
Sonka: Pattern Recognition Class 1

INTRODUCTION

Pattern Recognition (PR)

• Statistical PR
• Syntactic PR
• Fuzzy logic PR
• Neural PR

Example - basketball players and jockeys

We will keep practical applicability in mind:

• Are PR techniques suitable to the problem?
• Can we develop useful models and determine

model parameters?
• Are there available formal tools and applicable

heuristics?
• Does a computationally practical solution exist?

Sonka: Pattern Recognition Class 2

Applications
• Image processing, analysis, machine vision

• Seismic analysis

• Radar signal analysis

• Face recognition

• Speech recognition

• Fingerprint identification

• Character recognition

• Medical diagnosis

• etc.

Sonka: Pattern Recognition Class 3

PR process:
 information reduction
 information labeling
 information mapping

C class membership space
P pattern space
F measurement space

G relations between classes and patterns
M relations between patterns from P and
 measurements from F

Sonka: Pattern Recognition Class 4

PR problem (StatPR and SyntPR):
Given measurements mi, we look for a method to
identify and invert mappings M and Gi for all i.

Unfortunately, these mapping are not functions and
are not “onto” ==> are not invertible.

Different patterns may have the same
measurements ==> ambiguity.
• M reflects our view of the world ... good

measurements are more likely to produce good
classification.

• Patterns from the same class are “close” in the
P space.

• Measurements from the same class are (often)
not close in the F space.

Example ... red and blue cars are close in P; while
red and blue color are far in F.

100% correct classification may not be feasible.

Apples vs. hand-grenades example ... sometimes it
is also useful to consider the cost of mis-
classification.

Sonka: Pattern Recognition Class 5

Structure of a typical PR system

Sonka: Pattern Recognition Class 6

Patterns and Features:

Pattern ... a set of measurements, often in a vector
form (StatPR) or graph/grammar form (SyntPR).

Features ... Any extractable measurements used.
• numerical size
• symbolic color
• complex primitives

Feature extraction - measurements extracted from
data.
• may require significant computational effort

(e.g., extracting shape properties of 3D objects)
• extracted features may be “noisy” ... may have

errors

Extracted features:
• computationally feasible
• good discriminative power
• good descriptive power

Feature selection - selection of features from the
set of available features.

Sonka: Pattern Recognition Class 7

Pattern Distortion

Measurements may be “noisy” ... color varies with
lighting, shape varies with viewing angle, etc.

• Features should be invariant to such changes

Sonka: Pattern Recognition Class 8

RST-invariant moments (well-known 7 features
based on statistical central moments)

φi invariant to RST transforms

Sonka: Pattern Recognition Class 9

Concept of Similarity

Patterns from one class are similar to each other.

However, quantification of similarity is often
difficult.

Feature Vector and Feature space

Feature vector x ... d-dimensional

Feature space Rd ... if features are unconstrained
 subspace of Rd ... if features are constrained

Feature vectors ... used in StatPR, NeurPR

Sonka: Pattern Recognition Class 10

Definitions

• Classification assigns input data to one or more

of c prespecified classes based on extraction of
significant features or attributes and the analysis
of these attributes

• Recognition the ability to classify
• Don’t know class a dummy c+1st class
• Description structural description of the input

pattern
• Class set of patterns known to originate from the

same source in C.
• Noise resulting from non-ideal circumstances

• measurement errors
• feature extraction errors
• training data errors

The key to success is often to identify suitable
attributes (features, descriptions) and to form a
good measure of similarity and an associated
matching process.

Sonka: Pattern Recognition Class 11

Classifiers, Discriminant functions
 (StatPR, NeurPR)

Nonoverlapping regions in Rd. Border of each
region is a decision boundary.
Discriminant functions gi(x) partition Rd, i=1,..,c.

Decision rule:
Assign x to class wm (Region Rm)
 if gm(x) > gi(x) for all i; i≠ m

Then, gk(x) = gl(x) defines a decision boundary
between classes k and l.

Sonka: Pattern Recognition Class 12

Sonka: Pattern Recognition Class 13

Training and Learning in PR Systems

Maximum available (and useful) information
should be employed in the designed PR system.
Supervised learning approaches serve as an
example.

Training set H - a pair of a pattern & class info.
In Synt PR we also need a set of counter-examples.

Although, unsupervised approaches exist - cluster
analysis.

PR approaches

Statistical
Structural (Syntactic)
Fuzzy
Neural

Sonka: Pattern Recognition Class 14

Sonka: Pattern Recognition Class 15

Sonka: Pattern Recognition Class 16

Procedures for PR system engineering

Sonka: Pattern Recognition Class 17

Statistical PR

Approaches to statistical classifier design

• calculating a posteriori probabilities from a priori

probabilities … Bayesian Theory
• minimizing classification losses

Both strategies can be implemented using discriminant
functions

Bayesian theory
- fundamental statistical approach
- quantifying trade-offs between classification
decisions using probability and costs accompanying
such decisions

Sonka: Pattern Recognition Class 18

Specific example – classifying sea bass and salmon

Sonka: Pattern Recognition Class 19

fish appears randomly on a belt, let w denote state of
nature
w=w1 … sea bass
w=w2 … salmon

state of nature is unpredictable, therefore must be
probabilistically described

How likely is it that salmon appears?

… there is some a priori probability
P(w1) that next fish on conveyor is a sea bass
P(w2) that next fish on conveyor is a salmon

assuming no other fish can appear, then
P(w1) + P(w2) = 1

A priori probabilities may be known in advance, e.g.,
based on the time of the year, location, etc.

Assume that we must make a decision without “seeing”
the fish …

of classes c=2, no features ... d=0, a priori
probabilities of classes P(w1)=0.9, P(w2)=0.1

Sonka: Pattern Recognition Class 20

Discriminant function:
if P(w1) > P(w2) … choose w1 otherwise choose w2

P(error) =
 P(choose w2|w1)P(w1) + P(choose w1|w2)P(w2)

if we always choose w1 ...

P(error) = 0 * 0.9 + 1 * 0.1 = 0.1

Probability of error ... 10% ==> minimal error

Works well if P(w1) >> P(w2),
not well at all if P(w1) = P(w2).

To improve classification correctness, we use features
that can be measured on fish.

Assume a single continuous feature x,
x is a continuous random variable,
p(x|w) is class-conditional probability density function,
its distribution depends on the state of nature (class) w.

Sonka: Pattern Recognition Class 21

Difference between p(x|w1) and p(x|w2) … difference in
feature value between populations of sea bass and
salmon:

Assume that we know a priori probabilities P(wi) and
densities p(x|wi), suppose that we measure x …
… what can be said about w … the status of nature =
classification of fish?

Sonka: Pattern Recognition Class 22

Joint probability density of having a pattern from
category wj that has a feature value x:

 p(wj , x) = P(wj|x) p(x) = p(x|wj) P(wj)

==> Bayes rule:

P(wj|x) = p(x|wj)[P(wj) / p(x)]

and here (for 2 classes):
p(x) = p(x|w1) P(w1) + p(x|w2) P(w2)

Bayes rule is informally:

 posterior = (likelihood × prior)/(evidence)

p(x|wj) is likelihood of wj with respect to x
==> other things being equal, x is more likely to happen
for class wj

p(x) is common to all class conditional probabilities and
can be eliminated
p(x) is mostly a scaling factor and can be omitted for
classification purposes (scales sum of a posteriori probs
to 1)

Sonka: Pattern Recognition Class 23

Likelihood graph:

if P(w1) = 2/3 and P(w2)= 1/3 then:

Sonka: Pattern Recognition Class 24

==> by observing x, a priori probability P(wj) can be
converted to a posteriori probability P(wj|x).

Error assessment

P(error) = P(x is assigned to a wrong class)

for c=2

P(error) = P(w2|w1)P(w1) + P(w1|w2)P(w2)

Classification error:

Minimization of error:
deciding w1 for P(w1|x) > P(w2|x)

 and deciding w2 otherwise

Minimization of the classification error:

 choose w1 if p(x|w1)P(w1) > p(x|w2)P(w2)
 choose w2 if p(x|w1)P(w1) < p(x|w2)P(w2)

Sonka: Pattern Recognition Class 25

Rigorous solution to the problem ... calculating a
posteriori probabilities using a priori probabilities:

Special cases:
if p(x|w1) = p(x|w2)
… decision only depends on prior probabilities

if P(w1) = P(w2)
… decision only depends on likelihood

Sonka: Pattern Recognition Class 26

Generalization:
• more than one feature
• more than 2 classes
• allow other action than classification
• introducing loss function more general than

probability of error

more features than 1
 replaces scalar x with a vector x from a d-
dimensional feature space Rd

more classes than 2
 deciding wk for P(wk|x) > P(wm|x) for all m<>k

allow other action than classification
.. allows not to classify = don’t know class

loss function
 weighting decision costs (apples/hand-grenades)

Sonka: Pattern Recognition Class 27

[w1, w2, … wc] … finite set of c classes

[α1, α2, … αa] … finite set of a possible actions

λ(αi|wj) … loss function
 - loss resulting from taking action αi

when the class is wj

x … d-component feature vector (random variable)

p(x|wj) … state-conditional probability density function
 where wj is the true class assignment

P(wj) … A priori probability of class wj

A posteriori probability from Bayes formula:

 P(wj|x) = p(x|wj) P(wj) / p(x)

where

 p(x) = Σj=1…c p(x|wj) P(wj)

Sonka: Pattern Recognition Class 28

Let x be classified as belonging to wi. Then

 P(error|x) = Σk=1

c
(k≠i)

 P(wk|x)

However, Bayes formulation of the classification error
may not always represent the risks well.
...
Remember the example of apples vs. hand-grenades

General Measures of Classification Risk

Loss function

 class 1 class 2 ... class c

class 1 λ11 λ12 λ1c

class 2 λ21 λ22 λ1c

...

class c λc1 λc2 λcc

Sonka: Pattern Recognition Class 29

Then, the expected classification risk (conditional risk)
for feature vector x is:

 R(αi|x) = Σj=1…c λ(αi|wj) P(wj|x)

For each particular observation x, the classification risk
can be minimized by choosing action ai that minimizes
the conditional risk.

for 2 classes … action dependent on x [action α(x)]

R[α(x) → α1] = R(α1|x) = λ11 P(w1|x) + λ12 P(w2|x)

R[α(x) → α2] = R(α2|x) = λ21 P(w1|x) + λ22 P(w2|x)

λ11 and λ22 are “rewards” for correct classification,

λ12 and λ21 are losses from incorrect classification

Sonka: Pattern Recognition Class 30

For c classes, the expected risk R[α(x)] that x will be
classified incorrectly (using the total probability
theorem):

 R[α(x)] = ∫ R[α(x)|x] p(x) dx

Therefore, minimizing the conditional risk R[α(x)|x] also
minimizes the expected risk R[α(x)].

Usually, λii = 0, no loss associated with a correct
classification.

Consider unit loss functions λij.= 1 for i≠j
 ... all errors are equally costly.

Then, (unit losses)

 R[α(x) → αi] = Σk=1

c λik P(wk|x) =

 = Σk≠i P(wk|x) = 1- P(wi|x)

⇒ to minimize the conditional risk, the decision rule has
to choose the αi that maximizes P(wi|x), that is to choose
the maximum a posteriori probability.

Sonka: Pattern Recognition Class 31

⇒

MAXIMUM A POSTERIORI PROBABILITY
 CLASSIFIER

choose wi
 P(wi|x) > P(wk|x) for all k ≠ i

For general formulation of risk:

choose αi
 R(αi|x) > R(αk|x) for all k ≠ i

Sonka: Pattern Recognition Class 32

y-axis shows the ratio of a priori probabilities
Using zero-one loss functions λij.= 1 for i≠j, decision
boundaries are identical to those based on a posteriori
probabilities (below)

Sonka: Pattern Recognition Class 33

decision function is dependent on loss functions λ

If classification errors of misclassifying w1 are greater
than for w2, threshold increases and region for class w1
shrinks:

Sonka: Pattern Recognition Class 34

Classifiers, discriminant functions, decision
surfaces

Assign feature vector x to class wm
 if gm(x) > gi(x) for all i; i≠ m

Then, gk(x) = gl(x) defines a decision boundary
between classes k and l.

Classifier can be viewed as a machine computing
discriminant functions:

Sonka: Pattern Recognition Class 35

Bayes classifier fits this representation well

gi(x) = - R(αi|x)

and maximum of discriminant function corresponds to
minimum risk

or directly

gi(x) = P(wi|x)

Two-class case (dichotomy):

 g(x) = g1(x) – g2(x)

Sonka: Pattern Recognition Class 36

Bayes classifier behavior is determined by
1) conditional density p(x|wi)
2) a priori probability P(wi)

Normal (Gaussian) probability density function was
studied extensively

Why normal?
- it is well behaved and analytically tractable
- it is an apprpriate model for values randomly distributed
around mean µ.

Sonka: Pattern Recognition Class 37

Gaussian models for p(x|w1)
 - multidimensional Gaussian distribution
x is a d-dimensional vector d × 1
µ is the mean vector
Σ is the covariance matrix d × d

 complete specification of p(x)
 using d+d(d+1)/2 parameters

Having class-specific mean vectors µi and class-specific
covariance matrices Σi, class-dependent density functions
p(x|wi) can be calculated.

How to estimate mean vectors µi and covariance matrices
Σi? It will come later when we discuss training.

Sonka: Pattern Recognition Class 38

Discriminant functions in this case:

i-th class:
 gi(x) = P(wi|x)
Classification ... finding the largest discrimination
function:

More generally, any monotonically increasing function of
gi(x) can be used as a valid discrimination function.
Assuming equal a priori probabilities,

 P(wi|x) = p(x|wi)
and

 gi(x) = log[p(x|wi)]

Let’s assume equal Σ for all classes, different mean
vectors µ.

General multivariate normal density:

p(x) = 1/((2π)d/2 |∑|1/2) exp[-1/2 (x-µ)T Σ-1 (x-µ)]

Sonka: Pattern Recognition Class 39

gi’(x) = -1/2 (x-µi)T Σ-1 (x-µi) - (d/2)log(2π) - (1/2)log|Σ|

 class-independent biases can be eliminated

What remains is the squared distance of feature vector x
from the i-th mean vector µi weighted by the inverse of
the covariance matrix

For Σ = I , Euclidean norm results.

g’i(x) is largest if (x-µi)T Σ-1 (x-µi) is smallest

... minimum distance concept for the same Σ for all
classes ...

Linear discriminant functions

 gi(x) = wi

T x + wi0

 wi0 = -1/2 µi

T µi and wi = µi

Thus, µi is a template for class wi.

Sonka: Pattern Recognition Class 40

1-D case:

2-D and 3-D cases:

 linear discrimination functions.

(However, Σ = I is not necessary to achieve linear
discriminant functions.)

Sonka: Pattern Recognition Class 41

Sonka: Pattern Recognition Class 42

ΣI = Σ = covariance matrices identical but arbitrary

gi’(x) = - (x-µi)T Σ-1 (x-µi)
 measure squared

 Mahalanobis distance (x-µi)T Σ-1 (x-µi)
 from x to to each of the mean vectors
 assign class according to the nearest mean

Sonka: Pattern Recognition Class 43

Generalized result ... Σi is class dependent (=arbitrary)

gi(x) = -1/2(x-µi)T Σi

-1 (x-µi) - (d/2)log(2π) - (1/2)log|Σi|

Sonka: Pattern Recognition Class 44

or, using the Bayes formula:

gi(x) = log[P(wi|x)p(x)] = log[p(x|wi)] + log[P(wi)]

If components are uncorrelated with equal variance σ2,
i.e.,
 Σi = σ2 I

and after eliminating the class-independent bias log(Σi),

 gi(x) = -(1/(2σ2))(x-µi)T (x-µi) + log[P(wi)]

In that case, loci of constant ||x-µi||2 are hyperspheres,
each centered at the class mean µi.

Sonka: Pattern Recognition Class 45

Previously, Σ=I, now assume:
 unequal variances
 uncorrelated components

The covariance matrix for class i:

 σ11

2 0 0 ... 0
 0 σ22

2 0
Σi = 0 0 ... 0
 0 0 ... 0

 0 0 0 σdd
2

 1/σ11

2 0 ... 0
 0 1/σ22

2 0
Σ-1

i = 0 0 ... 0
 0 0 ... 0

 0 0 0 1/σdd
2

Thus, the decision rule yields a weighted distance
classifier ... more emphasis on features with smaller σii

2.

Decision surfaces are hyperellipses (hyperquadrics).

Sonka: Pattern Recognition Class 46

Sonka: Pattern Recognition Class 47

Sonka: Pattern Recognition Class 48

Sonka: Pattern Recognition Class 49

Bayes decision theory – discrete features

until now, feature vector x was from Rd

frequently, x can only have one of m discrete values

 probability density functions is singular and integrals

 ∫ p(x|wj) dx

must be replaced by summation over all values of x in
discrete distribution

 Σ P(x|wj)

Bayes formula then uses probabilities instead of
probability densities:

P(wj|x) = P(x|wj) P(wj) / P(x)

where

 P(x) = Σj=1…c P(x|wj) P(wj)

Sonka: Pattern Recognition Class 50

Definition of conditional risk remains unchanged

 so the fundamental Bayes decision rule is still the
same.

Extensions:

How to determine parameters of the probability density
functions (PDF)?

May be based on training samples from a training set H.
 (Coming soon)

Maximum likelihood classification is not the only one.

A) Nearest neighbor classification
B) Decision Trees
C) Unsupervised learning approaches

Sonka: Pattern Recognition Class 51

Chapter 3
Supervised Learning

Maximum likelihood classification

 P(wi|x) = p(x|wi) P(wi)

 requires knowledge of p(x|wi), P(wi), c

always easy for P(wi), c

frequently difficult for p(x|wi), especially if
dimensionality is high never enough samples

... If we can assume that the distribution is normal

 Gaussian densities, we need µi, Σi for each class
 much simpler than estimating an unknown function.

This information must be derived from the training set.

Assume that the FORM of densities is known, then we
have to ESTIMATE the density parameters.

Sonka: Pattern Recognition Class 52

Parameter Estimation

A) Maximum likelihood estimation
 assuming that parameters are fixed but unknown

B) Bayesian estimation
 assumes random variables with known a priori
distributions

Sonka: Pattern Recognition Class 53

Maximum Likelihood Estimation

Training set in the form of c subsets H1, H2, ..., Hc

Samples are assumed to be generated by the density
function for class i ... probability density p(x|wi).

Let the set of parameters to be estimated be denoted Θi

In the Gaussian case, Θi = [µi, Σi].

Let’s denote the parameter dependency p(x|wi,Θi).

where Θi is unknown but fixed ... not a random vector

Additionally, assume that Hi gives
no information about Θj if i≠j

 we can work with each class separately.

Sonka: Pattern Recognition Class 54

 we have c separate problems as follows (we can

remove class dependency from notation, since problems
are separated):

A set of H training samples drawn independently from
the probability density p(x|Θ) and the goal is to estimate
the unknown parameter vector Θ.

General case is described on p. 86-87,
… but special Gaussian case is more frequently used …

Gaussian case

Consider samples drawn from a multivariate normal
population with mean µ and covariance matrix Σ.

A) Only µ is unknown

 µ = 1/n Σk=1
n xk

 maximum likelihood estimate for the unknown
population mean is the arithmetic average of training
samples.

In n-D .. µ is centroid of a cloud of samples.

Sonka: Pattern Recognition Class 55

B) µ and Σ are unknown

This is a more usual case than case A.

Univariate case .. estimate µ and σ2

 µ = 1/n Σk=1

n xk (same as before)

 σ2 = 1/n Σ k=1

n (xk - µ)2

Multivariate case … estimate µ and Σ

 µ = 1/n Σk=1

n xk (same as before)

 Σ = 1/n Σ k=1

n (xk - µ)(xk - µ)T

Sonka: Pattern Recognition Class 56

Bias

The maximum-likelihood estimate of σ2 is biased

 the expected value over all data sets is not equal true
variance

Check the above statement for n=1:

Σ = 1/n Σ k=1
n (xk - µ)(xk - µ)T = 0

while the entire distribution has a non-zero covariance
matrix result cannot be trusted for small values of n

Such estimators are asymptotically unbiased … give
correct results for large-enough training sets.

Elementary unbiased estimator:
 Σunbiased = 1/(n-1) Σ k=1

n (xk - µ)(xk - µ)T

If estimator is unbiased for all distributions (like the one
right above) absolutely unbiased estimator

Existence of 2 estimators neither of them is perfect

Sonka: Pattern Recognition Class 57

Another problem is that if we have an unreliable model
for underlying distributions, the classifier based on
maximum likelihood will not be optimal model
selection is crucial.

Bayesian Parameter Estimation

Objective: Given Hi, form P(wi|x, Hi)
 (obviously, a posteriori probability depends on the
 training set)

Using the Bayes formula, the BEST density parameter is
chosen based on the maximum a posteriori probability of
the parameter.

However, reaching the solution in a general case is not
straightforward.

In special cases of Normal distribution, the situation is
much easier

Sonka: Pattern Recognition Class 58

A) Known Σ, unknown µ

How to calculate µi for class i from the training set?

a) Max. likelihood: Use the recursive formula:

 µ i(k+1) = 1/(k+1) [k µ i(k) + xk+1]

b) Using the Bayes approach:
 assume the a priori covariance matrix for class i:

 known Σi = (1/a) σi

Then, the recursive formula

 µi(k+1) = [(a+k)/(a+k+1)]µi(k) + [1/(a+k+1)]xk+1

Parameter a represents the confidence in the a priori
estimate of µ. In training, it specifies the number of steps
in which we believe more in the a priori estimate than in
the measured mean.

For a=0, µ = mean(x)

B) Unknown Σ, known µ

Sonka: Pattern Recognition Class 59

a) Max. likelihood; recursive formula:

 Σi(k+1) = 1/(k+1) [k Σi(k) + (xk+1 - µi)(xk - µi)T]

b) Bayes approach:
 Let K be the number of samples in the training
set. Let Φi(0) be the a priori estimate of the covariance
matrix. Let Σi(K) be calculated as in a) above.

Then,

 Φi(K) = [b Φi(0) + K Σi(K)] / [b + K]

and Φi(K) is considered the Bayes estimate of Σi(K).

Parameter b represents the confidence in the a priori
estimate of Σ.

Sonka: Pattern Recognition Class 60

C) Unknown Σ, unknown µ (most often the case)

a) Max. likelihood; recursive formula:

 µi(k+1) = 1/(k+1) [k µi(k) + xk+1]

 Σi(k+1) = 1/k [(k-1) Σi(k) +
 + (xk+1 - µi(k+1))(xk+1 - µi(k+1))T +
 + k(µi(k) - µi(k+1))(µi(k) - µi(k+1))T]

b) Bayes approach:

Let K be the number of samples in the training set.
Let µi(0) be the a priori estimate of the mean vector for
class i.

Let Φi(0) be the a priori estimate of the covariance
matrix.

Sonka: Pattern Recognition Class 61

Using µi(K) and Σi(K) calculated according to the
maximum likelihood formulae in A) and B), respectively:

Μi(K) = [a µi(0) + K µi(K)] / [a + K]

Φi(K) = [1/ (b + K)]
 { b Φi(0) + a µi(0) µi(0)T + (K-1) Σi(K) +
 + K µi(K) µi(K)T - (a+K) Μi(K) Μi(K)T }

Μi(K) is considered the Bayes estimate of µi(K).
Φi(K) is considered the Bayes estimate of Σi(K).

Parameters a,b represent the confidence in the a priori
estimates of µ and Σ.

Sonka: Pattern Recognition Class 62

When do Maximum Likelihood and Bayes methods
differ?

- identical for infinite numbers of training samples
- but # of training samples is finite, so which approch is
better and when?

Criteria:
- computational complexity

(Max. likelihood is easier … differential calculus, no
multidimensional integration as may be needed by Bayes
techniques)
- interpretability
 (max. likelihood gives single best model,
 Bayesian methods give a weighted average of

 models = more difficult to understand)
- confidence in prior information
 e.g., in form of p(x|wi,Θi) … Bayesian methods use
more such a priori information

 if a priori information is reliable,
Bayesian approach is typically better

 Max Likelihood and Bayesian approaches are
identical for uniform priors = no specific prior info

Sonka: Pattern Recognition Class 63

Sources of error in final classification system:

1) Bayes (or Indistinguishability) error
 error due to overlapping densities p(x|wi)
 can never be eliminated

2) Model error
 error caused by having an incorrect model
 better model is needed but is it known?
 model error in maximum likelihood

and Bayes methods rarely differ

3) Estimation error
 consequence of having a finite sample

 can be decreased by increasing the training sample

There are theoretical and methodological arguments
supporting Bayesian methods
- but in reality, maximum likelihood estimation is simpler
and leads to classifiers nearly as accurate as the more-
difficult-to-design Bayes classifiers.

Sonka: Pattern Recognition Class 64

Problems of Dimensionality

- classification problems with tens or hundreds of
features are common

- let’s assume that no features are intentionally redundant

 how classification accuracy depends on
dimensionality and amount of training data

 what is computational complexity of classifier design

Sonka: Pattern Recognition Class 65

A) Accuracy, dimension, training sample size

- the most useful are features for which the difference
between means is large relative to the standard deviations

 Mahalanobis distance r is used, the larger the distance,
the better classification

 r2 = (µ1 - µ2)T Σ-1 (µ1 - µ2)

so for conditionally independent case when

 Σ = diag (σ1

2, σ2
2, … , σd

2)

… squared Mahalanobis distance is

 r2 = Σi=1

d [(µi1 - µi2) / σi]2

 each feature contributes to an increase of r2 …

improve classification

- but it also says that no feature is useless as long as its
means differ … BUT …

Sonka: Pattern Recognition Class 66

… BUT …

beyond certain point, adding new features frequently
causes decrease of performance, not improvement.

B) Computational Complexity

gi(x) = -1/2(x-µi)T Σi

-1 (x-µi) - (d/2)log(2π) - (1/2)log|Σi|

 ^ O(dn)
 ^ O(nd2)
 ^ O(1)
 ^ O(d2n)

 this is done for each class

 Overall complexity for Bayes learning O(cd2n)

 earlier we saw that we need large training samples
 obvious “cost” associated with large n

Sonka: Pattern Recognition Class 67

 Classification complexity is much lower
 [computing (x-µi)] O(d) complexity= linear

plus

multiplication of inverse covariance matrix by separation
vector … O(d2)

plus

do it for all c classes … for small “c” it is still O(d2)

 MUCH less costly than learning

Sonka: Pattern Recognition Class 68

C) Overfitting

If a number of available samples is not sufficient, the
number of features may be too large to be supported by
the small sample set overfitting occurs, classifier
does not generalize, rather it memorizes the training set.

Solutions:
- reduce dimensionality of feature set
 - remove features
 - combine features (K-L transform)
- assume that all c classes have the same covariance
matrix and pool available data
- improve estimate of Σ

Sonka: Pattern Recognition Class 69

Problems of Parametric Approaches:

- the form of the distribution is not known
- the form of the distribution does not fit known
 estimation approaches

Nonparametric Approaches

1) Direct estimation of p(x|wi)
 based on a generalized multidimensional
 histogram

2) Direct estimation of P(wj|x)

3) Transform of the Feature Space
 hope that learning will be easier in the transformed
 space

Sonka: Pattern Recognition Class 70

Nonparametric Density Estimation

 divide the feature space in regions R

 vector x falling in region R ...

 P(x ∈ R) = ∫R p(x’)dx’ ≅ P

Over R, P represents smoothed measure of density p(x).
Assuming that p(x) is constant over R, estimating P
results in the estimate of p(x).

Sonka: Pattern Recognition Class 71

Assume n independently drawn samples of PDF p(x) that
characterize class wi - samples are available in the
training set Hi.

Probability that k out of n of these samples fall into
region R is given by binomial distribution … for large
“n”, the binomials peak strongly at true probability.

Sonka: Pattern Recognition Class 72

Example:

6 coins - how many heads ...

P(0 of 6) = 1/64
P(1 of 6) = 6/64
P(2 of 6) = 15/64
P(3 of 6) = 20/64
P(4 of 6) = 15/64
P(5 of 6) = 6/64
P(6 of 6) = 1/64

Obviously, assuming P=1/2 …
 µ = 6 P = 3
 σ2 = nP (1-P) = 6 (1/2) (1 - 1/2) = 3/2

Sonka: Pattern Recognition Class 73

P(k of n vectors ∈ R) is large for k ≅ nP. It is small
otherwise. Let’s not consider the small numbers ...

Therefore, it is likely that the observed number of vectors
falling into region R is only the result of the mean -
therefore, kobserved = nP.

Thus, estimate for P:
 P = kobserved/n

Therefore, for class wi, using training set Hi, if n samples
fall in region R with volume Vn,
we estimate the PDF as

Sonka: Pattern Recognition Class 74

 pn(x) = kn / (n Vn)

We are interested in convergence of p(x) as n→ ∞.

Volume V of the region R cannot be too small since then
the estimates p(x) would vary from region to region ... we
need the smoothing effect.

What is the optimal size? 2 strategies:
1) shrinking regions ... Parzen windows
2) growing regions ... Nearest neighbor method

Sonka: Pattern Recognition Class 75

Parzen Windows
Let the regions Rn be d-dimensional hypercubes with
edge-dimension hn. Let Vn =(hn)d be centered at x.

Using d-dimensional step function, the d-dimensional
feature space is divided into the hypercube and the rest of
space thus facilitating to count the samples in regions R.

Sonka: Pattern Recognition Class 76

Training set with n samples ... the number of samples in
the hypercube region centered at x is
(for “0” outside of the cube and “1” inside of the cube)

If we view φ as an interpolation function for pn(x) and
define

pn(x) can be calculated as

Sonka: Pattern Recognition Class 77

If hn is large ... heavy smoothing, insensitive to local
variations in x

If hn is small ... sharp peaks of δn(x) at x=0, if the training
set is not infinite, we have not covered entire Rd ...
erroneous estimates of pn(x) ... erroneous results.

Sonka: Pattern Recognition Class 78

Sonka: Pattern Recognition Class 79

Sonka: Pattern Recognition Class 80

 many samples are required to get a good estimate

Sonka: Pattern Recognition Class 81

How to shrink the regions?

E.g., using iteration-driven volume determination, select
starting volume V0, shrink with increased number of
samples in the training set

 Vn = V0 / sqrt(n)

However, again, everything depends on the selection of
V0. Additionally, if data do not cover the feature space
equally, many regions will not contain samples and the
estimate of p(x) will be erroneous.

 no single size is optimal …

Sonka: Pattern Recognition Class 82

Maybe, the region size should be a function of the sample
data:

k-NN Nonparametric Estimation

1) form some number of regions, each centered around a
location x ∈ Rd.

Then, increase region’s size until it contains kn nearest
neighbor samples, kn is a function of n.

If the density around x is high - the region will be small
and vice versa.

Important ... we are using single-class training sets Hi

Sonka: Pattern Recognition Class 83

Direct estimation of P(wi|x)

suppose we captured ki samples from class wi in
region R with volume V … joint probability pn(x,wi)

k … total number of samples in all classes in volume V

Sonka: Pattern Recognition Class 84

NNR Nearest neighbor rule

keep in memory all samples from the training set

1-NNR

in the classification stage, assign the class of the nearest
labeled sample from the training set

Efficient algorithms to find the NN - preordering of
samples

3-NNR (k-NNR)

examine labels of k nearest neighbor samples, decision
made based on higher number of samples from a
particular class

 - odd k helps if we have 2 classes - avoids ties.

Sonka: Pattern Recognition Class 85

 note discontinuities far from samples

Sonka: Pattern Recognition Class 86

Voronoi tesselation
of the d-dimensional space …

Sonka: Pattern Recognition Class 87

Sonka: Pattern Recognition Class 88

Metrics and Nearest Neighbor Classification

NN-classification relies on a distance function – metric

Properties of a metric D(.,.):
• nonnegativity
• reflexivity
• symmetry
• triangle inequality

a,b,c … 3 vectors

1) D(a,b) >= 0
2) D(a,b) = 0 iff a=b
3) D(a,b) = D(b,a)
4) D(a,b) + D(b,c) > D(a,c)

Example:
Euclidean distance in d-dimensions is a metric

The usual Euclidean metric is not invariant to scaling,
especially to non-uniform scaling for each coordinate.

Sonka: Pattern Recognition Class 89

Minkowski metric (also Lk norm):

 Lk(a,b) = (Σi=1

d | ai – bi |k)1/k

L1 norm = city block distance
L2 norm = Euclidean distance
L∞ norm … maximum of distances between

projections of a,b vectors onto
each of d coordinate axes

Sonka: Pattern Recognition Class 90

Tanimoto metric … distance between two sets:

 DT (S1, S2) = (n1 + n2 – 2 n12) / (n1 + n2 – n12)

n1 … number of elements in set S1
n2 … number of elements in set S2
n12 … number of elements in S1 ∩ S2

… Problems in which two patterns are either the same or
different with no natural notion of graded similarity.

Sonka: Pattern Recognition Class 91

Tangent Distance

- typical problems of metrics used in Nearest Neighbor
classifiers is the lack of invariance

Example below … shift of “5” causes 2 “fives” be more
dissimilar then non-shifted “5” and “8” when Euclidean
distance of gray values in corresponding pixels is used.

Sonka: Pattern Recognition Class 92

Similarly, Euclidean distance is not invariant to rotation,
scaling

Since transforming the patterns first is computationally
prohibitive, tangent distance is often used.

Let there be r transforms applicable to the problem,
e.g., translation, rotation, shear, scale, line thinning, etc.

==> perform linearly independent combination of
transforms ==> construct new prototypes.

Transforms are expensive, but transformation only needs
to be done once – during training.

Thus, a matrix of Tangent Vectors is created for each
training samples according to all possible transforms

Sonka: Pattern Recognition Class 93

Sonka: Pattern Recognition Class 94

Tangent distance is (one-sided tangent distance)

 Dtan(x’,x) = mina [|| (x’ + Ta) – x ||]

 optimization of “a”

minimal Euclidean distance from x to tangent space of x’.

= we search for point in the tangent space that is closest
to a test point x = the linear approximation of the ideal.

Not too difficult since the distance we minimize is a
quadratic function (shown in red below).

Sonka: Pattern Recognition Class 95

Sonka: Pattern Recognition Class 96

Feature Extraction and Feature Selection

Decision making success is closely related to the amount
of information available.

Thus, feature vectors should contain as complete a
description as possible ... this would increase the number
of features

No features are for free - feature calculation costs,
classification costs,

In reality, we have to compromise between the error
caused by incomplete feature description and complexity
of the description/classification stages.

Thus, selection or extraction of features is of high
importance ... use a minimal number of informative
features

Sonka: Pattern Recognition Class 97

How to identify informative features?

