LAYOUT OF MACHINES AND FACILITIES

Andrew Kusiak, Professor
Industrial Engineering
2139 Seamans Center
The University of Iowa
Iowa City, Iowa 52242 - 1527

Tel: 319 - 335 5934 Fax: 319-335 5669
andrew-kusiak@uiowa.edu
http://www.icaen.uiowa.edu/~ankusiak

Outline

• LAYOUT EXAMPLES
• SINGLE-ROW MACHINE LAYOUT
• DOUBLE-ROW MACHINE LAYOUT
• MULTIROW FACILITY LAYOUT
• ALGORITHMS

Big Picture

Jobs: Facility Designer
Facility Planner

AutoCAD Software
http://www.autodesk.com/

LAYOUT EXAMPLES

MANUFACTURING FACILITY LAYOUT

ASSEMBLY AREA LAYOUT
LAYOUT OF MACHINES

Methods:

• Visual, e.g., using templates
• Computer based (often an environment for evaluating various layout alternatives)
• Model based

Visualization types:

• 2D
• 3D
• Virtual reality

Single-Row Machine Layout

Double-Row Machine Layout

Multi-row Layout

M1 M2 M3
M4 M4 M6
M7 M8
BASIC DATA

- UNIT DISTANCE TRAVEL COST ($/m)
- OR FREQUENCY OF TRIPS [f]

- DISTANCE [m]
- OR TRAVEL TIME [t]

OBJECTIVE

Arrange machines on the shop floor in such a way that the total product of the travel cost per unit distance traveled [$/m$] and the distance traveled [m] is minimum.

Travel cost is often replaced with the number (frequency - f) of trips per time unit [1/sec] between any two machines.

Distance is replaced with travel time - t [sec].

\[
\text{Min } \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} f_{ik} t_{jl} x_{ij} x_{kl}
\]

Example: Intuitive Machine Layout

1
2
3
4
5

20 sq.m. 12 sq.m.
24 sq.m.
16 sq.m.
40 sq.m.

High Frequency of Traffic

SINGLE-ROW MACHINE LAYOUT

Frequency of trips (traffic flow)

\[
f_{ij} = \frac{n_{ij}}{u_k} \left\lceil \frac{v_{ij}}{k} \right\rceil
\]

where:

- $v_{ij} =$ volume of part type k to be moved from machine i to machine j in a given time horizon (for example, 1 year)
- $n_{ij} =$ number of different parts to be moved from machine i to machine j in a given horizon
- $u_k =$ number of parts to be moved in a single trip of the material handling equipment
- $\lceil \cdot \rceil =$ smallest integer greater than or equal to \cdot

The AGV travel time involves:

- loading time
- acceleration time
- travel time
- deceleration time
- unloading time

DISTANCE CALCULATION

Consider 3 machines

\[
\text{Unidirectional distance (along x axis)} \quad r_{13} = 0, \quad r_{12} = 7, \quad r_{23} = r_{12} = 7
\]

\[
\text{Rectilinear (city) distance} \quad d_{13} = 3, \quad d_{12} = 7, \quad d_{23} = 7 + 3 = 10
\]

\[
\text{Euclidean distance} \quad e_{12} = 7, \quad e_{13} = 7.48
\]
Adjacent unidirectional distance r_{12}

\[
\begin{array}{c}
30 \\
M1 \\
36 \\
1 \\
20 \\
M2 \\
50
\end{array}
\]

\[r_{12} = d_{12} = 25 + 10 + 1 = 36\]

Time is the best measure to be used in the optimization of machine layout, however, if the travel speed is constant, an appropriate distance measure can be considered.

SINGLE ROW MACHINE LAYOUT

Algorithm 1 Overview

Two machines with the maximum flow between them (e.g., 1 and 2) are placed in the adjacent locations.

Other machines are placed to the left and right of the two machines based on the flow.

Algorithm 1

Step 0. Set iteration number $k = 1$.

From the flow matrix $[f_{ij}]$ compute $f_{i^*j^*} = \max \{f_{ij}: i, j = 1, 2, \ldots, m\}$. If there is a tie, $f_{i^*j^*} = \max \{f_{ij} \cdot t_{ij}: i, j = 1, 2, \ldots, m\}$. Connect i^*, j^* and include them in the solution set. Set the solution set, $U = \{i^*, j^*\}$.

Step 1. Compute $f_{pq} = \max \{f_{pqr}, f_{qrs}, k, l \in \{1, 2, \ldots, m\} - U\}$.

Set $s^* = q^*$.

