Overview

- Anticipatory Learning Classifier System (ALCS)
 - Introduction
 - The system ACS2
 - Representations
 - Learning mechanisms
 - What we have
- Adaptive Behavior in ALCSs
 - Ideas and possibilities
 - Increased model learning speed
 - Anticipatory adaptation
 - Future ideas
- Summary and Conclusion

Anticipatory Learning Classifier Systems: An Introduction

Andrew Kusiak
Intelligent Systems Laboratory
2139 Seamans Center
The University of Iowa
Iowa City, Iowa 52242 - 1527
andrew-kusiak@uiowa.edu
http://www.icaen.uiowa.edu/~ankusiak
Tel: 319 - 335 5934 Fax: 319-335 5669

Based on material provided by Dr. M.V. Butz

ALCS: Introduction

- What is an ALCS?
 - Adaptive agent
 - Learns anticipatory model of an environment
 - Exploits model for adaptive behavior
- How does it work?
 - Interaction with some problem/environment
 - Perception of environment through situations
 - Manipulation by actions
 - Learn to anticipate effects while interacting (online learning)
 - Optimize behavior exploiting the evolving anticipations

ALCS: Environmental Interaction

ACS2

- Rule learning system
- Evolves a set of rules (= a population of classifiers)
- Each rule includes
 - Condition C
 - Action A
 - Effect part E
- Each rule explicitly anticipates something like:
 “I anticipate that executing action A under conditions C in my environment will cause the effect E”
- Population represents an environmental model

Classifier Structure

- Each classifier includes
 - Condition, Action, Effect (the anticipation)
 - Mark (situational properties of states in which anticipation was wrong)
 - Quality (accuracy of anticipation)
 - Reward prediction (expected reinforcement)
Learning the Model

- How is the model represented?
 - Population of classifiers
- What model do we want to learn?
 - A compact model that is able to accurately anticipate the effects of each available action in all possible situations in the environment
 - Complete, accurate, and compact environmental model
- How do we learn the model?
 - Evolutionary process evolves population of classifiers
Anticipatory Learning Process

• Basic Idea:
 – Exploit feedback as much as possible
 – Generate more specialized rules where necessary

• Background:
 – Psychological learning theory of anticipatory behavioral control
 • Primary learning process: Action-effect relations
 • Secondary process: Differentiation of conditions

• How does it work?
 – Evaluation of quality q
 – Update mark in case of wrong anticipation
 – Generation of specialized offspring:
 • No correct classifier present: Covering
 • Over-general classifier: Specialization of condition

• What does it do?
 – Covering of all situation-action-effect cases
 – Evaluation of classifiers
 – Specialization of over-general classifiers

> A directed evolutionary specialization mechanism

Genetic Generalization

• Given:
 – Continuous knowledge-based specialization of over-general classifiers (by anticipatory learning process -ALP)
 – Over-specialization due to ALP (various reasons for that)
 – Partly over-generalized complete and accurate environmental model (represented by classifier population)

• Goal:
 – Evolution of accurate, complete, and compact environmental model

• Basic Idea:
 – Use genetic mechanism to optimize / condense environmental representation
 – Implement a genetic generalization pressure

> A genetic generalization mechanism

ALP and GG Model Learning

ACS2: Basic Adaptive Behavior

• What do we have?
 – Evolving environmental model represented by classifiers
 – Reward prediction in each classifier

• How is behavior adapted?
 – Reinforcement learning
 – Modified Q-learning mechanism
 – Policy forming directly in evolving model
 – Policy dependent on a model
Anticipatory Adaptive Behavior

- Basic Idea: Exploit anticipations for further adaptation
- Exploitation Possibilities:
 - Faster Model Learning
 - Action planning towards unknown regions
 - Action selection bias towards unknown effects
 - Enhanced Reinforcement Learning
 - Mental Acting (internal reinforcement updates)
 - Look-ahead Action Selection (anticipating before acting)
 - Reasoning
 - Planning
 - Utility states

Faster Model Learning: Basic Idea

- Low level approach by action selection
- Choose actions with unknown results
- Implementing “curiosity”
- Choose biased selection with probability p_{ab} and random action selection otherwise
- Two approaches:
 1. Action delay bias
 2. Knowledge array bias

Faster Model Learning: Realization

1. Action Delay Bias
 - Select an action with the longest delay
 - Enhance classifiers with time stamp recording last application time
 - Select an action of classifier with lowest time stamp (= longest delay)
2. Knowledge Array Bias
 - Select action with least knowledge about effect
 - Compute knowledge about consequences (average of classifier quality)
 - Select action with the lowest average quality (= least knowledge about consequence)

Adaptive Behavior in ACS

More Distinct Adaptation

- Behavior represented as reward prediction
- Basic Idea:
 - Exploit knowledge in environmental model
 - Adapt behavior further
- Methods:
 - Lookahead action selection
 - Anticipate using the model
 - Adjust behavior according to anticipation
 - Mental acting
 - Connect classifiers in model
 - Adjust reward predictions internally

Adaptive Behavior in ACS

More Distinct Adaptation: Tasks

- Psychological experiment with rats
- Normal reinforcement learning not able to solve the problem
- Non-generalizing model learner (e.g., Dyna) not able to solve the problem

<table>
<thead>
<tr>
<th>Training</th>
<th>Devvaluation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S; R \rightarrow E_1, R \rightarrow E_1$</td>
<td>$E_1 \rightarrow LiCl$</td>
<td>$S; R \rightarrow R_1$</td>
</tr>
<tr>
<td>$S; R \rightarrow E_1, R \rightarrow E_1$</td>
<td>$S; R \rightarrow R_1$</td>
<td>$S; R \rightarrow R_1$</td>
</tr>
</tbody>
</table>

Use of Anticipations: Perspectives (1/2)

- Intentional mechanisms
 - Anticipation of voluntary results before action.
 - Intentioned viewed as the anticipation of action effects.
- Motivations
 - Options trigger motivations
 - Motivations trigger action selection
Use of Anticipations: Perspectives (1/2)

- Attention
 - Attention is usually task-related
 - Intentions & Motivations trigger attention
 - Selective attention
 - Preparatory attention
- Reactive mechanisms
 - Faster response due to anticipation of stimulus, response and effect
 - Unexpected changes can be detected faster

Summary

- Anticipatory learning classifier systems build generalized environmental models online
 - Model allows anticipatory processes
 - Better adaptive behavior by model exploitation
 - Anticipations control behavior
- ACS2 represents its model with a population of condition-action-effect classifiers
- Model can be exploited to improve
 - Model learning itself
 - Adaptation to problem

Conclusions

- Anticipations control our behavior
- Anticipations need to be used in intelligent (learning) systems
- Further adaptive possibilities:
 - Intentional mechanisms
 - Motivations
 - Attention
 - Faster reactive behavior
 - Faster & better adaptation