Verilog Behavioral Modeling Example

Problem Statement

• Create and test a module that computes Fibonacci numbers
• Definition of Fibonacci numbers:

 \[\text{fib}(0) = 0 \]

 \[\text{fib}(1) = 1 \]

 \[\text{fib}(i) = \text{fib}(i-1) + \text{fib}(i-2) \quad \text{for } i \geq 2 \]

The fibNumberGen module

- When a 0 to 1 transition occurs on start, the module computes \text{fibNth} = \text{fib}(n)\. When the result is stable on \text{fibNth}, done is held high for 10 nanoseconds. If the computation results in an overflow (i.e. if \text{fib}(n) is too large to represent in 16 bits) v (overflow flag) is set and remains set until the next 1 to 0 transition of the done flag.
- The entire computation, from the leading edge of the start signal to the leading edge of the done signal takes 100 nsec.

The Verilog Code for fibNumberGen

```verilog
//Module to generate nth Fibonacci Number
module fibNumberGen(n, start, done, v, fibNth);
input [15:0] n;
input start;
output done, v;
output [15:0] fibNth;
reg done, v;
reg [15:0] fibNth;
reg [15:0] count, prevNum, temp;
initial
begin
  done = 0;
  v = 0;
end
always @(@posedge start)
begin
  #95 if (n == 0) fibNth = 0;
  else if (n == 1) fibNth = 1;
  else begin
    count = n;
    prevNum = 0;
    for (fibNth = 1; count > 1;
     count = count -1)
    begin
      temp = fibNth;
      fibNth = fibNth + prevNum;
      if (fibNth < prevNum) v = 1;
      prevNum = temp;
    end
  end
  #5 done = 1;
  #10 done = 0; v = 0;
endmodule
```
A Module to “Exercise” fibNumberGen

As long as run is high, this module generates successive values 0, 1, 2, 3, ..., on output num. A new output value is generated every 150 nsec. and the ready flag held high for 10 nsec when a new value is stable on the num output.

Verilog Code for Module numberGen

```verilog
// module to exercise Fib.Num Generator
module numberGen(num, ready, run);
output [15:0] num;
output ready;
input run;
reg [15:0] num;
reg ready;
initial
begin
num = -1;
ready = 0;
end
always
begin
wait(run == 1);
#145 num = num + 1;
#5 ready = 1;
#10 ready = 0;
end
endmodule
```

Putting the Modules Together

Verilog Code for Module fibTop

```verilog
module fibTop();
reg runIt;
wire [15:0] numOut, fibOut;
wire numRdy, fibDone, fibV;
numberGen M1(numOut, numRdy, runIt);
fibNumberGen M2(numOut, numRdy, fibDone, fibV, fibOut);
initial
begin
#1;
runIt = 1;
end
always @(posedge fibDone)
begin
if (fibV == 1)
begin
$display($time, "Overflow at Fib(%d). Simulation terminated", numRdy);
$finish;
end
else
$display($time, "Fib(%d) is: %d", numOut, fibOut);
wait(fibDone == 0);
end
endmodule
```
Compiling and Running the Verilog Model

```
l-ecn004% vlog fibNumberGen.v
  Model Technology ModelSim SE vlog 5.5b Compiler 2001.05 May 23 2001
  -- Compiling module fibNumberGen
Top level modules: fibNumberGen
```

```
l-ecn004% vlog numberGen.v
  Model Technology ModelSim SE vlog 5.5b Compiler 2001.05 May 23 2001
  -- Compiling module numberGen
```

```
l-ecn004% vlog fibTop.v
  Model Technology ModelSim SE vlog 5.5b Compiler 2001.05 May 23 2001
  -- Compiling module fibTop
```

```
Top level modules: fibTop
```

```
l-ecn004% vsim -c fibTop
  Reading /usr/local/apps/modeltech53d/bin/../hp700/../tcl/vsim/pref.tcl
  # 5.5b
  # vsim -c fibTop
  # //  ModelSim SE 5.5b May 4 2001 HP-UX B.11.23
  # /fibTop
  # $ 3 b
  # vsm -< fibTop
  # A: ModelSim SE 5.5b May 4 2001 HP-UX 8.11.23
  # A:
  # Loading work/fibTop
  # Loading work/fibNumberGen
  # Loading work/fibTop/numberGen
  VSIM 1>
```

Simulation Run of Module fibTop

```
VSIM 1> run 10000
# 251 Fib(0) is: 0
# 411 Fib(1) is: 1
# 731 Fib(2) is: 1
# 891 Fib(3) is: 2
# 1051 Fib(4) is: 3
# 1211 Fib(5) is: 5
# 1371 Fib(6) is: 8
# 1531 Fib(7) is: 13
# 1691 Fib(8) is: 21
# 1851 Fib(9) is: 34
# 1851 Fib(10) is: 55
# 2011 Fib(11) is: 89
# 2171 Fib(12) is: 144
# 2331 Fib(13) is: 233
# 2491 Fib(14) is: 377
```

```
# 2651 Fib(15) is: 610
# 2811 Fib(16) is: 987
# 2971 Fib(17) is: 1597
# 3131 Fib(18) is: 2584
# 3291 Fib(19) is: 4181
# 3451 Fib(20) is: 6765
# 3611 Fib(21) is: 10946
# 3771 Fib(22) is: 17711
# 3931 Fib(23) is: 28657
# 4091 Fib(24) is: 46368
# 4251 Overflow at Fib(25).
```

```
Simulation terminated
# ** Note: $finish : fibTop.v(23)
# Time: 4251 ns Iteration: 1 Instance:
  /fibTop
```