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Abstract—A model-based method for three-dimensional image therefore qualitatively. The ability to quantitatively analyze the
segmentation was developed and its performance assessed imcquired image data is still not sufficiently available in routine
segmentation of volumetric cardiac magnetic resonance (MR) gjinical care. Large amounts of acquired data are not fully uti-
images and echocardiographic temporal image sequences. