PRODUCTION PLANNING AND SCHEDULING
Part 1

Andrew Kusiak
Intelligent Systems Laboratory
2139 Seaman Center
The University of Iowa
Iowa City, Iowa 52242 - 1527

Tel: 319 - 335 5934 Fax: 319 - 335 5669
andrew-kusiak@uiowa.edu
http://www.icaen.uiowa.edu/~ankusiak

Planning Hierarchy
• Forecasting
• Master Production Planning (Scheduling)
• Material Requirements Planning (MRP)
• Capacity Balancing
• Production Scheduling

MPS
MRP
Balancing
Scheduling

Forecasting
MPS
MRP
Balancing
Scheduling

MRP II (Manufacturing Resource Planning II)

ERP = MRP II + ...

History of ERP
• 1970’s MRP Material Requirements Planning
• 1980’s MRPII Manufacturing Resource Planning
• 1990’s ERP Enterprise Resource Planning (e.g., SAP system)

Master Production Schedule specifies Sequence and Quantity of Products (C)

EXAMPLE

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 C1</td>
<td>150 C7</td>
<td>180 C14</td>
</tr>
<tr>
<td>195 C4</td>
<td>160 C6</td>
<td>180 C12</td>
</tr>
<tr>
<td>385 C1</td>
<td>160 C6</td>
<td>670 C7</td>
</tr>
<tr>
<td></td>
<td>128 C17</td>
<td>230 C9</td>
</tr>
</tbody>
</table>

ERP systems are used from
• Automotive industry
to
• Pharmaceutical industry
The University of Iowa
Intelligent Systems Laboratory

MRP and ERP Systems

Backward (top down) generation of a production plan

Forward (push) implementation of the production plan

Note: Kanban systems are pull systems

EXAMPLE: Material Requirements Records for the Spider Climber

Merged Material Requirements for Aluminum Pipe

The Basic MRP (ERP) Record

"Arithmetic"

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross requirements</td>
<td>10</td>
<td>40</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduled receipts</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On hand</td>
<td>4</td>
<td>44</td>
<td>44</td>
<td>4</td>
<td>-6</td>
</tr>
<tr>
<td>Planned order releases</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lead time = 1 period
Lot size = 50
Safety stock = 4

Note: On hand should be >= Safety stock
Question?

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross requirements</td>
<td>10</td>
<td>40</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduled receipts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned order releases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lead time = 1 period
Lot size = 50
Safety stock = 4

What 50?

What 50 do to the MRP record?

The Answer

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross requirements</td>
<td>10</td>
<td>40</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduled receipts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On hand (safety stock)</td>
<td>4</td>
<td>54</td>
<td>44</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>Planned order releases</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lead time = 1 period
Lot size = 50
Safety stock = 4

Previously omitted
New order release

Explosion of Requirements for Subassembly S1 and Part P2

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Gross requirements</td>
<td>10</td>
<td>40</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduled receipts</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On hand</td>
<td>54</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>Planned order releases</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead time = 1 period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot size = 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2 Gross requirements</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduled receipts</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On hand</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned order releases</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead time = 1 period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot size = 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPACITY BALANCING

- MPS
- MRP
- Balancing
- Scheduling

8 hour period

5 operations to be assigned to 2 machines

- Part 1: 2 operations
- Part 2: 1 operation
- Part 3: 2 operations

NOTE: Operation is a set of tasks (e.g., removal of machining features) of a part is performed on one machine

The result of capacity balancing

<table>
<thead>
<tr>
<th>Machine 1</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>420</td>
<td>minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machine 2</th>
<th>2</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>480</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question: Is this Gantt chart a feasible schedule?

Why Not?

An assignment only due to two conflicts

CAPACITY BALANCING MODELS

MODEL 1: No splitting of batches

Parameters
- \(I \): set of batches of operations to be processed
- \(J \): set of machines
- \(T_{ij} \): time of processing batch \(i \) on machine \(j \)
- \(C_{ij} \): cost of processing batch \(i \) on machine \(j \)
- \(b_j \): processing time available on machine \(j \) (capacity of machine \(j \))

Decision variable

\[
\begin{align*}
x_{ij} &= 1 & \text{if batch } i \text{ of operations is processed on machine } j, \quad j \in J \\
x_{ij} &= 0 & \text{otherwise}
\end{align*}
\]

Model 1: No splitting of batches

\[
\begin{align*}
\min \sum_{i \in I} \sum_{j \in J} C_{ij} x_{ij} & \quad \text{Min total processing cost} \\
\sum_{j \in J} x_{ij} &= 1 & \text{One batch per machine} \\
\sum_{i \in I} T_{ij} x_{ij} & \leq b_j & \text{Capacity constraint} \\
x_{ij} &= 0, 1 & \text{i.e., i \in I, j \in J} & \text{Integrality constraint}
\end{align*}
\]

Example

<table>
<thead>
<tr>
<th>Batch x Machine</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Machining capacity \(b_j \) = \{21, 20, 42\}
Min \[4x_{11} + 7x_{12} + 7x_{13} + 1.5x_{21} + \ldots + 2x_{53} \]

For batch \(i = 1 \) \[x_{11} + x_{12} + x_{13} = 1 \]
(row) \(i = 2 \) \[x_{21} + x_{22} + x_{23} = 1 \]
\(i = 3 \) \[x_{31} + x_{32} + x_{33} = 1 \]
\(i = 4 \) \[x_{41} + x_{42} + x_{43} = 1 \]
\(i = 5 \) \[x_{51} + x_{52} + x_{53} = 1 \]

