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INTRODUCTION 
 
Pattern Recognition (PR) 
 
• Statistical PR 
• Syntactic PR  
• Fuzzy logic PR  
• Neural PR  
 

Example - basketball players and jockeys 
 
We will keep practical applicability in mind: 
 
• Are PR techniques suitable to the problem? 
• Can we develop useful models and determine 

model parameters? 
• Are there available formal tools and applicable 

heuristics? 
• Does a computationally practical solution exist? 
 



Sonka: Pattern Recognition Class 2

Applications 
• Image processing, analysis, machine vision 

• Seismic analysis 

• Radar signal analysis 

• Face recognition 

• Speech recognition 

• Fingerprint identification 

• Character recognition 

• Medical diagnosis 

• etc. 
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PR process: 
 information reduction 
 information labeling 
 information mapping 
 

C class membership space 
P pattern space  
F measurement space 
 

G relations between classes and patterns 
M relations between patterns from P and 
 measurements from F 
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PR problem (StatPR and SyntPR): 
Given measurements mi, we look for a method to 
identify and invert mappings M and Gi for all i.  
 
Unfortunately, these mapping are not functions and 
are not “onto” ==> are not invertible.  
 
Different patterns may have the same 
measurements ==> ambiguity. 
• M reflects our view of the world ... good 

measurements are more likely to produce good 
classification. 

• Patterns from the same class are “close” in the 
P space. 

• Measurements from the same class are (often) 
not close in the F space. 

Example ... red and blue cars are close in P; while 
red and blue color are far in F. 
 
100% correct classification may not be feasible. 
 
Apples vs. hand-grenades example ... sometimes it 
is also useful to consider the cost of mis-
classification. 
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Structure of a typical PR system 
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Patterns and Features: 
 
Pattern ... a set of measurements, often in a vector 
form (StatPR) or graph/grammar form (SyntPR).  
 
Features ... Any extractable measurements used. 
• numerical  size 
• symbolic  color 
• complex  primitives 
 
Feature extraction - measurements extracted from 
data. 
• may require significant computational effort 

(e.g., extracting shape properties of 3D objects) 
• extracted features may be “noisy” ... may have 

errors 
 
Extracted features: 
• computationally feasible 
• good discriminative power 
• good descriptive power 
 
Feature selection - selection of features from the 
set of available features. 
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Pattern Distortion 
 
Measurements may be “noisy” ... color varies with 
lighting, shape varies with viewing angle, etc. 
 
• Features should be invariant to such changes 
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RST-invariant moments (well-known 7 features 
based on statistical central moments)  
 

 
 
φi invariant to RST transforms 
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Concept of Similarity 
 
Patterns from one class are similar to each other. 
 
However, quantification of similarity is often 
difficult. 
 
 
 
 
 
Feature Vector and Feature space 
 
Feature vector x ... d-dimensional 
 
Feature space Rd ... if features are unconstrained 
 subspace of Rd ... if features are constrained 
 
Feature vectors ... used in StatPR, NeurPR 
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Definitions 
 
• Classification assigns input data to one or more 

of c prespecified classes based on extraction of 
significant features or attributes and the analysis 
of these attributes 

• Recognition the ability to classify 
• Don’t know class a dummy c+1st class  
• Description structural description of the input 

pattern  
• Class set of patterns known to originate from the 

same source in C.  
• Noise resulting from non-ideal circumstances 

• measurement errors 
• feature extraction errors 
• training data errors 

 
The key to success is often to identify suitable 
attributes (features, descriptions) and to form a 
good measure of similarity and an associated 
matching process. 
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Classifiers, Discriminant functions  
      (StatPR, NeurPR) 
 
Nonoverlapping regions in Rd. Border of each 
region is a decision boundary.  
Discriminant functions gi(x) partition Rd, i=1,..,c. 
 
Decision rule:  
Assign x to class wm (Region Rm)  
 if gm(x) > gi(x)   for all i;   i≠ m 
 
Then, gk(x) = gl(x) defines a decision boundary 
between classes k and l. 
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Training and Learning in PR Systems 
 
Maximum available (and useful) information 
should be employed in the designed PR system. 
Supervised learning approaches serve as an 
example. 
 
Training set H - a pair of a pattern & class info. 
In Synt PR we also need a set of counter-examples. 
 
Although, unsupervised approaches exist - cluster 
analysis. 
 
 
 
 
PR approaches 
 
Statistical 
Structural (Syntactic) 
Fuzzy 
Neural 
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Procedures for PR system engineering 
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Statistical PR 
 
Approaches to statistical classifier design 
 
• calculating a posteriori probabilities from a priori 

probabilities … Bayesian Theory 
• minimizing classification losses 
 
Both strategies can be implemented using discriminant 
functions 
 
 
Bayesian theory 
- fundamental statistical approach 
- quantifying trade-offs between classification 
decisions using probability and costs accompanying 
such decisions 
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Specific example – classifying sea bass and salmon 

 



Sonka: Pattern Recognition Class 19

fish appears randomly on a belt, let w denote state of 
nature 
w=w1 … sea bass 
w=w2 … salmon 
 
state of nature is unpredictable, therefore must be 
probabilistically described 
 
How likely is it that salmon appears? 
 
… there is some a priori probability  
P(w1) that next fish on conveyor is a sea bass 
P(w2) that next fish on conveyor is a salmon 
 
assuming no other fish can appear, then  
P(w1) + P(w2) = 1 
 
A priori probabilities may be known in advance, e.g., 
based on the time of the year, location, etc.  
 
Assume that we must make a decision without “seeing” 
the fish …  
 
# of classes c=2, no features ... d=0, a priori 
probabilities of classes P(w1)=0.9, P(w2)=0.1 
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Discriminant function: 
if P(w1) > P(w2) … choose w1 otherwise choose w2 
 
P(error) =  
 P(choose w2|w1)P(w1) + P(choose w1|w2)P(w2) 
 
if we always choose w1 ... 
 
P(error) = 0 * 0.9 + 1 * 0.1 = 0.1 
 
Probability of error ... 10% ==> minimal error 
 
Works well if P(w1) >> P(w2),  
not well at all if P(w1) = P(w2). 
 
