

2

Operating Principles of Wind Turbines

In an aircraft wing, this forces causes the airfoil to "rise," lifting the aircraft off the ground.

Since the blades of a wind turbine are constrained to move in a plane with the hub as its center, the lift force causes rotation about the hub. In addition to lift force, a "drag" force perpendicular to the lift force impedes the rotor rotation. A prime objective in wind turbine design is for the blade to have a relatively high lift-to-drag ratio.

This ratio can be varied along the length of the blade to optimize the turbine's energy output at various wind speeds.

http://www.awea.org/faq/basicop.html

fm

The University of Iowa

Intelligent Systems Laboratory

8

Turbine Classes										
WT Classes	I	II	III	IV	S					
v _{e ref} (m/s)	50	42.5	37.5	30						
\bar{v}_{w} (m/s)	10	8.5	7.5	6.0						
$v_{ m G50} = 1.4 v_{ m eref}$	70	59.5	52.5	42	values to be					
$v_{\rm G1} = 1.05 v_{\rm G50}$	52.5	44.6	39.4	31.5	specified by					
A I15	0.18	0.18	0.18	0.18	the designer					
а	2	2	2	2						
B I15	0.16	0.16	0.16	0.16						
a	3	3	3	3						
,t	I	1		Hau (2006), p. 180						
The University of Iowa Intelligent Systems Laboratory										

Blade Sizes

~65m

~55m

~40m

~25m

~20m

~10m

Intelligent Systems Laboratory

Design for Aerodynamic Noise Noise not a problem today Human perception versus reality The noise from the wind passing leaves, shrubs, trees, masts, etc. essentially masks sound from wind turbines operating at winds speeds around 4 - 7 m/s and up Sound maps

Design for Noise									
Sound	Threshold	Without	T . II	City	Rock	Jet Engine			
Level	or Hearing	wnisper	Taiking	Traffic	Concert	10 m Away			
dB [A]	0	30	60	90	120	150			
A = absolute scale									
http://en.wikipedia.org/wiki/Decibel									
The University of Iowa Intelligent Systems Laboratory									

13

Turbine Design Trade-offs

Preamble

- ✓ An ideal wind turbine design is not dictated by technology alone, but by a tradeoff between technology and costs
- ✓ Turbine designs are optimized to deliver electricity at the lowest possible cost per kilowatt hour (kWh)
- ✓ The manufacturers are not very concerned with the efficiency of use the wind resource as the fuel is free
- Maximizing the annual energy production is not the primary design objective to avoid excessive costs of turbines

The University of Iowa

Intelligent Systems Laboratory

