs, classifier
does not generalize, rather it memorizes the training set.

Solutions:
- reduce dimensionality of feature set
- remove features
- combine features (K-L transform)
- assume that all ¢ classes have the same covariance
matrix and pool available data

- improve estimate of 2
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Problems of Parametric Approaches:

- the form of the distribution is not known
- the form of the distribution does not fit known
estimation approaches

Nonparametric Approaches

1) Direct estimation of p(x|w;)
based on a generalized multidimensional
histogram

2) Direct estimation of P(wj|x)

3) Transform of the Feature Space

hope that learning will be easier in the transformed
space
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Nonparametric Density Estimation
divide the feature space in regions R
vector x falling in region R ...
P(x € R) =g p(x")dx’ =P
Over R, P represents smoothed measure of density p(x).

Assuming that p(x) is constant over R, estimating P
results in the estimate of p(x).

n=l n=d n=49 n=1ff = I
LI | L | L . N !u?‘t .
L] L] LL e -
— e N = N - L) i."l'll
Vy =1/n O ; O N N U IR I -8 L L
- . - I': -II. ‘Ii'ﬁ
!' 4 [ I

- L] - * T :' '. tl:';
by = -"-II'" . - ~®' ‘_:; :'.
L) 4 ..: ": ‘. .."!

FIGURE 4.2. There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as Vi, = 1/.,/n. The
other method, shown in the boltom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number k, = /i of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Fattern Classification. Copyright @© 2001 by John Wiley &
Sons, Inc.
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Assume n independently drawn samples of PDF p(x) that
characterize class w; - samples are available in the
training set H;.

Probability that k out of n of these samples fall into
region R 1s given by binomial distribution ... for large
“n”, the binomials peak strongly at true probability.

relaiive
prebabiliny

I A

(L5

T T T T T T T T T | B

- L

i

FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yvield a particular
value for the probability density, here where the true probability was chosen to be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled 1o give
the same maximum {at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n — oo, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hartl, and David
G. Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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Example:

6 coins - how many heads ...

P(0 of 6) = 1/64
P(1 of 6) = 6/64
P(2 of 6) = 15/64
P(3 of 6) = 20/64
P(4 of 6) = 15/64
P(5 of 6) = 6/64
P(6 of 6) = 1/64

Obviously, assuming P=1/2 ...
u=6P=3
o°=nP (1-P) =6 (1/2) (1 - 1/2)=3/2

72
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Pleott)

P(k of n vectors € R) is large for k = nP. It is small
otherwise. Let’s not consider the small numbers ...

Therefore, it is likely that the observed number of vectors
falling into region R 1s only the result of the mean -
therefore, Kypserved = NP.

Thus, estimate for P:
P = kobserved/ n

Therefore, for class wj, using training set H;, if n samples
fall in region R with volume V,,
we estimate the PDF as
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Pa(X) =k, / (nVy)
We are interested in convergence of p(x) as n— 0.

Volume V of the region R cannot be too small since then
the estimates p(x) would vary from region to region ... we
need the smoothing effect.

What 1s the optimal size? 2 strategies:
1) shrinking regions ... Parzen windows
2) growing regions ... Nearest neighbor method
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Parzen Windows
Let the regions R,, be d-dimensional hypercubes with
edge-dimension h,. Let V :(hn)d be centered at x.

Using d-dimensional step function, the d-dimensional
feature space 1s divided into the hypercube and the rest of
space thus facilitating to count the samples in regions R.
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Training set with n samples ... the number of samples in

the hypercube region centered at x is
(for “0” outside of the cube and “1”” inside of the cube)

NI o)

A=1
) m ¢[(u>/4)
{)MCK):Té Vi

I |

If we view ¢ as an interpolation function for p,(x) and
define

Oty

pn(x) can be calculated as

W(\)*—géy(‘>

-
-
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If h, 1s large ... heavy smoothing, insensitive to local
variations in x

If h, 1s small ... sharp peaks of 0,(x) at x=0, 1f the training
set is not infinite, we have not covered entire R? ...
erroneous estimates of p,(X) ... erroneous results.

Ijm (27

FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen win-
dows for three different values of h. Note that because the 5(x) are normalized, different
vertical scales must be used to show their structure. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Fattern Classification. Copyright @© 2001 by John Wiley &
Sons, Inc.

FIGLIRE 4.4, Three Farzen-window censity stimabes Dased on the sarmee set of e samgles, Using T ww oy
functions im Fig. 4.3, As before, the vertical axes have been scaled to show the structure of each distrifaution,
Fraamy: Bichard O, Duda, Peter B Hart, and David G, Staork, Beitern Classilncalion 1'4|||'. ri;_:h'_ __i_ | 20 i:-:.- lahn
Wiley & S0ns, [nc,
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h=2

FIGURE 4.6. Parzen-window estimates of a bivariate normal density using different window widths and num
bers of samples, The verical axes have been scaled 1o best show the strecture ineach graph, Mote particularly
that the nm = oo estimates are the same (and match the true distribution), rEhj,:.lI'l:“!hH of wingow widdth, From:
Richard O, Duda, Peter E. Hart, and David G. Stork, Pattern Classification, Copyright @© 2001 by John Wiley

=>» many samples are required to get a good estimate
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How to shrink the regions?

E.g., using iteration-driven volume determination, select
starting volume V, shrink with increased number of
samples in the training set

V.= Vo /sqrt(n)

However, again, everything depends on the selection of
V. Additionally, if data do not cover the feature space
equally, many regions will not contain samples and the
estimate of p(x) will be erroneous.

- 0, LI

FIGURE 4.8. The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the leit a small h leads 1o boundaries
that are more complicated than for large b on same data set, shown at the right. Appar
ently, for these data a small b would be appropriate for the upper region, while a large
h would be appropriate for the lower region; no single window width is ideal over
all. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification.
Copyright @ 2001 by John Wiley & Sons, Inc.

=» no single size is optimal ...
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Maybe, the region size should be a function of the sample
data:

k-NN Nonparametric Estimation

1) form some number of regions, each centered around a
location x € RY.

Then, increase region’s size until it contains k, nearest
neighbor samples, k, 1s a function of n.

If the density around x 1s high - the region will be small
and vice versa.

Important ... we are using single-class training sets H;
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Direct estimation of P(w;|x)

suppose we captured k; samples from class w; in
region R with volume V ... joint probability p,(x,w;)

I‘i /:w

”r’rm (R,H‘B ) V/

P (o ) ) =
m
)
0@ P x W) T

Ao Ix ) F e A S

?m( ) lng(y w’a\ 'é,| 'j_n.;r
a;r by
by

k ... total number of samples in all classes in volume V
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NNR Nearest neighbor rule

keep in memory all samples from the training set

1-NNR

in the classification stage, assign the class of the nearest
labeled sample from the training set

Efficient algorithms to find the NN - preordering of
samples

3-NNR (k-NNR)

examine labels of k nearest neighbor samples, decision
made based on higher number of samples from a
particular class

- odd k helps if we have 2 classes - avoids ties.
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pix)
I

— - o —— - . -1

FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for kK = 3 and 5. Nole especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points. From: Richard
0. Duda, Peter E. Hart, and David G. Stork, Faitern Classification. Copyright © 2001
by John Wiley & Sons, Inc,

FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Motice how such a finile n estimate can be quite "jagped,” and nodice that disconti-
nuities in the slopes generally occur along lines away from the posilions of the peoints
themselves, From: Richard O, Duda, Peter E, Hart, and David G, Stork, Pattern Classifi-
cation, Copyright © 2001 by John Wiley & Sons, Inc.

=» note discontinuities far from samples

85
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Voronoi tesselation
of the d-dimensional space ...