To improve classification correctness, we use features 
that can be measured on fish. 
 
Assume a single continuous feature x,  
x is a continuous random variable, 
p(x|w) is class-conditional probability density function, 
its distribution depends on the state of nature (class) w. 
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Difference between p(x|w1) and p(x|w2) … difference in 
feature value between populations of sea bass and 
salmon: 

 
 
Assume that we know a priori probabilities P(wi) and 
densities p(x|wi), suppose that we measure x … 
… what can be said about w … the status of nature = 
classification of fish? 
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Joint probability density of having a pattern from 
category wj that has a feature value x: 
 
   p(wj , x)  =  P(wj|x) p(x) = p(x|wj) P(wj) 
  
==> Bayes rule: 
 
P(wj|x) = p(x|wj)[P(wj) / p(x)] 
 
and here (for 2 classes): 
p(x) = p(x|w1) P(w1) + p(x|w2) P(w2) 
 
Bayes rule is informally: 
 
         posterior = (likelihood × prior)/(evidence) 
 
p(x|wj) is likelihood of wj with respect to x 
==> other things being equal, x is more likely to happen 
for class wj 
 
p(x) is common to all class conditional probabilities and 
can be eliminated  
p(x) is mostly a scaling factor and can be omitted for 
classification purposes (scales sum of a posteriori probs 
to 1)  
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Likelihood graph: 

 
if P(w1) = 2/3 and P(w2)= 1/3 then: 
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==> by observing x,   a priori probability P(wj) can be 
converted to a posteriori probability P(wj|x). 
 
 
Error assessment 
 
P(error) = P(x is assigned to a wrong class) 
 
for c=2 
 
P(error) = P(w2|w1)P(w1) + P(w1|w2)P(w2) 
 
Classification error:  
 
Minimization of error: 
deciding w1 for P(w1|x) > P(w2|x) 

   and deciding w2 otherwise 
 

Minimization of the classification error: 
 
 choose w1  if p(x|w1)P(w1) > p(x|w2)P(w2) 
 choose w2  if p(x|w1)P(w1) < p(x|w2)P(w2) 
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Rigorous solution to the problem ... calculating a 
posteriori probabilities using a priori probabilities: 
 
Special cases: 
if p(x|w1) = p(x|w2)  
… decision only depends on prior probabilities 
 
if P(w1) = P(w2) 
… decision only depends on likelihood 
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Generalization: 
• more than one feature 
• more than 2 classes 
• allow other action than classification 
• introducing loss function more general than 

probability of error 
 
more features than 1   
   replaces scalar x with a vector x from a d-
dimensional feature space Rd  
 
more classes than 2 
   deciding wk for P(wk|x) > P(wm|x) for all m<>k 
 
allow other action than classification 
..  allows not to classify = don’t know class 
 
loss function 
   weighting decision costs (apples/hand-grenades) 

 
 
 
 
 



Sonka: Pattern Recognition Class 27

[w1, w2, … wc] … finite set of c classes   
 
[α1, α2, … αa] … finite set of a possible actions 
 
λ(αi|wj) … loss function   
               - loss resulting from taking action αi  

when the class is wj 
 
x  …  d-component feature vector (random variable) 
 
p(x|wj)  … state-conditional probability density function  
   where wj is the true class assignment 
 
P(wj) … A priori probability of class wj 

 
A posteriori probability from Bayes formula: 
 
      P(wj|x) = p(x|wj) P(wj) / p(x) 
 
where  
 
      p(x) = Σj=1…c p(x|wj) P(wj) 
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Let x be classified as belonging to wi. Then  
 
 P(error|x) = Σk=1

c
(k≠i)

    P(wk|x) 
 
However, Bayes formulation of the classification error 
may not always represent the risks well. 
... 
Remember the example of apples vs. hand-grenades 
 
 
General Measures of Classification Risk 
 
Loss function 
 
   class 1  class 2  ...  class c 
 
class 1      λ11     λ12       λ1c 
 
class 2      λ21     λ22       λ1c 
 
... 
 
class c      λc1     λc2       λcc 
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Then, the expected classification risk (conditional risk) 
for feature vector x is: 
 
 R(αi|x) = Σj=1…c λ(αi|wj) P(wj|x) 
 
For each particular observation x, the classification risk 
can be minimized by choosing action ai that minimizes 
the conditional risk.  
 
for 2 classes … action dependent on x [action α(x) ] 
 
R[α(x) → α1] = R(α1|x) = λ11 P(w1|x) +  λ12 P(w2|x) 
 
R[α(x) → α2] = R(α2|x) = λ21 P(w1|x) +  λ22 P(w2|x) 
 
λ11 and λ22 are “rewards” for correct classification,  
 
λ12 and λ21 are losses from incorrect classification 
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For c classes, the expected risk R[α(x)] that x will be 
classified incorrectly (using the total probability 
theorem): 
 
 R[α(x)] = ∫ R[α(x)|x] p(x) dx 
 
Therefore, minimizing the conditional risk R[α(x)|x] also 
minimizes the expected risk R[α(x)].  
 
Usually, λii  = 0, no loss associated with a correct 
classification. 
 
Consider unit loss functions λij.= 1 for i≠j 
     ... all errors are equally costly.  
 
Then, (unit losses) 
 
 R[α(x) → αi] = Σk=1

c λik P(wk|x) =  
 
  = Σk≠i  P(wk|x) = 1- P(wi|x) 
 
⇒ to minimize the conditional risk, the decision rule has 
to choose the αi that maximizes P(wi|x), that is to choose 
the maximum a posteriori probability. 
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⇒   
 
MAXIMUM   A   POSTERIORI   PROBABILITY   
         CLASSIFIER 
 
 
 
choose wi 
 P(wi|x)  > P(wk|x)   for all k ≠ i 
 
 
 
 
For general formulation of risk: 
 
choose αi 
 R(αi|x)  > R(αk|x)   for all k ≠ i 
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y-axis shows the ratio of a priori probabilities 
Using zero-one loss functions λij.= 1 for i≠j, decision 
boundaries are identical to those based on a posteriori 
probabilities (below)  
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decision function is dependent on loss functions λ 
 
If classification errors of misclassifying w1 are greater 
than for w2, threshold increases and region for class w1 
shrinks: 
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Classifiers, discriminant functions, decision 
surfaces 
 
Assign feature vector x to class wm 
   if      gm(x) > gi(x)   for all i;   i≠ m 
 
Then, gk(x) = gl(x) defines a decision boundary 
between classes k and l. 
 
Classifier can be viewed as a machine computing 
discriminant functions: 
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Bayes classifier fits this representation well 
 

gi(x) = - R(αi|x) 
 

and maximum of discriminant function corresponds to 
minimum risk 

 
or directly 

 
gi(x) = P(wi|x) 

 
Two-class case (dichotomy): 
 
 g(x) = g1(x) – g2(x) 
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Bayes classifier behavior is determined by 
1) conditional density p(x|wi) 
2) a priori probability P(wi) 
 
Normal (Gaussian) probability density function was 
studied extensively 
 
Why normal? 
- it is well behaved and analytically tractable 
- it is an apprpriate model for values randomly distributed 
around mean µ. 
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Gaussian models for p(x|w1)  
 - multidimensional Gaussian distribution 
x  is a d-dimensional vector d × 1 
µ is the mean vector 
Σ is the covariance matrix d × d 
 

 complete specification of p(x)  
   using d+d(d+1)/2 parameters 
 
Having class-specific mean vectors µi and class-specific 
covariance matrices Σi, class-dependent density functions 
p(x|wi) can be calculated. 
 
How to estimate mean vectors µi and covariance matrices 
Σi? It will come later when we discuss training. 
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Discriminant functions in this case: 
 
i-th class: 
   gi(x) = P(wi|x) 
Classification ... finding the largest discrimination 
function: 
 
More generally, any monotonically increasing function of 
gi(x) can be used as a valid discrimination function.  
Assuming equal a priori probabilities,  
 
   P(wi|x) = p(x|wi) 
and 
 
   gi(x) = log[p(x|wi)] 
 
Let’s assume equal Σ for all classes, different mean 
vectors µ.  
 
General multivariate normal density: 
 
p(x) = 1/((2π)d/2 |∑|1/2)  exp[-1/2 (x-µ)T Σ-1 (x-µ)] 
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gi’(x) = -1/2 (x-µi)T Σ-1 (x-µi) - (d/2)log(2π) - (1/2)log|Σ| 
 
 class-independent biases can be eliminated 
 
What remains is the squared distance of feature vector x 
from the i-th mean vector µi weighted by the inverse of 
the covariance matrix 
 
For Σ = I , Euclidean norm results. 
 
g’i(x) is largest if (x-µi)T Σ-1 (x-µi) is smallest 
 
... minimum distance concept for the same Σ for all 
classes ... 
 
Linear discriminant functions  
 
  gi(x) = wi

T x + wi0 
 
  wi0 = -1/2 µi

T µi  and   wi = µi 
 
Thus, µi is a template for class wi.   
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1-D case: 

 
 
2-D and 3-D cases: 
 

 
 

 linear discrimination functions. 
 
(However, Σ = I is not necessary to achieve linear 
discriminant functions.) 
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ΣI = Σ = covariance matrices identical but arbitrary 
 

gi’(x) = - (x-µi)T Σ-1 (x-µi) 
 measure squared  

     Mahalanobis distance (x-µi)T Σ-1 (x-µi)  
     from x to to each of the mean vectors 
     assign class according to the nearest mean 
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Generalized result ... Σi is class dependent (=arbitrary) 
 
gi(x) = -1/2(x-µi)T Σi

-1 (x-µi) - (d/2)log(2π) - (1/2)log|Σi| 
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or, using the Bayes formula: 
 
gi(x) = log[P(wi|x)p(x)] = log[p(x|wi)] + log[P(wi)] 
 
If components are uncorrelated with equal variance σ2,  
i.e.,  
    Σi = σ2 I 
 
and after eliminating the class-independent bias log(Σi), 
 
 gi(x) = -(1/(2σ2))(x-µi)T (x-µi) + log[P(wi)] 
 
In that case, loci of constant ||x-µi||2 are hyperspheres, 
each centered at the class mean µi.  
 
 



Sonka: Pattern Recognition Class 45

Previously, Σ=I,  now assume: 
 unequal variances   
 uncorrelated components 
 
The covariance matrix for class i: 
 
  σ11

2 0 0 ... 0 
  0 σ22

2   0 
Σi =  0 0  ... 0 
  0 0  ... 0 

  0 0 0  σdd
2 

 
 
  1/σ11

2 0 ... 0 
  0 1/σ22

2  0 
Σ-1

i =  0 0  ... 0 
  0 0  ... 0 

  0 0 0  1/σdd
2 

 
 
Thus, the decision rule yields a weighted distance 
classifier ... more emphasis on features with smaller σii

2. 
 
Decision surfaces are hyperellipses (hyperquadrics). 
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Bayes decision theory – discrete features 
 
until now, feature vector x was from Rd 

 
frequently, x can only have one of m discrete values 
 

 probability density functions is singular and integrals  
 
 ∫ p(x|wj) dx  
 
must be replaced by summation over all values of x in 
discrete distribution 
 
 Σ P(x|wj) 
 
Bayes formula then uses probabilities instead of 
probability densities: 
 

P(wj|x) = P(x|wj) P(wj) / P(x) 
 
where  
 
      P(x) = Σj=1…c P(x|wj) P(wj) 
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Definition of conditional risk remains unchanged 
 

  so the fundamental Bayes decision rule is still the 
same. 
 
 
 
 
Extensions: 
 
How to determine parameters of the probability density 
functions (PDF)?  
 
May be based on training samples from a training set H.
 (Coming soon) 
____________ 
 
Maximum likelihood classification is not the only one. 
 
