
1

First Verilog Project
(Cache Memory)

Some explanation of the direct
d h d lmapped cache model

Overall Structure:

2

Cache Structure

This is
CacheDataSelect

CacheDataInputMux

Hit Miss

Note: Clk input
to FSM control
is not shown

0

1

This is DDataSelect

DDataMux

0 1

READ READMISS READMEM

Dstrobe && DRW /

!Match || !Valid / nreadmiss++

/ WCSLoadValue = READ_WAITCYCLES-1

!WSCSig/

WSCSig/

Cache Control
State Machine

IDLE

READDATA

WRITEHIT

WRITEDATA

!Dstrobe /

Dstrobe && !DRW /

Match && Valid/

WSCSig/

Match && Valid /
/

WRITE

WRITEMISS

WRITEHIT

WRITEMEM

!Match || !Valid /

/ WCSLoadVal =
WRITE_WAITCYCLES -2;

!WSCSig/

WSCSig/

/nwritemiss++

/nwritehits++

3

Cache Controller--States
• IDLE: no memory access underway
• READ: Read access initiated by driver; Cache is checked

during this state. If hit, access is satisfied from cache during
this cycle and control returns to IDLE state at next transition.
If miss transition to READMISS state to initiate mainIf miss, transition to READMISS state to initiate main
memory access

• READMISS: Initiate memory access following a read miss.
Wait state counter is loaded to time the wait for completion
of the main memory access. Transition to READMEM
State.

• READMEM: Main memory read in progress. Remain in this
state until wait state counter expires then transition tostate until wait state counter expires then transition to
READDATA state. (Main memory read requires
READ_WAITCYCLES cycles to complete)

• READDATA: Data available from main memory read. Write
this data into the cache line and use it to satisfy the original
processor (driver) read request

• WRITE: Write access initiated by Driver. If cache is hit, transition to
WRITEHIT state. If miss, transition to WRITEMISS state.

• WRITEHIT: Cache has been hit on a write operation. Complete write to
cache and initiate write-through to main memory. Load wait state counter to

Cache Controller States--Continued

g y
time main memory access waiting period. Transition to WRITEMEM state.

• WRITEMISS: Cache has been missed on a write operation. Write to cache
(cache load) and initiate write-through to main memory Load wait state
timer to time main memory waiting period

• WRITEMEM: Main memory write in progress. Wait for expiration of wait
state counter, then transition to WRITEDATA state.

• WRITEDATA: Last Cycle of Main memory write. Assert Ready signal toWRITEDATA: Last Cycle of Main memory write. Assert Ready signal to
Driver to indicate completion of write.

4

Cache Control—Signals Asserted
• IDLE: none

• READ: DReadyEnable, DDataOE, Hit (if read hit)

• READMISS: Miss, WSCLoad, MStrobe, MRW, DDataOE

• READMEM: MRW, DDataOE

READDATA R d W it MRW C h D t S l t DD t S l t• READDATA: Ready, Write, MRW, CacheDataSelect, DDataSelect,
DDataOE

• WRITE: DReadyEnable

• WRITEHIT: Hit, WSCLoad, Write, MStrobe, CacheDataSelect,
DDataSelect, MDataOE

• WRITEMISS: Miss, WSCLoad, Write, MStrobe, MDataOE

• WRITEMEM: MDataOE

• WRITEDATA: Ready, CacheDataSelect, DDtataSelect, MDataOE

Note: Signals Hit and Miss are not shown on the diagrams or used in the
implementation of the direct mapped cache. You may use these signals if
You find them helpful.

Note: Signals shown in blue appear to be “don’t cares”—i.e. their assertion
during the indicated cycle has no effect.

Explanation of the DReady Signal

• In module CacheControl, the output
DReady is controlled by a “continuous

i t” f th fassignment” of the form:

wire DReady = (DReadyEnable && Match && Valid && DRW) || Ready;

• This is equivalent to:

DReadyEnable

AND

y

Match

Valid

DRW
Ready

OR DReady

5

Increasing the Cache Line Size
• The assignment requires you to increase

the cache line size from one word to twothe cache line size from one word to two
words.

• The memory bus width will remain one
word wide
– So two memory reads will be required for

h l d f ll i d icache loads following a read miss

– For a cache load following a write miss, only
one memory read will be required. WHY??

Some Additional Pointers
• You should not need to mess with the driver

module (driver1.v)

Yo sho ld not need to mess ith (or e en• You should not need to mess with (or even
understand the internals of) the main memory
module (hashmem.v)

• You will need to modify the cache controller
(control.v).

Be certain that you thoroughly understand the finite– Be certain that you thoroughly understand the finite-
state machine that it implements before you start
messing with it.

– You should not need to add any new inputs or outputs
to the FSM, but may do so if you desire

6

READ READMISS READMEM1 READDATA1

Dstrobe && DRW /

!Match || !Valid / nreadmiss++

/ WCSLoadValue = READ_WAITCYCLES-1

!WSCSig/

WSCSig/

Modified
Cache Control
State Machine

IDLE

WRITEHIT

!Dstrobe /

Dstrobe && !DRW /

Match && Valid/

Match && Valid /
/

READMEM2READDATA2

(write
miss
path)

(write hit path)

WRITE

WRITEMISS

WRITEHIT
WRITEDATA

WRITEMEM

!Match || !Valid /

/ WCSLoadVal =
WRITE_WAITCYCLES -2;

!WSCSig/

WSCSig/

/nwritemiss++

/nwritehits++

Note: This is for conceptual purposes only. Additional states may be needed to differentiate paths