Consider two alternatives:

(a) Place machine s^* left of machine i^*;
(b) Place machine s^* right of machine j^*.

Compute:

$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} f_{ijkl} x_{ijl}$

\[\text{Min} \ n \ n \ n \ n \ n\]

The minimization of the total product of flow x travel time is accomplished by local maxima.

Global Minimum

Local Maximum
If \(q_{si} \leq q_{sj} \ast \)

1. Select the alternative (a) above;
2. Set \(i^* = s^* \).

If \(q_{si} > q_{sj} \ast \)

1. Select the alternative (b) above;
2. Set \(j^* = s^* \).

\[U = U + s^* \]

Step 2. Set iteration number \(k = k + 1 \).
Repeat Step 1 until the final solution is obtained (i.e., until all the machines are included in the solution set \(U \)).

Example

Single-row machine layout

Given:

\[[f_{ij}] = \begin{bmatrix}
1 & 0 & 10 & 15 \\
2 & 10 & 0 & 5 \\
3 & 15 & 0 & 40 \\
4 & 15 & 5 & 40 \\
\end{bmatrix} \]

- \(f_{ij} \) = frequency of trips
- \(t_{ij} \) = travel time
- \(r_{ij} \) = unidirectional distance
- \(d_{ij} \) = adjacent distance

Clearance = 1

Calculate adjacent distances

\[[d_{ij}] = \begin{bmatrix}
1 & 0 & 4 & 5 & 3 \\
2 & 4 & 0 & 6 & 4 \\
3 & 5 & 6 & 0 & 5 \\
4 & 3 & 4 & 5 & 0 \\
\end{bmatrix} \]

For simplicity assume time \(t_{ij} = distance d_{ij} \)

Iteration 1

Step 0.
From the flow matrix \([f_{ij}]\),
\[\max \{ f_{ij} : i = 1, 2, 3, 4, j = 1, 2, 3, 4 \} = f_{34} = 40 \]

is determined.
Machines 3 and 4 are connected and included in the solution, symbolically denoted as

\[34 \]

The solution set is updated \(U = \{3, 4\} \) and the columns 3 and 4 of the matrices are marked with asterisks.

Distances

\[\begin{array}{c}
50 \\
30 \\
\end{array} \]

\[\begin{array}{c}
1 \\
20 \\
\end{array} \]

36

Adjacent distance \(d_{12} = 25 + 10 + 1 = 36 \)

Unidirectional distance \(r_{12} = d_{12} = 36 \)
Step 1. Compute
\[\text{Max} \{ f_{3k}, f_{4l} : k = 1, 2; l = 1, 2 \} = f_{31} = f_{41} = 15. \]
Set \(s^* = 1. \)
Consider two alternatives:
(a) Place machine 1 on the left hand side of machine 3
(b) Place machine 1 on the right hand side of machine 4

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 10 & 15 & 15 \\
2 & 10 & 0 & 0 & 40 \\
3 & 15 & 5 & 40 & 0 \\
4 & 15 & 0 & 0 & 0 \\
\end{array}
\]

\[q_{13} = f_{13} \cdot t_{13} + f_{14} \cdot t_{14} + f_{11} \cdot t_{11} = f_{13} \cdot r_{13} + f_{14} \cdot r_{14} + f_{11} \cdot r_{11} \\
= f_{13} \cdot d_{13} + f_{14} \cdot d_{14} + f_{11} \cdot d_{11} = 15 \cdot 3 + 15 \cdot (3 + 5) = 165. \]

As \(q_{13} > q_{41}, \)
(1) Alternative (b) \(\text{[min]} \) is selected where machine 1 is placed to the right of machine 4
(b) Place machine 1 on the right hand side of machine 4

Step 2. Since machine 2 is not included in the solution set \(U, \)
go to Step 1.

Compute (repeated from the previous slide):
\[q_{23} = q_{23} = f_{23} \cdot t_{23} + f_{24} \cdot t_{24} + f_{21} \cdot t_{21} = f_{23} \cdot r_{23} + f_{24} \cdot r_{24} + f_{21} \cdot r_{21} \\
= f_{23} \cdot d_{23} + f_{24} \cdot d_{24} + f_{21} \cdot d_{21} = 10 \cdot 4 + 5 \cdot (4 + 3) + 0 \cdot (4 + 3 + 5) = 195. \]

Since \(q_{23} > q_{12}, \)
(1) Alternative (b) \(\text{[min]} \) is selected, i.e.,
(2) Row 1 and column 1 are deleted from \([f_{ij}] \);
(3) Set \(j^* = 2; \)
(4) The solution set \(U \) is updated to \(U + s^* = \{1, 2, 3, 4\}. \)

Step 2. Since all machines have been included in the solution set \(U, \) stop.
Algorithm 1 Summary

Pair (3, 4) selected

Look around

Machine 1 selected

Machine 1 placed

Algorithm 1 Summary

Alternative selected

Look around

Machine 2 selected

Machine 2 placed

Objective Function Revisited

Min \(\sum_{ijkl} f_{ijkl} x_{ij} x_{kl} \)

\(f \rightarrow \) No trips/sec

\(t \rightarrow \) sec

\(f \cdot t = \) No of trips

Double-Row Machine Layout

Example Machine Layout
Computation of Unidirectional Distances Between Pairs of Machines

Unidirectional distances

\[r_{12} = 0 \quad r_{14} = d_{24} \]
\[r_{13} = d_{13} \quad r_{23} = d_{13} \]
\[r_{24} = d_{24} \quad r_{34} = |r_{13} - r_{24}| = |d_{13} - d_{24}| \]

Algorithm 2: Double-row machine layout

- A pair of machines with the largest value of the flow is selected
- The machines selected are placed on the opposite sites of the isle (or an AGV track)
- Other pairs of machines are placed to the left and right of the pairs selected.

Compute:

- \(q_i^s v_j^* t_t^* = \sum q_i^s v_j^* t_t^* \)
- \(q_i^s v_j^* t_t^* \)

Step 2. If only one machine has not been assigned, go to Step 4.
Otherwise go to Step 3.
Compute:

\[q_c^* d^* j^* = \{ f_c r \cdot t_c r + f_d r \cdot t_d r : r \in U \} + f_c d^* \cdot t_c d^* , \]

where \(c^* \) is placed left of \(i^* \) and \(d^* \) is placed left of \(j^* \);

\[q_d^* i^* c^*_j^* = \{ f_c r \cdot t_c r + f_d r \cdot t_d r : r \in U \} + f_c d^* \cdot t_c d^* , \]

where \(d^* \) is placed left of \(i^* \) and \(c^* \) is placed left of \(j^* \);

\[q_s^* c^*_t^* d^* = \{ f_c r \cdot t_c r + f_d r \cdot t_d r : r \in U \} + f_c d^* \cdot t_c d^* , \]

where \(c^* \) is placed right of \(s^* \) and \(d^* \) is placed right of \(t^* \);

\[q_s^* t^* c^*_d^* = \{ f_c r \cdot t_c r + f_d r \cdot t_d r : r \in U \} + f_c d^* \cdot t_c d^* , \]

where \(d^* \) is placed right of \(s^* \) and \(c^* \) is placed right of \(t^* \).

\[\sum \sum \sum \sum \sum \]

If \(q_c^* d^* j^* = \min \{ q_c^* d^* j^* , q_d^* i^* c^*_j^* , q_s^* c^*_t^* d^* , q_s^* t^* c^*_d^* \} , \)
(1) select alternative (a);
(2) set \(i^* = c^* \) and \(j^* = d^* \).

If \(q_d^* i^* c^*_j^* = \min \{ q_c^* d^* j^* , q_d^* i^* c^*_j^* , q_s^* c^*_t^* d^* , q_s^* t^* c^*_d^* \} , \)
(1) select alternative (b);
(2) set \(i^* = d^* \) and \(j^* = c^* \).

If \(q_s^* c^*_t^* d^* = \min \{ q_c^* d^* j^* , q_d^* i^* c^*_j^* , q_s^* c^*_t^* d^* , q_s^* t^* c^*_d^* \} , \)
(1) select alternative (c);
(2) set \(s^* = c^* \) and \(t^* = d^* \).

If \(q_s^* t^* c^*_d^* = \min \{ q_c^* d^* j^* , q_d^* i^* c^*_j^* , q_s^* c^*_t^* d^* , q_s^* t^* c^*_d^* \} , \)
(1) select alternative (d);
(2) set \(s^* = d^* \) and \(t^* = c^* \).

Set \(U = U + \{ c^* , d^* \} \).
Go to Step 5.