X

FIGURE 4.13. In two dimensions, the nearest-neighbor algonthm leads to a partition-
ing of the input space into Voronai cells, each labeled by the category of the training
point it contains, In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O, Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright @ 2001 by John Wiley & Sons, Inc.,



Sonka: Pattern Recognition Class

Xz
] &
-
* L - &
. & - -k
LR L o~ "
. " . e L .
« "
i, -
an” * =
H . .
* .
-
* ]
.
b -
- * . *
- .
= X

FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses k training samples, and it labels the test point by a majority
vate of these samples. In this k = 5 case, the test point x would be labeled the category
ot the black paints. From: Richard Q. Duda, Peter E. Hart, and David G. Stork, Patfern

Classification, Copyright © 20070 by [ohn Wiley & 5ons, Inc.
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Metrics and Nearest Neighbor Classification
NN-classification relies on a distance function — metric

Properties of a metric D(.,.):
e nonnegativity
o reflexivity
e symmetry
e triangle inequality

a,b,c ... 3 vectors

1) D(a,b) >=0

2) D(a,b) =0 1iff a=b

3) D(a,b) = D(b,a)

4) D(a,b) + D(b,c) > D(a,c)

Example:
Euclidean distance in d-dimensions 1s a metric

The usual Euclidean metric is not invariant to scaling,
especially to non-uniform scaling for each coordinate.
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"
b

-1, o= (K1,

FIGURE 4.18. Scaling the coordinates of a feature space can change the distance rela-
tionships computed by the Euclidean metric. Here we see how such scaling can change
the behavior of a nearest-neighbor classifer, Consider the test point x and its nearest
neighbor, In the original space (left), the black prototype is closest. In the figure at the
right, the x, axis has been rescaled by a factor 1/3; now the nearest prototype is the red
one, If there g a large disparity in the ranges of the full data in each dimension, a com-
mon procedure is to rescale all the data to equalize such ranges, and this is equivalent
to changing the metric in the original space. From: Richard O, Duda, Peter E. Hart, and
David G. Stork, Pattern Classification, Copyright & 2001 by John Wiley & Sons, Inc.

Minkowski metric (also Ly norm):

Li(a,b) = (Zie® |a;—b; [<)"*

L; norm = city block distance

L, norm = Euclidean distance

L. norm ... maximum of distances between
projections of a,b vectors onto
each of d coordinate axes
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FIGURE 4.19. Each colored surface consists of points a distance 1.0 from the origin,
measured wsing different values for k in the Minkowski metric ik is printed in red), Thus
the white surfaces correspond to the L norm (Manhattan distance), the light gray sphere
corresponds 1o the Ly nom (Euclidean distance], the dark gray ones corespond o the
La norm, and the pink box corresponds to the L. norm. From: Richard O, Duda, Peter
E. Harl, and David O, Stork, Fattern Classification, Copyright @© 2001 by John Wiley &

Tanimoto metric ... distance between two sets:

Dt (S1, S2)=(; +ny—2nyp)/ (n; +np; —nyp)

n; ... number of elements 1n set S;
n, ... number of elements in set S,
np, ... number of elements In S; N S,

... Problems in which two patterns are either the same or
different with no natural notion of graded similarity.
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Tangent Distance

- typical problems of metrics used in Nearest Neighbor
classifiers is the lack of invariance

Example below ... shift of “5” causes 2 “fives” be more
dissimilar then non-shifted “5” and “8” when Euclidean
distance of gray values in corresponding pixels 1s used.

X x' X'{5=3])
u I | I
E _ | 1
T _||||| NN
.I'Jrrir-f.'.'u
hx'x )
258
-
I 2 E f 5

FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x' represents a handwritten 5, and x'(s = 3) represents the
same shape but shitted three pixels to the right. The Euclidean distance D', x'(s = 3))
is much larger than D(x’, x5), where x; represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, o
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright @© 2007 by John Wiley &
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Similarly, Euclidean distance is not invariant to rotation,
scaling

Since transforming the patterns first is computationally
prohibitive, tangent distance is often used.

