Evolutionary Programming

EP Overview

- Developed: USA in the 1960’s
- Early names: D. Fogel
- Typically applied to:
 - traditional EP: machine learning tasks by finite state machines
 - contemporary EP: (numerical) optimization
- Main characteristics:
 - open framework: any representation and mutation operators
 - crossbred with ES (contemporary EP)
 - consequently: hard to say what is “standard” EP
- Special feature:
 - no recombination (crossover)
 - self-adaptation of parameters in contemporary EP

EP: Main Features

<table>
<thead>
<tr>
<th>Representation</th>
<th>Real-valued vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombination</td>
<td>None</td>
</tr>
<tr>
<td>Mutation</td>
<td>Gaussian perturbation</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Deterministic</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>Probabilistic ((\mu + \mu))</td>
</tr>
<tr>
<td>Special feature</td>
<td>Self-adaptation of mutation step size (in meta-EP)</td>
</tr>
</tbody>
</table>

Survivor Selection

- Recall (\(\mu + \lambda\)) selection, where offspring and parents participate in the selection
- What is (\(\mu + \mu\)) selection?
EP: Historical Perspective

- EP aimed at achieving intelligence
- Intelligence was viewed as adaptive behavior
- Prediction of the environment was considered a prerequisite to adaptive behavior
- Thus capability to predict is key to intelligence

Prediction by Finite State Machines

- Finite state machine (FSM):
 - States S
 - Inputs I
 - Outputs O
 - Transition function \(\delta: S \times I \rightarrow S \times O \)
 - Transforms input stream into output stream
- Can be used for predictions, e.g., to predict next input symbol in a sequence

FSM Example

- Consider the FSM with:
 - States \(S = \{A, B, C\} \)
 - \(I = \{0, 1\} \)
 - \(O = \{a, b, c\} \)
 - Transition function \(\delta \) given by the diagram

FSM as a Predictor

- Consider the following FSM
- Task: predict next input
- Quality: % of \(in_{i+1} = out_i \)
- Given initial state C
- Input sequence 011011
- Leads to output 110111
- Quality: 3 out of 6 (50%)
Example:
Evolving FSMs to Predict Primes

- \(P(n) = 1 \), if \(n \) is prime, 0 otherwise
- \(I = N = \{1, 2, 3, \ldots, n, \ldots\} \)
- \(O = \{0, 1\} \)
- Correct prediction: \(\text{Out}_i = P(\text{in}_i) \)
- Fitness function:
 - 1 point for correct prediction of the next input
 - 0 point for incorrect prediction
 - Penalty for “too many” states

Example:
Evolving FSMs to Predict Primes

- Parent selection: each FSM is mutated once
- Mutation operators (one selected randomly):
 - Change an output symbol
 - Change a state transition (i.e., redirect edge)
 - Add a state
 - Delete a state
 - Change the initial state
- Survivor selection: \((\mu + \mu)\)
- Results: over-fitting, after 202 inputs best FSM had one state and both outputs were 0, i.e., it always predicted “not prime”

Modern EP

- In general no predefined representation
- Thus the mutation must match the representation
- Often applies self-adaptation of mutation parameters
- Next one EP variant is presented, not the canonical EP

Representation

- For continuous parameter optimization
- Chromosomes consist of two parts:
 - Variables: \(x_1, \ldots, x_n \)
 - Mutation step sizes: \(\sigma_1, \ldots, \sigma_n \)
- Full size representation: \(\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n \rangle \)
Mutation

- Chromosomes: \(\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n \rangle\)
- \(\sigma_i' = \sigma_i \cdot (1 + \alpha \cdot N(0,1))\)
- \(x_i' = x_i + \sigma_i' \cdot N(0,1)\)
- \(\alpha \approx 0.2\)
- Boundary rule: \(\sigma_i' < \epsilon_0 \Rightarrow \sigma_i = \epsilon_0\)
- Other functions were proposed and used:
 - Lognormal scheme as in ES
 - Using variance instead of standard deviation
 - Mutate \(\sigma_-\) last
 - Other distributions, e.g., Cauchy instead of Gaussian

Recombination

- None
- Rationale: one point in the search space represents a species, rather than an individual and there can be no crossover between species
- Much historical debate “mutation vs. crossover”
- Pragmatic approach seems to prevail today

Survivor Selection

- Each individual creates one child by mutation
- \(P(t): \mu\) parents, \(P'(t): \mu\) offspring
- Pair-wise competition in round-robin format:
 - Each solution \(x\) from \(P(t) \cup P'(t)\) is evaluated against \(q\) other randomly chosen solutions
 - For each comparison, a "win" is assigned, if \(x\) is better than its opponent
 - The \(\mu\) solutions with the greatest number of wins are retained to be parents of the next generation
- Parameter \(q\) tunes the selection pressure
- Typically \(q = 10\)

Selection pressure = The ratio of the best individual's selection probability to the average selection probability of all individuals in the selection pool

Example Application:

The Ackley Function (Bäck et al. '93)

- The Ackley function (here used with \(n = 30\)):
 \[f(x) = -20 \cdot \exp\left(-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + c \]
- Representation:
 - \(-30 < x_i < 30\) (coincidence of 30's!)
 - 30 variances as step sizes
- Mutation with changing object variables first!
- Population size \(\mu = 200\), selection with \(q = 10\)
- Termination: after 200,000 fitness evaluations
- Results: the average best solution is \(1.4 \cdot 10^{-2}\)

Example Application: Evolving Checkers Players (Fogel '02)

- Neural nets for evaluating future values of moves are evolved
- NNs have fixed structure with 5046 weights, these are evolved + one weight for “kings”
- Representation:
 - vector of 5046 real numbers for variables (weights)
 - vector of 5046 real numbers for σ’s
- Mutation:
 - Gaussian, lognormal scheme with σ-first
 - Plus special mechanism for the kings’ weight
- Population size 15

Example Application: Evolving Checkers Players (Fogel '02)

- Tournament size $q = 5$
- Programs (with NN inside) play against other programs, no human trainer or hard-wired intelligence
- After 840 generation (6 months!) best strategy was tested against humans via Internet
- Program earned “expert class” ranking, outperforming 99.61% of all rated players