Introduction to LINGO 8.0

LINGO is a software tool designed to efficiently build and solve linear, nonlinear, and integer optimization models.

Creating a LINGO Model

- An Optimization model consists of 3 parts
 - Objective Function
 - Variables
 - Constraints

A Sample Model

A cookie store can produce drop cookies and decorated cookies, which sell for $1 and $1.50 apiece, respectively. The two bakers each work 8 hours per day and can produce up to 400 drop cookies and 200 decorated cookies. It takes 1 minute to produce each drop cookie and 3 minutes to produce each decorated cookie. What combination of cookies produced will maximize the baker’s profit?

\[
\text{MAX} = 1 \times \text{Drop} + 1.5 \times \text{Deco}; \\
\text{Drop} \leq 400; \\
\text{Deco} \leq 200; \\
\frac{1}{60} \times \text{Drop} + \frac{3}{60} \times \text{Deco} \leq 16;
\]

Things to notice

- Comments in the model are initiated with an exclamation point (!) and appear in green text.
- LINGO specified operators and functions appear in blue text.
- All other text is shown in black.
- Each LINGO statement must end in a semi-colon (;).
- Variable names are not case-sensitive and must begin with a letter (A-Z).

Solving a LINGO Model

- Once the model has been entered into the Model Window, it can be solved by:
 - clicking the Solve button.
 - Selecting Solve from the LINGO menu.
 - Using the ctrl+s keyboard shortcut.

- Errors (if any) will be reported.
If no errors are found, the LINGO Solver Status window appears. Close the Solver Status window to see the Solution Report window.

Slack or Surplus:
- Zero if a constraint is completely satisfied as an equality
- Positive shows how many more units of the variable could be added to the optimal solution before the constraint becomes an equality
- Constraint has been violated if negative

Reduced Cost:
- How much the objective function would degrade if one unit of a variable (not included in the current solution) were to be included

Dual Price:
- How much the objective function would improve if the constraining value is increased by one unit

Sets may also include attributes for each member, such as the hauling capacity for each delivery truck.

SETS section must be defined before any of the set members are used in the model’s constraints.

Primitive set example:
SETS:
 Trucks/TR1..TR27/:Capacity;
ENDSETS
Using Sets (cont.)

- Derived set example:

  ```lingo
  SETS:
  Product/X Y/;
  Machine/L M/;
  Make(Product Machine)/X L, X M, Y M/;
  ENDSETS
  ```

Set Looping Statement Examples

- @FOR(Trucks(T): Capacity(T)<=3000);

 This @FOR statement sets the hauling capacity for all 27 delivery trucks in the Trucks set to at most 3000 pounds.

  ```lingo
  TOTAL_HAUL=@SUM(Trucks(J): Capacity(J));
  ```

 This @SUM statement calculates the total hauling capacity from the individual trucks.

LINGO Data Section

- Values can be defined for different variables
 - Set numbers
 - Attributes for sets
 - Scalar variable parameters

LINGO Data Example

```
SETS:
  SET1 /A, B, C/: X, Y;
ENDSETS

DATA:
  X = 1, 2, 3;
  Y = 4, 5, 6;
ENDDATA
```

Variable Types in LINGO

- All variables in a LINGO model are considered to be non-negative and continuous unless otherwise specified.
- LINGO's four variable domain functions can be used to override the default domain for given variables.

Variable Types in LINGO (cont.)

- @GIN - any positive integer value
- @BIN - a binary value (i.e., 0 or 1)
- @FREE - any positive or negative real value
- @BND - any value within the specified bounds
LINGO Operators and Functions

- There are three types of operators that LINGO uses:
 - Arithmetic
 - Logical
 - Relational

Mathematical Functions

- @ABS(X) – returns the absolute value of X
- @SIGN(X) – returns -1 if X is negative and +1 if X is positive
- @EXP(X) – calculates e^X
- @LOG(X) – calculates the natural log of X
- @SIN(X) – returns the sine of X, where X is the angle in radians
- @COS(X) – returns the cosine of X
- @TAN(X) – returns the tangent of X

Other Functions in LINGO

- LINGO also contains a plethora of financial, probability, and import/export functions
- These are commonly used in more advanced models

LINGO Programming Example

Knapsack Problem

SETS:
 ITEMS / ANT_REPEL, BEER, BLANKET, BRATWURST, BROWNIES, FRISBEE, SALAD, WATERMELON/:
 INCLUDE, WEIGHT, RATING;
ENDSETS

DATA:
 WEIGHT, RATING =
 1, 2
 3, 9
 4, 3
 3, 8
 1, 6
 5, 4
 10, 10
 KNAPSACK_CAPACITY = 15;
ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE);
@SUM(ITEMS: WEIGHT * INCLUDE) <= KNAPSACK_CAPACITY;
@FOR(ITEMS: @BIN(INCLUDE));
Questions?