This part is not formalized

No theory exists specifying which features should be
measured on objects to improve classification success
rate

Compared to the well formalized and optimal approaches
for classifier setup, the situation is quite interesting:

We can find optimal solution for the classifier design
having some amount of descriptive information about
objects

however ...

We are not able to guarantee that the available
amount of descriptive information about objects will
be sufficient for satisfactory classification
performance

Sonka: Pattern Recognition Class 98

Feature Extraction

Let’s have N descriptive features (N-dimensional pattern
space)

Then, a feature extraction is represented by a linear or
non-linear transform that maps any N-dimensional vector
x into an M-dimensional vector y, M<N.

Feature Selection

Special case of Feature Extraction where the M
components of y are a subset of the N components of x.
Interestingly, feature extraction is usually easier than
feature selection.

However, extraction often does not really solve the
problem, if we transform the original feature space, we
still need all the original features to calculate the new
vectors y in the transformed space ... we can save on
classifier complexity, cannot save on feature calculation.

Sonka: Pattern Recognition Class 99

Karhunen-Loève Expansion

New vectors y minimize a mean-square error criterion
with respect to original pattern vectors x.

K patterns from class A characterized by m features:

xk = [x1, x2, …, xm]T

choose n orthonormal vectors ei

i=1, …, n
n <= m

x~
k = Σi=1

n cki ei (*)

Sonka: Pattern Recognition Class 100

PDF FILE WITH K-L DERIVATION
EQUATIONS TO BE INSERTED HERE

Sonka: Pattern Recognition Class 101

Properties of K-L Transform

+ properties:

1. For n-dimensional space, it offers minimal distance
error

2. Feature vectors after K-L transform are not correlated

3. Features are decreasingly important with increasing
eigen number, unimportant features can be dropped

4. If we decide to improve approximation accuracy
(decrease distance error), it is not necessary to
recompute everything, just add some more features.

- properties

1. K-L expansion determines best descriptive features,
not best discriminative features

2. Thus, large eigen numbers may not represent the best
features w.r.t. classification

3. Despite the fact that we select a smaller number of
final features, we still have to calculate them all.

Sonka: Pattern Recognition Class 102

Feature Extraction using Ratio of Scatter

Transform the feature space so that the ratio

 (Inter-class scatter / Intra-class scatter)

is maximal.

This ratio is inversely proportional to probability of
incorrect classification.

Individual features do not contribute equally to the value
of the ratio

Thus, we can disregard features that do not contribute
substantially to the value of the ratio.

Inter-class scatter is defined as

Sonka: Pattern Recognition Class 103

PDF FILE WITH RATIO OF SCATTER
DERIVATION EQUATIONS TO BE INSERTED

HERE

Sonka: Pattern Recognition Class 104

Linear Discriminant Functions

so far… we assumed that forms of underlying
distributions were known

 we used the samples (training sets) to estimate
parameters of distributions.

Now - let’s assume that we know the forms of
discriminant functions g(x)

 we will use the samples (training sets) to estimate
parameters of g(x).

Training error:
average error incurred in classifying training set samples

Caution!
Low training error does NOT guarantee good classifier
performance on test sets

Sonka: Pattern Recognition Class 105

Linear discrimination functions and surfaces

 g(x) = wT x + w0

 w ... weight vector
 w0 … bias, threshold weight

Two-category case:

ω1 … assign if g(x) > 0
ω2 … assign if g(x) < 0

no decision if g(x) = 0

Sonka: Pattern Recognition Class 106

g(x) = 0 … decision surface

if g(x) is linear hyperplane

If x1 and x2 are on the same decision surface, then

 wT x1 + w0 = wT x2 + w0

or
 wT (x1 - x2) = 0

 w (vector) is normal to any vector lying in the
hyperplane

Hyperplane H divides feature space in 2 half-spaces

g(x) gives a measure of distance from x to hyperplane

 x = xp + r (w / ||w||)

where

xp is the normal projection of x onto H
r is the distance

Sonka: Pattern Recognition Class 107

Of course g(xp) = 0

 g(x) = wT x + w0 = r ||w||

 r = g(x) / ||w||

Distance from origin to H: w0 / ||w||

Sonka: Pattern Recognition Class 108

Multicategory case:

many ways how to do it wrong …

Sonka: Pattern Recognition Class 109

better solution… several discriminant functions …

“c” functions for c classes

 gi(x) = wT xi + wi0

assign x to ωi if gi(x) > gj(x) for all j except j=i

Sonka: Pattern Recognition Class 110

Hyperplanes Hij gi(x) = gj(x)

or
 (wi - wj)T x + (wio - wj0) = 0

 (wi - wj) is normal to Hij

distance from x to Hij is (gi - gj)/||wi - wj||

 weight vectors are not important,
their differences are!

Decision regions for linear classification machines are
convex.

Linear machines most suitable for unimodal distributions
- but counterexamples exist.

Sonka: Pattern Recognition Class 111

Generalized linear discriminant functions

 g(x) = wo + Σi= 1

d wi xi

wi … components of the weight vector w

Adding products of pairs:

Quadratic discriminant functions

 g(x) = wo + Σd

i= 1 wi xi + Σd
i= 1 Σd

j= 1 wij xi xj

 g(x) = 0 … hyperquadrics

 Higher order … hyperellipsoids

Sonka: Pattern Recognition Class 112

Generalized linear functions and Phi function

g(x) = Σd^

i=1 ai yi(x)

or

g(x) = aT y …
 y(x) e.g., maps x from a d-dim space to d^-dim. space

Single-dimensional case example - quadratic discr.
function:

g(x) = a1 + a2 x + a3 x2

 y(x) = (1, x, x2)T

Sonka: Pattern Recognition Class 113

Effectively, we are increasing dimensionality of the
problem increased flexibility of partitioning space.