A) Nearest neighbor classification 
B) Decision Trees 
C) Unsupervised learning approaches 
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Chapter 3 
Supervised Learning 
 
Maximum likelihood classification 
 
  P(wi|x) = p(x|wi) P(wi) 
 
 requires knowledge of   p(x|wi),  P(wi), c 
 
always easy for P(wi), c 
 
frequently difficult for p(x|wi), especially if 
dimensionality is high  never enough samples 
 
... If we can assume that the distribution is normal          

 Gaussian densities, we need µi, Σi for each class        
 much simpler than estimating an unknown function. 

 
This information must be derived from the training set. 
 
Assume that the FORM of densities is known, then we 
have to ESTIMATE the density parameters. 
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Parameter Estimation 
 
A) Maximum likelihood estimation 
 assuming that parameters are fixed but unknown 
 
B) Bayesian estimation 
 assumes random variables with known a priori 
distributions 
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Maximum Likelihood Estimation 
 
Training set in the form of c subsets H1, H2, ..., Hc 
 
Samples are assumed to be generated by the density 
function for class i ... probability density p(x|wi).  
 
Let the set of parameters to be estimated be denoted Θi 
 
In the Gaussian case, Θi = [µi, Σi]. 
 
Let’s denote the parameter dependency p(x|wi,Θi). 
 
where Θi is unknown but fixed ... not a random vector 
 
Additionally, assume that Hi gives  
no information about Θj if i≠j  

 we can work with each class separately. 
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 we have c separate problems as follows (we can 

remove class dependency from notation, since problems 
are separated): 
 
A set of H training samples drawn independently from 
the probability density p(x|Θ) and the goal is to estimate 
the unknown parameter vector Θ. 
 
General case is described on p. 86-87,  
… but special Gaussian case is more frequently used …  
 
Gaussian case  
 
Consider samples drawn from a multivariate normal 
population with mean µ and covariance matrix Σ. 
 
A)  Only µ  is unknown 
 

   µ = 1/n Σk=1
n xk 

 

 maximum likelihood estimate for the unknown 
population mean is the arithmetic average of training 
samples.  
 

In n-D .. µ is centroid of a cloud of samples. 
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B) µ and Σ are unknown 
 
This is a more usual case than  case A. 
 
Univariate case .. estimate  µ  and  σ2 

 
       µ = 1/n Σk=1

n xk (same as before) 
 
        σ2 = 1/n Σ k=1

n (xk - µ)2 
 
 
Multivariate case … estimate  µ  and  Σ 
 
       µ = 1/n Σk=1

n xk (same as before) 
 
        Σ = 1/n Σ k=1

n (xk - µ)(xk - µ)T 
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Bias 
 
The maximum-likelihood estimate of σ2 is biased  

 the expected value over all data sets is not equal true 
variance 
 
Check the above statement for n=1: 
 

Σ = 1/n Σ k=1
n (xk - µ)(xk - µ)T  =  0 

 
while the entire distribution has a non-zero covariance 
matrix  result cannot be trusted for small values of n 
 
Such estimators are asymptotically unbiased … give 
correct results for large-enough training sets. 
 
Elementary unbiased estimator: 
 Σunbiased = 1/(n-1) Σ k=1

n (xk - µ)(xk - µ)T 
 
If estimator is unbiased for all distributions (like the one 
right above)  absolutely unbiased estimator 
 
Existence of 2 estimators  neither of them is perfect 
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Another problem is that if we have an unreliable model 
for underlying distributions, the classifier based on 
maximum likelihood will not be optimal   model 
selection is crucial. 
 
 
 
Bayesian Parameter Estimation 
 
Objective: Given Hi, form P(wi|x, Hi)  
 (obviously, a posteriori probability depends on the 
 training set) 
 
Using the Bayes formula, the BEST density parameter is 
chosen based on the maximum a posteriori probability of 
the parameter. 
 
However, reaching the solution in a general case is not 
straightforward. 
 
In special cases of Normal distribution, the situation is 
much easier 
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A) Known Σ, unknown µ 
 
How to calculate µi for class i from the training set? 
 
a) Max. likelihood: Use the recursive formula: 
 
 µ i(k+1) = 1/(k+1) [k µ i(k) + xk+1] 
 
b) Using the Bayes approach: 
 assume the a priori covariance matrix for class i: 
 
  known Σi = (1/a) σi  
 
Then, the recursive formula  
 
 µi(k+1) = [(a+k)/(a+k+1)]µi(k) + [1/(a+k+1)]xk+1 
 
Parameter a represents the confidence in the a priori 
estimate of µ. In training, it specifies the number of steps 
in which we believe more in the a priori estimate than in 
the measured mean. 
 
For a=0, µ = mean(x) 
 
B) Unknown Σ, known µ 
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a) Max. likelihood;  recursive formula: 
 
 Σi(k+1) = 1/(k+1) [k Σi(k) + (xk+1 - µi)(xk - µi)T] 
 

 

b) Bayes approach: 
  Let K be the number of samples in the training 
set. Let Φi(0) be the a priori estimate of the covariance 
matrix. Let Σi(K) be calculated as in a) above.  
 
Then,  
 
 Φi(K) = [b Φi(0) + K Σi(K)] / [b + K] 
 
and Φi(K) is considered the Bayes estimate of Σi(K). 
 
Parameter b represents the confidence in the a priori 
estimate of Σ.  
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C) Unknown Σ, unknown µ (most often the case) 
 
a) Max. likelihood;  recursive formula: 
 
 µi(k+1) = 1/(k+1) [k µi(k) + xk+1] 
 
 Σi(k+1) = 1/k [(k-1) Σi(k) +  
  + (xk+1 - µi(k+1))(xk+1 - µi(k+1))T + 
  +  k(µi(k) - µi(k+1))( µi(k) - µi(k+1))T  ] 

 
b) Bayes approach: 
  
Let K be the number of samples in the training set.  
Let µi(0) be the a priori estimate of the mean vector for 
class i.  
 