For machine \(j = 1 \) \[3x_{11} + x_{12} + 4x_{13} + 1x_{21} = 21 \]
(column) \(j = 2 \) \[8x_{12} + x_{22} + 6x_{23} + 2x_{42} = 20 \]
\(j = 3 \) \[7x_{13} + 6x_{23} + 3x_{33} + 3x_{53} = 42 \]

\[\sum_{t \in T} x_{ij} \leq b_j \]

\[x_{ij} = \begin{cases} 1 & j \in J \\ 0 & \text{for } i = 1 \text{ to } 5, j = 1 \text{ to } 4 \end{cases} \]

Solution

\[x_{11} = 1, x_{22} = 1, x_{31} = 1, x_{43} = 1, x_{53} = 1 \]

Machine 1: batches 1, 3
Machine 2: batch 2
Machine 3: batches 4, 5

Model 2: Limited Tool Magazine Capacity

No batch splitting

\[k_i \] space occupied in a tool magazine by tools required for operation \(i \) at machine \(j \)
\(f_j \) capacity of the tool magazine on machine \(j \)
\(q_j \) penalty for using the tool magazine on machine \(j \)
\(Z_j \) upper limit on the number of tool magazines to be used on machine \(j \)
\(z_j \) number of tool magazines required on machine \(j \)

\[\min \sum_{i \in I} \sum_{j \in J} C_{ij} y_{ij} + \eta_i f_i \]
\[\sum_{i \in I} x_{ij} = 1, \quad i \in I \]
\[\sum_{i \in I} \sum_{j \in J} x_{ij} \leq b_j, \quad j \in J \]
\[\sum_{i \in I} \sum_{j \in J} x_{ij} \leq z_j, \quad j \in J \]
\[\sum_{i \in I} \sum_{j \in J} y_{ij} \leq Z_j, \quad j \in J \]

Min total processing + tool magazine penalty cost
One batch per machine
Machine capacity constraint
Tool magazine capacity constraint
Integrality constraint
Integrality + bounding constraint

Model 3: Batch Splitting is Allowed

\[t_{ij} \] processing time of each operation from batch \(i \) on machine \(j \)
\[c_{ij} \] processing cost of an operation from batch \(i \) on machine \(j \)
\[a_i \] required number of operations in batch \(i \) (the size of batch \(i \))
\[y_{ij} \] number of operations of batch \(i \) to be processed on machine \(j \)

\[\min \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij} \]
\[\sum_{i \in I} x_{ij} = a_i, \quad i \in I \]
\[\sum_{i \in I} \sum_{j \in J} t_{ij} y_{ij} \leq b_j, \quad j \in J \]
\[y_{ij} \geq 0, \quad \text{integer } i \in I, j \in J \]

Min total processing cost
Required number of operations
Machine capacity constraint
Integrality constraint

Example

(1) number of operation types \(|I| = 10 \)
(2) number of machine types \(|J| = 3 \)
(3) matrix of machining times

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 29.1 & 24.5 & \infty \\
2 & 18.4 & 20.0 & \infty \\
3 & 31.2 & 28.0 & \infty \\
4 & \infty & 14.5 & 16.5 \\
5 & 24.5 & 22.0 & \infty \\
6 & 16.5 & 14.5 & 17.4 \\
7 & 8.5 & 6.4 & \infty \\
8 & 35.4 & \infty & 39.1 \\
9 & 19.4 & 18.1 & \infty \\
10 & 24.1 & 26.8 & \infty \\
\end{array}
\]

Batch - machine matrix
(4) vector of batch sizes
\[[a_i] = [18, 17, 15, 14, 15, 20, 12, 18, 12, 16] \]
(5) vector of machine capacity
\[[b_j] = [1800, 1000, 1500] \]

Solution
\[y_{12} = 18, y_{21} = 17, y_{33} = 15, y_{42} = 4, y_{43} = 10, \]
\[y_{51} = 9, y_{52} = 6, y_{62} = 20, y_{72} = 12, y_{81} = 18, \]
\[y_{91} = 12, y_{10,1} = 16 \]

Machine 1: 17 operations (of type 2), 9(5), 18(8), 12(9), 16(10)
Machine 2: 18(1), 4(4), 6(5), 20(6), 12(7)
Machine 3: 15(3), 10(4)

NOTE: Operations 5 are processed on machines 1 and 2

Line Balancing

Assignment of tasks to stations

Task x station matrix

What leads to more uniform utilization of machine capacity:

- Capacity balancing with batch splitting, or
- Capacity balancing without batch splitting?

When the capacity loading Gantt chart would be equivalent to the schedule Gantt chart?

Manufacturing Scheduling

MPS

MRP

Balancing

Scheduling
Manufacturing Scheduling

Definition
Scheduling is the assignment of operations, jobs, tasks, etc. to resources in time.

Example: Two machine schedule

Makespan = 12

Parameters Used in Scheduling Models
\(t_{ij} \) = processing time of operation \(oi \) on machine \(M_j \)
\(ri \) = readiness of operation \(oi \) for processing, i.e., the time \(oi \)'s available for scheduling
\(di \) = due date, i.e., the promised delivery time of operation \(oi \)
\(wi \) = weight (priority), which expresses the relative urgency of operation \(oi \)

\(Ci \) = completion time of operations \(oi \)
\(Fi \) = flow time (the difference between completion time and readiness), \(Fi = Ci - ri \)
\(Li \) = lateness (the difference between completion time and due date), \(Li = Ci - di \)
\(Ti \) = tardiness, \(Ti = \max \{Ci - di, 0\} \)