Let there be r transforms applicable to the problem,
¢.g., translation, rotation, shear, scale, line thinning, etc.

==> perform linearly independent combination of
transforms ==> construct new prototypes.

Transforms are expensive, but transformation only needs
to be done once — during training.

Thus, a matrix of Tangent Vectors is created for each
training samples according to all possible transforms
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Proiarvme T

TV,

| RN b

FIGURE 4.21. The pixel image of the handwritten & protatype at the lower left was
subjected to two transtormations, rotation, and line thinning, to obtain the tangent vec-
tors TV, and TV:; images corresponding to these tangent vectors are shown outsicde the
axes, Each ot the 16 images within the axes represents the protatype plus linear combi-
nation of the two tangent vectors with coefficients a1 and a2. The small red number in
each image is the Buclidean distance between the tangent approximation and the image
generated by the unapproximated transtormations, Of course, this Euclidean distance is
0 far the prototype and for the cases an = 1, & = O and & = 0, & = 1. (The patterns
penerated with & + 2 = 1 have a gray background because of automatic grayscale
Conversion of images with negative pixel values.) From: Richard Q. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification, Copynght & 2001 by John Wiley & Sons,

Inc.
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Tangent distance is (one-sided tangent distance)
Din(x°,x) =min, [ || (X’ + Ta) —x || ]
=>» optimization of “a”

minimal Euclidean distance from x to tangent space of x’.

= we search for point in the tangent space that is closest
to a test point x = the linear approximation of the ideal.

Not too difficult since the distance we minimize 1is a
quadratic function (shown 1n red below).
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FICURE 4.22. A stored prototype x, if transtormed by combinations of two basic
transformations, would fall somewhere on a complicated curved surface in the full 4-
cimensional space (gray). The tangent space at x" is an r-dimensional Buclidean space,
spanned by the tangent vectors (here TV and TV:). The tangent distance Dhaa(x', x) 15
the smallest Euclidean distance from x to the tangent space ot X', shown in the solid red
lines for two points, % and %z, Thus although the Euclidean distance from & to %) is less
than that to x;, for the tangent distance the situation is reversed, The Euclidean distance
from x; to the tangent space of x' is a quadratic function of the parameter vectar a, as
shawn by the pink paraboloid. Thus simple pradient descent methods can find the opti-
mal vector a and hence the tangent distance D,,(x', %;). From: Richard Q. Duda, Peter
E. Hart, and David G, Stark, Fattern Classification, Copyright © 2001 by John Wiley &
Sons. Inc.

95



Sonka: Pattern Recognition Class 96

Feature Extraction and Feature Selection

Decision making success 1s closely related to the amount
of information available.

Thus, feature vectors should contain as complete a
description as possible ... this would increase the number
of features

No features are for free - feature calculation costs,
classification costs,

In reality, we have to compromise between the error
caused by incomplete feature description and complexity
of the description/classification stages.

Thus, selection or extraction of features 1s of high
importance ... use a minimal number of informative
features
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How to 1dentify informative features?
This part is not formalized

No theory exists specifying which features should be
measured on objects to improve classification success
rate

Compared to the well formalized and optimal approaches
for classifier setup, the situation 1s quite interesting:

We can find optimal solution for the classifier design
having some amount of descriptive information about
objects

however ...

We are not able to guarantee that the available
amount of descriptive information about objects will
be sufficient for satisfactory classification
performance
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Feature Extraction

Let’s have N descriptive features (N-dimensional pattern
space)

Then, a feature extraction is represented by a linear or
non-linear transform that maps any N-dimensional vector

x into an M-dimensional vector y, M<N.