Step 4. Set \(c^* \) to the last machine which has not been assigned.
Consider four alternatives:
(a) Place \(c^* \) left of \(i^* \);
(b) Place \(c^* \) left of \(j^* \);
(c) Place \(c^* \) right of \(s^* \);
(d) Place \(c^* \) right of \(t^* \).
Compute:

\[q_c^* i^* = \{ f_c r \cdot t_c r : r \in U \} \]

where \(c^* \) is placed left of \(i^* \);

\[q_c^* j^* = \{ f_c r \cdot t_c r : r \in U \} \]

where \(c^* \) is placed left of \(j^* \);

\[q_s^* c^*_ = \{ f_c r \cdot t_c r : r \in U \} \]

where \(c^* \) is placed right of \(s^* \);

\[q_t^* c^*_ = \{ f_c r \cdot t_c r : r \in U \} \]

where \(c^* \) is placed right of \(t^* \).

\[\sum \sum \sum \sum \sum \]

If \(q_c^* i^* = \min \{ q_c^* i^* , q_c^* j^* , q_s^* c^*_ , q_t^* c^*_ \} , \)
select alternative (a);
If \(q_c^* j^* = \min \{ q_c^* i^* , q_c^* j^* , q_s^* c^*_ , q_t^* c^*_ \} , \)
select alternative (b);
If \(q_s^* c^*_ = \min \{ q_c^* i^* , q_c^* j^* , q_s^* c^*_ , q_t^* c^*_ \} , \)
select alternative (c);
If \(q_t^* c^*_ = \min \{ q_c^* i^* , q_c^* j^* , q_s^* c^*_ , q_t^* c^*_ \} , \)
select alternative (d).
Set \(U = U + \{ c^* \} \).
Go to Step 5.

Step 5. Set iteration number \(k = k + 1 \).
Repeat Steps 2 through 4 until the final solution is obtained (i.e., all the machines are included in the solution set \(U \)).

Distances

Distance \(d_{ij} \) is calculated from machine dimensions and clearance.

Based on \(d_{ij} , r_{ij} \) is computed in the algorithm.
Assume \(t_{ij} = r_{ij} \).
Recall?

Adjacent distance \(d_{12} = 25 + 10 + 1 = 36 \)

Unidirectional distance \(r_{12} = d_{12} = 36 \)

Step 1. For the flow matrix above, compute max \(\{f_{ij}: i, j = 1, 2, ..., 5\} = f_{12} = f_{45} = 5 \) is determined. The flow value \(f_{45} \) is selected because \(f_{45} \cdot t_{45} = f_{45} \cdot d_{45} = 5 \cdot 48 = 240 > f_{12} \cdot t_{12} = f_{12} \cdot d_{12} = 5 \cdot 36 = 180 \).

Thus \(i^* = 4 \) and \(j^* = 5 \).

Machines 4 and 5 are assigned to the opposite sites of the AGV path and are included in the solution.

The solution set is updated, \(U = \{4, 5\} \). Exclude columns 4 and 5 from further consideration.

Computing:

max \(\{f_{5l}, f_{1v}: l, v = 2, 3\} = f_{12} \).

Set \(t^* = 2 \) and exclude column 2 from further consideration.

Consider two alternatives:

(a) Place machine 1 right of machine 4 and machine 2 right of machine 5

(b) Place machine 2 right of machine 4 and machine 1 right of machine 5

Distance Pattern

\(q_{s^*i^*t^*j^*} = q_{4152} = f_{14} + t_{14} + t_{15} + t_{15} + t_{24} + t_{24} + t_{25} + t_{25} + t_{12} + t_{12} = f_{14} + t_{14} + t_{15} + t_{24} + t_{25} + t_{25} + t_{12} + t_{12} + t_{41} + t_{41} + t_{51} + t_{51} + t_{42} + t_{42} + t_{52} + t_{52} + t_{45} + t_{45} + t_{54} + t_{54} + t_{41} + t_{41} + t_{52} + t_{52} + t_{45} + t_{45} + t_{26} + t_{26} + t_{53} = 482 \).
\[q^{*}(4,5) = q_{425} = f_{24} \cdot r_{24} + f_{25} \cdot r_{25} + f_{14} \cdot r_{14} + f_{15} \cdot r_{15} + f_{12} \cdot r_{12} + f_{24} \cdot d_{24} + f_{25} \cdot d_{25} + f_{14} \cdot d_{14} + f_{15} \cdot d_{15} + f_{12} \cdot d_{12} = 0 \cdot 41 + 2 \cdot 41 + 4 \cdot 42 + 1 \cdot 42 + 5 \cdot |d_{24} - d_{15}| = 297. \]

Since \(q_{425} < q_{4152} \), alternative (b) is selected. Set \(U = U + \{1, 2\} \).

Step 2. Since only machine 3 has not been assigned, go to Step 4.