Let Φi(0) be the a priori estimate of the covariance 
matrix. 
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Using  µi(K) and Σi(K) calculated according to the 
maximum likelihood formulae in A) and B), respectively: 
 
Μi(K) = [a µi(0) + K µi(K)] / [a + K] 
 
Φi(K) = [1/ (b + K)]  
 {    b Φi(0) + a µi(0) µi(0)T + (K-1) Σi(K) + 
     + K µi(K) µi(K)T - (a+K) Μi(K) Μi(K)T   } 
 
Μi(K) is considered the Bayes estimate of µi(K). 
Φi(K) is considered the Bayes estimate of Σi(K). 
 
Parameters a,b represent the confidence in the a priori 
estimates of µ and Σ. 
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When do Maximum Likelihood and Bayes methods 
differ? 
 
- identical for infinite numbers of training samples 
- but # of training samples is finite, so which approch is 
better and when? 
 
Criteria: 
- computational complexity  

(Max. likelihood is easier … differential calculus, no 
multidimensional integration as may be needed by Bayes 
techniques) 
- interpretability  
 (max. likelihood gives single best model, 
  Bayesian methods give a weighted average of  

 models = more difficult to understand) 
- confidence in prior information 
 e.g., in form of p(x|wi,Θi) … Bayesian methods use 
more such a priori information  

 if a priori information is reliable,  
Bayesian approach is typically better 

 Max Likelihood and Bayesian approaches are 
identical for uniform priors = no specific prior info 
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Sources of error in final classification system: 
 
1) Bayes (or Indistinguishability) error 
 error due to overlapping densities p(x|wi) 
  can never be eliminated 
 
2) Model error 
 error caused by having an incorrect model 
  better model is needed but is it known? 
 model error in maximum likelihood  

and Bayes methods rarely differ 
 
3) Estimation error 
 consequence of having a finite sample  

 can be decreased by increasing the training sample 
 
 
There are theoretical and methodological arguments 
supporting Bayesian methods  
- but in reality, maximum likelihood estimation is simpler 
and leads to classifiers nearly as accurate as the more-
difficult-to-design Bayes classifiers. 
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Problems of Dimensionality 
 
- classification problems with tens or hundreds of 
features are common 
 
- let’s assume that no features are intentionally redundant 
 

 how classification accuracy depends on 
dimensionality and amount of training data 
 

 what is computational complexity of classifier design 
 
 
 



Sonka: Pattern Recognition Class 65

A) Accuracy, dimension, training sample size 
 
- the most useful are features for which the difference 
between means is large relative to the standard deviations 

 Mahalanobis distance r is used, the larger the distance, 
the better classification 
 
  r2  = (µ1 - µ2)T Σ-1 (µ1 - µ2) 
 
so for conditionally independent case when 
 
  Σ = diag (σ1

2, σ2
2, … , σd

2) 
 
… squared Mahalanobis distance is  
 
  r2  = Σi=1

d  [ (µi1 - µi2) / σi  ]2 

 
 each feature contributes to an increase of r2 … 

improve classification 
 
- but it also says that no feature is useless as long as its 
means differ … BUT … 
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… BUT … 
 
beyond certain point, adding new features frequently 
causes decrease of performance, not improvement. 
 
 
 
B) Computational Complexity 
 
gi(x) = -1/2(x-µi)T Σi

-1 (x-µi) - (d/2)log(2π) - (1/2)log|Σi| 
 
                       ^ O(dn) 
     ^ O(nd2) 
                                                 ^ O(1) 
                                                                            ^ O(d2n) 
 

 this is done for each class  
 

 Overall complexity for Bayes learning O(cd2n) 
 

 earlier we saw that we need large training samples 
  obvious “cost” associated with large n 
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 Classification complexity is much lower  
      [computing (x-µi) ]   O(d) complexity= linear 
 
plus 
 
multiplication of inverse covariance matrix by separation 
vector … O(d2)   
 
plus 
 
do it for all c classes … for small “c” it is still O(d2) 
 

 MUCH less costly than learning 
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C) Overfitting 
 
If a number of available samples is not sufficient, the 
number of features may be too large to be supported by 
the small sample set    overfitting occurs, classifier 
does not generalize, rather it memorizes the training set. 
 
Solutions:  
- reduce dimensionality of feature set 
 - remove features 
 - combine features (K-L transform) 
- assume that all c classes have the same covariance 
matrix and pool available data 
- improve estimate of Σ 
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Problems of Parametric Approaches: 
 
- the form of the distribution is not known 
- the form of the distribution does not fit known 
 estimation approaches 
 
 
Nonparametric Approaches 
 
1) Direct estimation of p(x|wi)  
 based on a generalized multidimensional 
 histogram 
 
2) Direct estimation of P(wj|x) 
 
3) Transform of the Feature Space 
 hope that learning will be easier in the transformed 
 space 
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Nonparametric Density Estimation 
 
 divide the feature space in regions R 
 
 vector x falling in region R ... 
 
  P(x ∈ R)  = ∫R p(x’)dx’  ≅ P 
 
Over R, P represents smoothed measure of density p(x).  
Assuming that p(x) is constant over R, estimating P 
results in the estimate of p(x). 
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Assume n independently drawn samples of PDF p(x) that 
characterize class wi  - samples are available in the 
training set Hi.  
 
Probability that k out of n of these samples fall into 
region R is given by  binomial distribution … for large 
“n”, the binomials peak strongly at true probability. 
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Example: 
 
6 coins - how many heads ... 
 
P(0 of 6) = 1/64 
P(1 of 6) = 6/64 
P(2 of 6) = 15/64 
P(3 of 6) = 20/64 
P(4 of 6) = 15/64 
P(5 of 6) = 6/64 
P(6 of 6) = 1/64 
 
Obviously, assuming P=1/2 … 
 µ = 6 P = 3 
 σ2 = nP (1-P) = 6 (1/2) (1 - 1/2) = 3/2 
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P(k of n vectors ∈ R) is large for k ≅ nP. It is small 
otherwise. Let’s not consider the small numbers ... 
 
Therefore, it is likely that the observed number of vectors 
falling into region R is only the result of the mean - 
therefore, kobserved = nP.  
 
Thus, estimate for P: 
    P = kobserved/n 
 
Therefore, for class wi, using training set Hi, if n samples 
fall in region R with volume Vn,  
we estimate the PDF  as 
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  pn(x) = kn / (n Vn) 
 
We are interested in convergence of p(x) as n→ ∞. 
 