Feature Selection

Special case of Feature Extraction where the M
components of y are a subset of the N components of x.
Interestingly, feature extraction is usually easier than
feature selection.

However, extraction often does not really solve the
problem, if we transform the original feature space, we
still need all the original features to calculate the new
vectors y 1n the transformed space ... we can save on
classifier complexity, cannot save on feature calculation.
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Karhunen-Loéve Expansion

New vectors y minimize a mean-square error criterion
with respect to original pattern vectors X.
K patterns from class 4 characterized by m features:
— T
Xk = [ X1, X2, +o'y Xim]
choose n orthonormal vectors ¢;

=1, ...,n
n<=m

Xk =Zi=1 Cki € (*)
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PDF FILE WITH K-L DERIVATION
EQUATIONS TO BE INSERTED HERE
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Properties of K-LL Transform

+ properties:

1. For n-dimensional space, it offers minimal distance
error

2. Feature vectors after K-L transform are not correlated

3. Features are decreasingly important with increasing
eigen number, unimportant features can be dropped

4. If we decide to improve approximation accuracy
(decrease distance error), it 1s not necessary to
recompute everything, just add some more features.

- properties

1. K-L expansion determines best descriptive features,
not best discriminative features

2. Thus, large eigen numbers may not represent the best
features w.r.t. classification

3. Despite the fact that we select a smaller number of
final features, we still have to calculate them all.
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Feature Extraction using Ratio of Scatter
Transform the feature space so that the ratio

(Inter-class scatter / Intra-class scatter)
1s maximal.

This ratio 1s inversely proportional to probability of
incorrect classification.

Individual features do not contribute equally to the value
of the ratio

Thus, we can disregard features that do not contribute
substantially to the value of the ratio.

Inter-class scatter 1s defined as
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PDF FILE WITH RATIO OF SCATTER
DERIVATION EQUATIONS TO BE INSERTED
HERE
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Linear Discriminant Functions

so far... we assumed that forms of underlying
distributions were known

—> we used the samples (training sets) to estimate
parameters of distributions.

Now - let’s assume that we know the forms of
discriminant functions g(x)

—> we will use the samples (training sets) to estimate
parameters of g(x).

Training error:
average error incurred in classifying training set samples

Caution!
Low training error does NOT guarantee good classifier
performance on test sets
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Linear discrimination functions and surfaces

g(X) =wW' X+ W

W ... weight vector
Wy ... bias, threshold weight

Two-category case:

®; ... assign if g(x)>0
®; ... assign 1f g(x) <0

no decision if g(x) =0

glx}

LN LT

i unit

pRAl RS

.-"lI y .-"lI ' L |t |.I|

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector, Each input feature value x; is multiplied
by its corresponding weight wy; the effective input at the output unit is the sum all these
products, ¥ wix;. We show in each unit its effective input-output function. Thus each of
the d input units is linear, emitting exactly the value of its corresponding feature value,
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 it w'x 4+ wy, = 0 or a —1 otherwise. From: Richard Q. Ducda, Peter E. Hart,
and David G. Stork, Fattern Classification, Copyright © 2001 by John Wiley & Sons,

I
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g(x) =0 ... decision surface

if g(x) is linecar =» hyperplane

If x; and x, are on the same decision surface, then
WTX1 + Wy = WTX2‘|‘W0

or
W' (X1 -X2) =0

=> w (vector) is normal to any vector lying in the
hyperplane

Hyperplane H divides feature space in 2 half-spaces

g(x) gives a measure of distance from x to hyperplane
X=Xptr(w/[w])

where

Xp 18 the normal projection of x onto H
r 1s the distance
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Of course g(x,) =0 =>
g(x) =w' x+wo=r|wl|

r=g(x)/[|w]|

Distance from origin to H: wo / [|w||

FIGURE 5.2. The linear decision boundary H, where gi{x) = w'x+wy = 0, separates the
iature space into bao hali-spaces By (where gix) = 0 and B3 (where gi(x) < 0. From:
Richard 0. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
@© 2001 by John Wiley & Sons, Inc.
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Multicategory case:

many ways how to do it wrong ...

