DETECTING AND PREDICTING MW WIND TURBINE DRIVE TRAIN FAILURES

David Clark
Director, Turningpoint/Commtest

Adopted for
Wind Power Management class
http://www.icaen.uiowa.edu/~ie_155/
By
Andrew Kusiak
Intelligent Systems Laboratory
2139 Seamans Center
The University of Iowa
Iowa City, Iowa 52242 – 15227
andrew-kusiak@uiowa.edu
Tel: 319-335-5934 Fax: 319-335-5669
http://www.icaen.uiowa.edu/~ankusiak

Causes of vibration

- MISALIGNMENT
- IMBALANCE
- MECHANICAL LOOSENESS
- RESONANCE
- BEARINGS

90% of machine vibration is attributed to these 5 issues

THE ABOVE PROBLEMS MANIFEST THEMSELVES IN THE CONDITION OF THE ASSET

Typical Sensor Locations

Basically monitor what fails or what is expensive when it fails
3 COMMON EXAMPLES OF MW WTG ISSUES

1. MISALIGNMENT
2. BEARINGS
3. PLANETARY GEARBOX

EXAMPLE # 1
- Misalignment of a Megawatt class wind turbine
- Gearbox to generator
- Shows as a high peak at the running speed
- First vibration signature shows .5 amplitude in a velocity measurement (before)
- Second shows .025 amplitude after alignment (after)

BEFORE .5
High amplitude at running speed

AFTER .025

EXAMPLE # 2

- BEARING FAULT IN A MEGAWATT CLASS WIND TURBINE
- COMMON BEARING ABBREVIATIONS
 - BPFO (outer race defect)
 - BPI (inner race defect)
 - FTF (cage defect)
 - BSF (rolling element defect)

- There are 2 ISO standards for alarms and 1 widely accepted 30 year study also used for alarming

画像

AMPLITUDE = SEVERITY

PROGRESSION OF THE FAILURE

- TYPES OF VIBRATION MEASUREMENTS INDICATE THE FAILURE PROGRESSION OF THE COMPONENT. "VELOCITY" AND "DEMODULATED" MEASUREMENTS GIVE AN APPROXIMATE TIMELINE

How do I interpret the results?
- Look for peaks at known bearing fault frequencies in both the normal vibration velocity spectra and the demodulated spectra.

- No peaks in either spectrum: Condition is good, use as a baseline for future comparisons.
- Peaks appear in Demod only: Early warning indication that defects exist (or the bearing needs lubrication).
- Peaks appear in Velocity and Demod spectra: Plan replacement at next maintenance period.
- Peaks appear in Velocity spectra only, combined with a rise in the Demod noise floor: Replace the bearing now.
WIND TURBINES ARE VERY EASY TO COMPARE TO EACH OTHER TO DETERMINE A FAULT

VIBRATION ANALYSIS INTERPRETATION IS REDUCED TO TRAFFIC SIGNALS WITH ALL MAJOR CONDITION MONITORING SUPPLIERS

GOOD(.03) vs. BAD(.3) Generator Bearing

MEGAWATT GENERATOR BEARING looks like this:

There are 2 ISO standards for alarms and 1 widely accepted 30 year study also used for alarming.
VIBRATION SIGNATURE IS LABELED WITH BPFI (INNER RACE DEFECT)

MEGAWATT CLASS GENERATOR BEARING

looks like this:

GEARBOX PLANET BEARING

looks like this:
EXAMPLE # 3

- MW WIND TURBINE GEARBOX GEAR ISSUE
 - There are 2 ISO standards for alarms and 1 widely accepted 30 year study also used for alarming
 - GEAR MESH FAULT FREQUENCY = GEAR TOOTH COUNT x GEAR TOOTH COUNT x RPM

PLANETARY GEARBOX SIGNATURES

- Data captured on stage 2 mesh on the planet at 2:54 p.m.
- Again, the problem appears to be with very early stages of gear wear on the carrier. No other faults were noted.
- As levels of vibration in all these tests seem quite low, and there is no substantial alarming; it is safe to conclude that we are seeing only early stages of wear in the gearboxes that require no immediate action, but warrant more frequent monitoring.
WIND TURBINE MODELS USED IN THE EXAMPLES (in no particular order)

- VESTAS V-80
- GE 1.5
- Clipper 2.5

PREDICTING USING VIBRATION

- Know before wind season starts
- Know before the warranty expires
- Know what needs to be fixed
- Know when it needs to be fixed
- Know what parts need to be ordered
- Know if it's an up tower repair or crane call
- Know if it was rebuilt or installed properly