Volume V of the region R cannot be too small since then 
the estimates p(x) would vary from region to region ... we 
need the smoothing effect. 
 
What is the optimal size? 2 strategies: 
1) shrinking regions ... Parzen windows 
2) growing regions ... Nearest neighbor method 
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Parzen Windows 
Let the regions Rn be d-dimensional hypercubes with 
edge-dimension hn.  Let Vn =(hn)d be centered at x. 
 
Using d-dimensional step function, the d-dimensional 
feature space is divided into the hypercube and the rest of 
space thus facilitating to count the samples in regions R. 
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Training set with n samples ... the number of samples in 
the hypercube region centered at x is  
(for “0” outside of the cube and “1” inside of the cube) 

 
 
If we view φ as an interpolation function for pn(x) and 
define 

 
 
pn(x) can be calculated as  
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If hn is large ... heavy smoothing, insensitive to local 
variations in x 
 
If hn is small ... sharp peaks of δn(x) at x=0, if the training 
set is not infinite, we have not covered entire Rd ... 
erroneous estimates of pn(x) ... erroneous results.  
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 many samples are required to get a good estimate 
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How to shrink the regions? 
 
E.g., using iteration-driven volume determination, select 
starting volume V0, shrink with increased number of 
samples in the training set 
 
  Vn = V0 / sqrt(n) 
 
However, again, everything depends on the selection of 
V0. Additionally, if data do not cover the feature space 
equally, many regions will not contain samples and the 
estimate of p(x) will be erroneous.  

 
 no single size is optimal …
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Maybe, the region size should be a function of the sample 
data:      
 
k-NN Nonparametric Estimation 
 
1) form some number of regions, each centered around a 
location x ∈ Rd.  
 
Then, increase region’s size until it contains kn nearest 
neighbor samples, kn is a function of n. 
 
If the density around x is high - the region will be small 
and vice versa. 
 
Important ... we are using single-class training sets Hi 
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Direct estimation of P(wi|x) 
 
suppose we captured ki samples from class wi in 
region R with volume V … joint probability pn(x,wi) 

 
k … total number of samples in all classes in volume V 



Sonka: Pattern Recognition Class 84

NNR Nearest neighbor rule 
 
keep in memory all samples from the training set 
 
1-NNR 
 
in the classification stage, assign the class of the nearest 
labeled sample from the training set 
 
Efficient algorithms to find the NN - preordering of 
samples 
 
3-NNR (k-NNR) 
 
examine labels of k nearest neighbor samples, decision 
made based on higher number of samples from a 
particular class 
 
 - odd k helps if we have 2 classes - avoids ties. 
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 note discontinuities far from samples 
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Voronoi tesselation  
of the d-dimensional space …  
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Metrics and Nearest Neighbor Classification 
 
NN-classification relies on a distance function – metric 
 
Properties of a metric D(.,.): 
• nonnegativity 
• reflexivity 
• symmetry 
• triangle inequality 

 
a,b,c … 3 vectors 
 
1)   D(a,b) >= 0 
2)   D(a,b) = 0   iff  a=b 
3)   D(a,b) = D(b,a) 
4)   D(a,b) + D(b,c) > D(a,c) 
 
Example:  
Euclidean distance in d-dimensions is a metric 
 
The usual Euclidean metric is not invariant to scaling, 
especially to non-uniform scaling for each coordinate. 
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Minkowski metric (also Lk norm): 
 
 Lk(a,b) = ( Σi=1

d   | ai – bi |k )1/k 
 
L1 norm = city block distance 
L2 norm = Euclidean distance 
L∞ norm … maximum of distances between  

projections of a,b vectors onto  
each of d coordinate axes 
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Tanimoto metric … distance between two sets: 
 
 DT (S1, S2) = (n1 + n2 – 2 n12) / (n1 + n2 – n12) 
 
n1 … number of elements in set S1  
n2 … number of elements in set S2 
n12 … number of elements in S1 ∩ S2 
 
… Problems in which two patterns are either the same or 
different with no natural notion of graded similarity. 
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Tangent Distance 
 
- typical problems of metrics used in Nearest Neighbor 
classifiers is the lack of invariance 
 
Example below … shift of “5” causes 2 “fives” be more 
dissimilar then non-shifted “5” and “8” when Euclidean 
distance of gray values in corresponding pixels is used. 
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Similarly, Euclidean distance is not invariant to rotation, 
scaling 
 
Since transforming the patterns first is computationally 
prohibitive, tangent distance is often used. 
 
Let there be r transforms applicable to the problem,  
e.g., translation, rotation, shear, scale, line thinning, etc. 
 
==> perform linearly independent combination of 
transforms ==> construct new prototypes. 
 
Transforms are expensive, but transformation only needs 
to be done once – during training. 
 
Thus, a matrix of Tangent Vectors is created for each 
training samples according to all possible transforms 
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Tangent distance is (one-sided tangent distance) 
  
 Dtan(x’,x) = mina [ || (x’ + Ta) – x || ] 
 

 optimization of “a” 
 
minimal Euclidean distance from x to tangent space of x’. 
 
= we search for point in the tangent space that is closest 
to a test point x = the linear approximation of the ideal. 
 
Not too difficult since the distance we minimize is a 
quadratic function (shown in red below). 
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Feature Extraction and Feature Selection 
 
Decision making success is closely related to the amount 
of information available. 
 
Thus, feature vectors should contain as complete a 
description as possible ... this would increase the number 
of features 
 
No features are for free - feature calculation costs, 
classification costs,  
 
In reality, we have to compromise between the error 
caused by incomplete feature description and complexity 
of the description/classification stages.  
 
Thus, selection or extraction of features is of high 
importance ... use a minimal number of informative 
features 
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How to identify informative features? 
 

This part is not formalized 
 
No theory exists specifying which features should be 
measured on objects to improve classification success 
rate 

 
Compared to the well formalized and optimal approaches 
for classifier setup, the situation is quite interesting: 
 

We can find optimal solution for the classifier design 
having some amount of descriptive information about 
objects 

 
however ... 
 