R L
W
rn'.lr._'I
enmbriguens
region
AU Ty

FIGURE 5.3. Linecar decision boundaries for a four-class problem. The top figure shows
ey /ol e dichotomies while the bostom figure shows ay /e dichotomies and the oormre-
spanding decision boundaries Hy. The pink regions have ambiguous category assign-
ments, From: Richard O, Duda, Peter E. Hart, and David G, Stork, Pettern Classification,
Copwright @ 2001 by lohn Wiley & Sons, Inc,
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better solution... several discriminant functions ...
“c” functions for ¢ classes

gi(X) = WT X + W0

assign x to o; 1f gj(x) > g;(x) for all j except j=1

FIGURE 5.4. Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem. From: Richard O, Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Hyperplanes Hj; gi(x) = gj(x)

or
(Wi-Wj)TX‘|‘(WiO-Wj()) =0

=> (W; - wj) is normal to Hj;
distance from x to H; is (g - g)/||wi - wjl|

=>» weight vectors are not important,
their differences are!

Decision regions for linear classification machines are
convex.

Linear machines most suitable for unimodal distributions
- but counterexamples exist.
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Generalized linear discriminant functions

d
g(x) =Wo + Zie 1 Wi X;
w; ... components of the weight vector w

Adding products of pairs:
Quadratic discriminant functions

g(X) =W, T+ Zdi: 1 Wi X5+ Zdi: 1 Zdj: 1 Wij Xj X;
g(x) =0 ... hyperquadrics

Higher order ... hyperellipsoids
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Generalized linear functions and Phi function

g(x) =X%; a yi(x)

or

gx)=a'y ...
y(x) e.g., maps X from a d-dim space to d*-dim. space

Single-dimensional case example - quadratic discr.
function:
g(x)=a;+a,x+a3x°

y(x) =(1,%,x%)"

FIGURE 5.5. The mapping y = (1, x, x*)" takes a line and transforms it to a parabola
in three dimensions, A plane splits the resulting y-space into regions comesponding 1o
lwo categories, and this in e gives a nonsimply connected decision region in the
one-dimensional x-space. From: Richard O. Duda, Peter E. Hart, and David G, Stork,
Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc,
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Effectively, we are increasing dimensionality of the
problem = increased flexibility of partitioning space.

Curse of dimensionality = may lead to unrealistic
requirements for computation and data (training set sizes)

FIGLURE 5.6. The iwo-dimensional inpul space x is mapped through a polynomial func-
tion f 1oy, Here the mapping is v, = x, ¥ = % and vy o x %, A linear discriminant
in this transformed space is a hyperplane, which cuts the surface, Points to the positive
sidle of the hyperplane H correspond 10 category ey, and those beneath it correspond o
categony oy, Here, in lerms of the x space, B, is a not simply connected. From: Richard
O, Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001
by John Wiley & Sons, Inc.
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Two-category linearly separable case

- linear separability

- normalization = all ®, samples replaced with their
negatives

=» we look for a vector “a”
aT \ e 0
for all samples

€e 9%

a” 1s called ... separating vector

el fitinn snfLnden
region V2 reghnn V2

FIGURE 5.8. Four training samples (black for wy, red for a;) and the solution region in
leature space. The higure on the lett shiows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories, In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all *nommalized™ points on the same side. From: Bichard O,
Duda, Peter E, Hart, and David G, Stork, Pattern Classification, Copyright © 2001 by
Jobhn Wiley & Sons, Inc.

=» Solution region
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Margin ...