Curse of dimensionality may lead to unrealistic
requirements for computation and data (training set sizes)

Sonka: Pattern Recognition Class 114

Two-category linearly separable case

- linear separability

- normalization all ω2 samples replaced with their
negatives

 we look for a vector “a”
 aT yi > 0
for all samples

“a” is called … separating vector

 Solution region

Sonka: Pattern Recognition Class 115

Margin …

Gradient descent procedures

- solution to a set of linear inequalities

 aT yi > 0

 define criterion function
J(a) that is minimized
if a is a solution vector

 minimizing a scalar function - solvable by gradient

descent approaches

Sonka: Pattern Recognition Class 116

a(k+1) = a(k) - η(k) ∇J(a(k))

where η is a positive scale factor … learning rate

Algorithm: Basic gradient descent

initialize a, threshold θ, η(.), k=0
 do k := k+1
 a:= a - η(k) ∇J(a)
 until |η(k) ∇J(a)| < θ
return a
end

Choice of η(k) …

if η(k) too small … slow convergence
if η(k) too large … overshooting, even divergence

Assuming that criterion function can be approximated by
2nd order expansion around value a(k)

Sonka: Pattern Recognition Class 117

J(a) ≈ J(a(k)) + ∇JT(a-a(k)) + 1/2 (a-a(k))T H (a-a(k))

H … Hessian matrix of 2nd partial derivatives

∂2 J / ∂ai ∂aj
evaluated at a(k).

As above, a(k+1) = a(k) - η(k) ∇J(a(k))

thus:
 J(a(k+1)) ≈ J(a(k)) - η(k)||∇J||2 + 1/2 η2(k) ∇JTH∇J

Therefore, J(a(k+1)) can be minimized by choosing

 η(k) = ||∇J||2 / ∇JTH∇J

where H depends on a and thus on k.

(If J is a quadratic function, H is constant and thus η is
constant independent of k)

Sonka: Pattern Recognition Class 118

Newton Descent:

identical, but

 a(k+1) = a(k) - H-1 ∇J

Newton’s algorithm gives greater improvement per step
then simple gradient descent, but cannot work for
singular H.

Newton algorithm is also more computationally
demanding, and thus simple gradient descent is
frequently faster overall (more iterations, but faster
executed).

Sonka: Pattern Recognition Class 119

Perceptron Criterion Function

criterion function for solving linear inequalities

 aT yi > 0

Obvious choice of J(a, y) is the number of samples
misclassified by a … but is piecewise constant, not good
for optimization.

Perceptron criterion function:

 Jp(a) = Σy∈Y (-aT y)

where Y is a set of samples misclassified by a.

(Y is empty for perfect classification)

 aT y <= 0 for misclassified y

 Jp(a) is non-negative
 Jp(a) = 0 for a on the decision boundary

 Jp(a) is proportional to sum of distances from

misclassified samples to decision boundaries - see figure
below:

Sonka: Pattern Recognition Class 120

j-th component of gradient of Jp is ∂Jp / ∂aj

 ∇Jp = Σy∈Y (- y)
and
 a(k+1) = a(k) + η(k) Σy∈Yk (y)

Sonka: Pattern Recognition Class 121

Perceptron algorithm (batch):

initialize a, threshold η(.), criterion θ, k=0
 do k := k+1
 a:= a + η Σy∈Yk (y)
 until |η(k) Σy∈Yk (y)| < θ
return a
end

 The next vector is obtained by adding some multiple
of the sum of the misclassified samples to the present
weight vector.
Example for a(1) = 0, η(k) = 1 :

Sonka: Pattern Recognition Class 122

Single-sample fixed increment perceptron

- samples considered cyclically, misclassified samples are
used for modification of function a.

… a(1) .. arbitrary
… a(k+1) = a(k) + yk for k>0

where yk is one of the n samples y1, …, yn that is
misclassified at the current stage

again, aT(k) yk >= 0 for all k

Perceptron algorithm (single sample, fixed increment):

initialize a, k=0
 do k := (k+1) mod n
 if yk is misclassified by a
 then a := a + yk

 until all patterns are correctly classified
return a
end

Algorithm only converges for linearly separable classes.

Sonka: Pattern Recognition Class 123

Variations on single-sample, fixed increment:

e.g., variable increment with margin

 a(1) .. arbitrary

a(k+1) = a(k) + η(k) yk for k>0

modification whenever aT(k) yk fails to exceed margin b

Perceptron algorithm (single sample, variable increment):

initialize a, , threshold θ, η(.), k=0
 do k := (k+1) mod n
 if aT(k) yk <= b
 then a := a + η(k) yk

 until aT(k) yk > b for all k
return a
end

All the approaches above are “error-correcting”
approaches, they keep modifying the weight vector until
no errors are present.

Sonka: Pattern Recognition Class 124

Non-separable behavior

- above-mentioned approaches require linearly separable
classes
- even if this is the case for training set, the set-up does
not guarantee good performance in reality

 how will these approaches behave in linearly non-
separable classes?

Minimum Squared-Error Procedures

- let’s involve ALL samples in the criterion function.

let’s now try to make

 aT yi = bi
where bi is some arbitrary positive constant

It is reasonable to hope that by minimizing squared-error
criterion function, a useful discriminant function will be
obtained for separable and non-separable cases.

Sonka: Pattern Recognition Class 125

 aT yi = bi … set of linear equations

 find a vector a satisfying

 Y a = b

Y … matrix, i-th row is vector yi

T

for non-singular Y … a = Y-1 b … but Y is usually not
square, typically more rows than columns
overdetermined set of equations

 minimization of error
e = YA - b

e.g., minimizing square of error vector

 Js(a) = ||Y a - b ||2 = Σn

i=1 (aT yi - bi)2

∇Js = Σn
i=1 2(aT yi - bi) yi = 2 YT (Ya-b)

solution …necessary condition YT Y a = YT b

YT Y is a square matrix

 if regular a = (YT Y)-1 YT b

Sonka: Pattern Recognition Class 126

Y+ = (YT Y)-1 YT

called pseudoinverse of Y … always exists

Y+ = Y-1 for square regular matrix Y

Y+ Y = I
but

Y Y+ ≠ I

 a = Y+ b
 is the MSE solution to Ya = b