We are not able to guarantee that the available 
amount of descriptive information about objects will 
be sufficient for satisfactory classification 
performance 
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Feature Extraction 
 
Let’s have N descriptive features (N-dimensional pattern 
space)  
 
Then, a feature extraction is represented by a linear or 
non-linear transform that maps any N-dimensional vector 
x into an M-dimensional vector y, M<N. 
 
Feature Selection 
 
Special case of Feature Extraction where the M 
components of y are a subset of the N components of x. 
Interestingly, feature extraction is usually easier than 
feature selection.  
 
However, extraction often does not really solve the 
problem, if we transform the original feature space, we 
still need all the original features to calculate the new 
vectors y in the transformed space ... we can save on 
classifier complexity, cannot save on feature calculation. 
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Karhunen-Loève Expansion 
 
New vectors y minimize a mean-square error criterion 
with respect to original pattern vectors x. 
 
 
K patterns from class A characterized by m features: 
 
xk = [ x1, x2, …, xm]T 
 
choose n orthonormal vectors ei  

i=1, …, n 
n <= m 
 
 

x~
k = Σi=1

n cki  ei    (*) 
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PDF FILE WITH K-L DERIVATION 
EQUATIONS TO BE INSERTED HERE 
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Properties of K-L Transform 
 
+ properties: 
 

1.  For n-dimensional space, it offers minimal distance 
error  

2.  Feature vectors after K-L transform are not correlated 

3.  Features are decreasingly important with increasing 
eigen number, unimportant features can be dropped 

4.  If we decide to improve approximation accuracy 
(decrease distance error), it is not necessary to 
recompute everything, just add some more features. 

- properties 

1.  K-L expansion determines best descriptive features, 
not best discriminative features 

2.  Thus, large eigen numbers may not represent the best 
features w.r.t. classification 

3.  Despite the fact that we select a smaller number of 
final features, we still have to calculate them all. 
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Feature Extraction using Ratio of Scatter 
 
Transform the feature space so that the ratio 
 
 (Inter-class scatter / Intra-class scatter)  
 
is maximal. 
 
This ratio is inversely proportional to probability of 
incorrect classification.  
 
Individual features do not contribute equally to the value 
of the ratio 
 
Thus, we can disregard features that do not contribute 
substantially to the value of the ratio. 
 
Inter-class scatter is defined as 
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PDF FILE WITH RATIO OF SCATTER 
DERIVATION EQUATIONS TO BE INSERTED 

HERE 
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Linear Discriminant Functions 
 
so far… we assumed that forms of underlying 
distributions were known 

 we used the samples (training sets) to estimate 
parameters of distributions. 
 
Now - let’s assume that we know the forms of 
discriminant functions g(x)  

 we will use the samples (training sets) to estimate 
parameters of g(x). 
 
Training error: 
average error incurred in classifying training set samples 
 
Caution! 
Low training error does NOT guarantee good classifier 
performance on test sets 
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Linear discrimination functions and surfaces 
 
 g(x) = wT x + w0 
 
 w ... weight vector 
 w0 … bias, threshold weight 
 
Two-category case: 
 
ω1 … assign if   g(x) > 0 
ω2 … assign if   g(x) < 0 
 
no decision if g(x) = 0 
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g(x) = 0 … decision surface 
 
if g(x) is linear  hyperplane 
 
If x1 and x2 are on the same decision surface, then  
 
 wT x1 + w0  =   wT x2 + w0 
 
or 
 wT (x1 - x2) = 0 
 

 w (vector) is normal to any vector lying in the 
hyperplane 
 
Hyperplane H divides feature space in 2 half-spaces 
 
g(x) gives a measure of distance from x to hyperplane 
 
 x = xp + r ( w / ||w|| ) 
 
where  

xp is the normal projection of x onto H 
r is the distance 
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Of course g(xp) = 0   
 
 g(x) = wT x + w0 = r ||w|| 
 
 r = g(x) / ||w|| 
 
Distance from origin to H:   w0 / ||w|| 
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Multicategory case: 
 
many ways how to do it wrong … 
 

 



Sonka: Pattern Recognition Class 109

 
better solution… several discriminant functions …  

“c” functions for c classes 
 
 gi(x) = wT xi + wi0 

 
assign x to ωi if gi(x) > gj(x) for all j except j=i 
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Hyperplanes Hij          gi(x) = gj(x) 
 
or 
  ( wi - wj )T x + (wio - wj0)  =  0 
 

 (wi - wj) is normal to Hij 
 
 
distance from x to Hij is  (gi - gj)/||wi - wj|| 
 
 

 weight vectors are not important,  
their differences are! 

 
 
Decision regions for linear classification machines are 
convex. 
 
Linear machines most suitable for unimodal distributions 
- but counterexamples exist. 
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Generalized linear discriminant functions 
 
 g(x) = wo + Σi= 1

d wi xi 
 
wi … components of the weight vector w 
 
Adding products of pairs:  

Quadratic discriminant functions 
 
 g(x) = wo + Σd

i= 1 wi xi + Σd
i= 1 Σd

j= 1 wij xi xj 
 
 g(x) = 0 … hyperquadrics 
 
 Higher order … hyperellipsoids 
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Generalized linear functions and Phi function 
 
g(x) = Σd^

i=1 ai yi(x) 
 
or 
 
g(x) = aT y  … 
   y(x) e.g., maps x from a d-dim space to d^-dim. space 
 
Single-dimensional case example - quadratic discr. 
function: 

g(x) = a1 + a2 x + a3 x2 

 y(x) = (1, x, x2)T 
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Effectively, we are increasing dimensionality of the 
problem  increased flexibility of partitioning space. 
 