)
(¥
soliition ol
Fe o
II
o -l i
A
K I -‘-‘-‘-H‘-‘:-'I-.L
; Ji
.-'"' )
- ! -~
- i -
]

FIGLIRE 5.9, The eftect of thies IArEn thice soliilion e, Al the lett 1= the case of
no margin (b = 0} equivalent to a case such as shown at the left in Flg. 5.8, AL the right
is the case b = 0, shrinking the solution region by margins b/|ly,|l. From: Richard O,

Dk, Peter £, Hart, and Danad G, Stork, Pattern Classiiication, Copyright © 2001 by
[ Wiley & Sons, Inc.

Gradient descent procedures
- solution to a set of linear inequalities
al y; >0
=» define criterion function
J(a) that 1s minimized

if a 1s a solution vector

=» minimizing a scalar function - solvable by gradient
descent approaches
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a(k+1) = a(k) - n(k) VJ(a(k))
where 1 1s a positive scale factor ... learning rate

Algorithm: Basic gradient descent

initialize a, threshold 0, n(.), k=0
do k :=k+1
a:=a-n(k) Vl(a)
until n(k) VJ(a)| <0
return a
end

Choice of n(k) ...

if n(k) too small ... slow convergence
1f n(k) too large ... overshooting, even divergence

Assuming that criterion function can be approximated by
2nd order expansion around value a(k)
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J(a) = J(a(k)) + VI'(a-a(k)) + 1/2 (a-a(k))" H (a-a(k))
H ... Hessian matrix of 2nd partial derivatives

6% 1/ Oa; Oa;
evaluated at a(k).

As above, a(k+1)=a(k)-n(k) VJ(ak))

thus:
J(a(k+1)) = J(a(k)) - n(&)||VJ||* + 1/2 n*(k) VI'THV]

Therefore, J(a(k+1)) can be minimized by choosing
nk) = ||[VJ|[F/ VI'THV]
where H depends on a and thus on k.

(If J 1s a quadratic function, H is constant and thus 1 1s
constant independent of k)
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Newton Descent:

1dentical, but
a(k+1) =ak)-H' VJ

Newton’s algorithm gives greater improvement per step
then simple gradient descent, but cannot work for
singular H.

Newton algorithm is also more computationally
demanding, and thus simple gradient descent is
frequently faster overall (more iterations, but faster
executed).

FIGURE 5.10. The sequence of weight vectors given by a simple gradient descent
method (red) and by Newton's (second order) algorithm (black), Newtons method typi-
cally leads to greater improvement per step, even when using optimal leaming rates for
both methods. However the added computational burden of inverting the Hessian ma-
trix used in Newiton's method is not always justitied, and simple gradient descent may
suifioe. From: Richard O, Duda, Peter E. Hart, and David G. Stork, Pattern Classificalion.
Copyright (@ 2001 by John Wiley & Sons, Inc.
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Perceptron Criterion Function

criterion function for solving linear inequalities
aT yi = 0
Obvious choice of J(a, y) 1s the number of samples
misclassified by a ... but is piecewise constant, not good
for optimization.
Perceptron criterion function:
Jo(2) = Zyey (- y)
where Y 1s a set of samples misclassified by a.
(Y 1s empty for perfect classification)
a' y <=0 for misclassified y
=> J,(a) is non-negative
=> J,(a) = 0 for a on the decision boundary
- J,(a) is proportional to sum of distances from

misclassified samples to decision boundaries - see figure
below:
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Jia)

FIGURE 5.11. Four learning criteria as a function of weights in a linear classifier, At the
upper left is the wolal number of patterns misclassified, which is piecewise constant and
hence unacceptable for gradient descent procedures. At the upper right is the Perceptron
criterion (Eq. 16), which is piecewise linear and acceptable for gradient descent. The
lower ledt is squared error (Eq. 32), which has nice analytic properties and s useful
even when the patterns are not linearly separable. The lower right is the square error
with margin (Eq), 33). A designer may adjust the margin b in order to force the solution
vector to lie toward the middle of the b = 0 solution region in hopes of improving
peneralization of the resulting classifier. From: Richard O. Duda, Peter E. Hart, and

j-th component of gradient of J,1s 0J, / Oa;