Compute

(a) \[q^{*}(4,5) = q_{34} = f_{34} \cdot r_{34} + f_{35} \cdot r_{35} + f_{32} \cdot r_{32} + f_{31} \cdot r_{31} = f_{34} \cdot r_{34} + f_{35} \cdot r_{35} + f_{32} \cdot r_{32} + f_{31} \cdot r_{31} = 0 \cdot 43.5 + 0 \cdot 43.5 + 3 \cdot (43.5 + 41) + 1 \cdot (43.5 + 42) = 109.5 + 67 \cdot 3 = 339. \]

(b) \[q^{*}(3,5) = q_{35} = f_{35} \cdot r_{35} + f_{34} \cdot r_{34} + f_{32} \cdot r_{32} + f_{31} \cdot r_{31} = f_{35} \cdot r_{35} + f_{34} \cdot r_{34} + f_{32} \cdot r_{32} + f_{31} \cdot r_{31} = 0 \cdot 28.5 + 0 \cdot 28.5 + 3 \cdot (28.5 + 41) + 1 \cdot (28.5 + 42) = 279. \]

Since \(q_{35} = \min \{q_{34}, q_{35}, q_{23}, q_{13}\} \), alternative (c) is selected. Set \(U = U + \{3\} \).

Step 5. Since all machines have been included in the set \(U \), stop.

Solution

- Machine 1
- Machine 2
- Machine 3
- AGV
- Reference line

Note: The text is from a document discussing the selection of alternatives in a planning or scheduling context, specifically focusing on the calculation of certain metrics and the selection of the best alternative based on those calculations.
Algorithm 2 Summary

Pair (4, 5) selected

Looking around

Machine 1 selected

Looking for

Machine 2 selected

Evaluate cost

a) Alternative (b) selected

b) Alternative (b) selected

Lowest cost alternative selected

MULTIROW FACILITY AND MACHINE LAYOUT

Quadratic Assignment Model

\[\text{Min} \quad n \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} f_{ik} c_{jl} x_{ij} x_{kl} + \Sigma a_{ij} x_{ij} \]

subject to:

\[\sum_{j=1}^{n} x_{ij} = 1 \quad i = 1, ..., n \]

\[\sum_{i=1}^{n} x_{ij} = 1 \quad j = 1, ..., n \]

\[x_{ij} = 0 \text{ or } 1 \quad i = 1, ..., n, \quad j = 1, ..., n \]
MULTIROW FACILITY(MACHINE) LAYOUT

CRAFT Algorithm

FLOW MATRIX (between facilities (machines))

Assumptions:
- Symmetric flow matrix
- Square facilities

Matrix of Rectilinear Distances (between sites)

1 2 3 4
A | 1 - 50 20 100 |
B | 50 - 30 10 |
C | 20 30 - 70 |
D | 100 10 70 - |

Matrix of Rectilinear Distances (between sites)

1 2 3 4
A | 1 1 2 3 |
B | 1 - 1 2 |
C | 2 1 - 1 |
D | 3 2 1 - |

PAIRWISE EXCHANGES

First exchange: Machines (1, 2)

Cost = f12dAD + f13dBD + f14dCD + f23dAB + f24dAC + f34dBC
= 50×3 + 20×2 + 100×1 + 30×1 + 10×2 + 70×1 = 410.

COST = 510, A • 1 B • 3 C • 4 = D • 2

Exchange facilities (machines) 1 and 2

Cost = 410, A • 2 B • 3 C • 4 = D • 1

The cost change is then 410 - 510 = -100.
The Result

Exchanged Pair
(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

Cost Change
-100 -50 -80 -60 90 -100

A 2 B 3 C 4
D 1

Cost 410
A 2 B 3 C 4 Exchange Pair (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
D +1
Cost Change 100 10 30 100 100

Solution with facilities (machines) 1 and 3 exchanged is selected

Cost 370
A 2 B 1 C 4 Exchange Pair (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
D 3
Cost Change 80 40 90 90 40 60

Final Solution

Cost 370
A 2 B 1 C 4 Exchange Pair (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
D 3

Machine Relationship Constraints

This “box” shows the relationship between machine (facility) 1 and 3
Top half shows importance of relationship
Lower half shows reason(s) of importance
“Closeness” ratings

EXAMPLE: Flow data and relationship constraints

Process Layout: Medical Application
Data Collection

Process 1

a
Station 1
M1 O1

b
Station 2

O2

c
Resources

Possible Groupings

Possible Groupings

Station

Note: Precedences are ignored in this matrix

Process 1

Possible Groupings

Station

Process

Possible Groupings

Based on the process-station grouping

System Layout

Process 1

Process 2