Curse of dimensionality  may lead to unrealistic 
requirements for computation and data (training set sizes) 
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Two-category linearly separable case 
 
- linear separability 
 
- normalization  all ω2 samples replaced with their 
negatives 
 

 we look for a vector “a”  
  aT yi > 0  
for all samples 
 
“a” is called … separating vector 

 
 

 Solution region 
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Margin … 

 
 
Gradient descent procedures 
 
- solution to a set of linear inequalities  
 
    aT yi > 0 
 

 define criterion function  
J(a) that is minimized  
if a is a solution vector 

 
 minimizing a scalar function - solvable by gradient 

descent approaches 
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a(k+1) = a(k) - η(k) ∇J(a(k)) 

 
where η is a positive scale factor … learning rate 
 
Algorithm: Basic gradient descent 
 

initialize a, threshold θ, η(.), k=0 
 do k := k+1 
  a:= a - η(k) ∇J(a) 
 until |η(k) ∇J(a)| < θ 
return a 
end 

 
Choice of η(k) …  
 

if η(k) too small … slow convergence 
if η(k) too large … overshooting, even divergence 

 
Assuming that criterion function can be approximated by 
2nd order expansion around value a(k) 
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J(a) ≈ J(a(k)) + ∇JT(a-a(k)) + 1/2 (a-a(k))T H (a-a(k)) 
 
H … Hessian matrix of 2nd partial derivatives  

∂2 J / ∂ai ∂aj 
evaluated at a(k). 
 
As above,     a(k+1) = a(k) - η(k) ∇J(a(k)) 
 
thus: 
 J(a(k+1)) ≈ J(a(k)) - η(k)||∇J||2 + 1/2 η2(k) ∇JTH∇J 
 
Therefore, J(a(k+1)) can be minimized by choosing 
 
 η(k) = ||∇J||2 / ∇JTH∇J 
 
where H depends on a and thus on k. 
 
(If J is a quadratic function, H is constant and thus η is 
constant independent of k)  
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Newton Descent: 
 

identical, but  
 
 a(k+1) = a(k) - H-1 ∇J 
 
Newton’s algorithm gives greater improvement per step 
then simple gradient descent, but cannot work for 
singular H.  
 
Newton algorithm is also more computationally 
demanding, and thus simple gradient descent is 
frequently faster overall (more iterations, but faster 
executed).  
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Perceptron Criterion Function 
 
criterion function for solving linear inequalities  
 
 aT yi > 0 
 
Obvious choice of J(a, y) is the number of samples 
misclassified by a … but is piecewise constant, not good 
for optimization. 
 
Perceptron criterion function: 
 
 Jp(a) = Σy∈Y (-aT y) 
 
where Y is a set of samples misclassified by a. 
 
(Y is empty for perfect classification) 
 
 aT y <= 0 for misclassified y  

 Jp(a) is non-negative 
 Jp(a) = 0 for a on the decision boundary 

 
 Jp(a) is proportional to sum of distances from 

misclassified samples to decision boundaries - see figure 
below: 
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j-th component of gradient of Jp is   ∂Jp / ∂aj  
 
 ∇Jp = Σy∈Y (- y) 
and 
 a(k+1) = a(k) + η(k) Σy∈Yk (y) 
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Perceptron algorithm (batch): 
 

initialize a, threshold η(.), criterion θ, k=0 
 do k := k+1 
  a:= a + η Σy∈Yk (y) 
 until |η(k) Σy∈Yk (y)| < θ 
return a 
end 

 The next vector is obtained by adding some multiple 
of the sum of the misclassified samples to the present 
weight vector.  
Example for a(1) = 0, η(k) = 1 : 
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Single-sample fixed increment perceptron 
 
- samples considered cyclically, misclassified samples are 
used for modification of function a. 
 
… a(1) .. arbitrary 
… a(k+1) = a(k) + yk  for k>0 
 
where yk is one of the n samples y1, …, yn that is 
misclassified at the current stage 
 
again, aT(k) yk  >= 0 for all k 
 
Perceptron algorithm (single sample, fixed increment): 
 

initialize a, k=0 
 do k := (k+1) mod n 
  if yk is misclassified by a 
   then a := a + yk 

 until all patterns are correctly classified 
return a 
end 

 
Algorithm only converges for linearly separable classes.
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Variations on single-sample, fixed increment: 
 
e.g.,  variable increment with margin 
 
 a(1) .. arbitrary 

a(k+1) = a(k) + η(k) yk  for k>0 
 
modification whenever aT(k) yk fails to exceed margin b 
 

Perceptron algorithm (single sample, variable increment): 
 

initialize a, , threshold θ, η(.), k=0 
 do k := (k+1) mod n 
  if aT(k) yk <= b  
   then a := a + η(k) yk 

 until aT(k) yk > b for all k 
return a 
end 

 
 
All the approaches above are “error-correcting” 
approaches, they keep modifying the weight vector until 
no errors are present. 
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Non-separable behavior 
 
- above-mentioned approaches require linearly separable 
classes 
- even if this is the case for training set, the set-up does 
not guarantee good performance in reality 
 

 how will these approaches behave in linearly non-
separable classes? 
 
Minimum Squared-Error Procedures 
 
- let’s involve ALL samples in the criterion function. 
 
let’s now try to make 

   aT yi = bi  
where bi is some arbitrary positive constant 
 
It is reasonable to hope that by minimizing squared-error 
criterion function, a useful discriminant function will be 
obtained for separable and non-separable cases. 
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 aT yi = bi … set of linear equations  
 

 find a vector a satisfying  
 
  Y a = b 
 
Y … matrix, i-th row is vector yi

T  
 
for non-singular Y … a = Y-1 b … but Y is usually not 
square, typically more rows than columns  
overdetermined set of equations 
 

 minimization of error  
e = YA - b 

 
e.g., minimizing square of error vector 
 
 Js(a) = ||Y a - b ||2 = Σn

i=1 (aT yi - bi)2 
 

∇Js = Σn
i=1 2(aT yi - bi) yi  =  2 YT (Ya-b) 

 
solution …necessary condition   YT Y a = YT b 

 
YT Y is a square matrix  

 if regular  a = (YT Y)-1 YT b 
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Y+ = (YT Y)-1 YT  

 
called pseudoinverse of Y … always exists 
 
Y+  = Y-1  for square regular matrix Y 
 

Y+ Y = I 
but 

Y Y+ ≠ I 
 
 

   a = Y+ b  
   is the MSE solution to Ya = b 
 
 