VIp=Zyey (-¥)
and

a(k+1) = a(k) + k) Zyevi (¥)
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Perceptron algorithm (batch):

initialize a, threshold n(.), criterion 6, k=0
do k :=k+1
a:=a+ 1 Zyevs (¥)
until (k) Syevi ()| < 0
return a
end
=» The next vector is obtained by adding some multiple
of the sum of the misclassified samples to the present

weight vector.
Example for a(l) = 0, n(k) =1 :

Jia) '
di | = 22 L

FIGURE 5.12. The Perceptron criterion, [,{a), is plotted as a function of the weights a,
and a; for a [hl‘l‘t‘-r:-.l[ll_‘r'l'l F:Ir'-!lhll:'l"l'l_ Th l.'|.'|_'i|.',;_|'|t vEClOF |!:||;-:._I.i|'|-5. at 0, and the ,'||:.1-:||'i'||'||'l'|
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
sehves. In the example shown, this sequence 15 ¥;, ¥i. ¥i. ¥, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by y.)
takes the candidate vector farther from the solution region than after the first update
[cf. Theorem 5.1). Frome Richard O. Duda, Peter E. Hart, and David G, Stork, Pattern
Classification, Copyright 3 2001 by John Wiley & 5ons, Inc,
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Single-sample fixed increment perceptron

- samples considered cyclically, misclassified samples are
used for modification of function a.

... a(l) .. arbitrary
... a(k+1) = a(k) + y* for k>0

where yk is one of the n samples y, ..., y, that is
misclassified at the current stage

again, a' (k) yk >= () for all k
Perceptron algorithm (single sample, fixed increment):

1nitialize a, k=0
do k :=(k+1) mod n
if y* is misclassified by a
thena:=a+y"
until all patterns are correctly classified
return a
end

Algorithm only converges for linearly separable classes.
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Variations on single-sample, fixed increment:
e.g., variable increment with margin

a(l) .. arbitrary
a(k+1) = a(k) + n(k) y* for k>0

modification whenever a'(k) y* fails to exceed margin b
Perceptron algorithm (single sample, variable increment).

initialize a, , threshold 0, n(.), k=0
do k :=(k+1) mod n
ifa’(k) y<=b
then a == a + n(k) y*
until a'(k) y* > b for all k
return a
end

All the approaches above are “error-correcting”
approaches, they keep modifying the weight vector until
no errors are present.
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Non-separable behavior

- above-mentioned approaches require linearly separable
classes

- even 1f this 1s the case for training set, the set-up does
not guarantee good performance in reality

=» how will these approaches behave in linearly non-
separable classes?

Minimum Squared-Error Procedures

- let’s involve ALL samples 1n the criterion function.

let’s now try to make
aT Yi— bi
where b; 1s some arbitrary positive constant

It 1s reasonable to hope that by minimizing squared-error
criterion function, a useful discriminant function will be
obtained for separable and non-separable cases.
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a' y;=Db;... set of linear equations
=>» find a vector a satisfying
Ya=b
Y ... matrix, i-th row is vector y;'
for non-singular Y ... a=Y"' b ... but Y is usually not
square, typically more rows than columns =»

overdetermined set of equations

- minimization of error
e=YA-b

€.g., minimizing square of error vector
J(@=|Ya-b|P=%"(a yi-b)
VI,;=X"_2@a"yi-b)yi = 2Y' (Ya-b)

=»solution ...necessary condition Y'Ya=Y"b

Y'Y is a square matrix
=> if regular a=(Y'Y)'Y'b
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Y'Y 'y'y'

called pseudoinverse of Y ... always exists

Y" =Y" for square regular matrix Y

Y Y=1
but

YY =1
-> a=Y"b

1s the MSE solutionto Ya=Db



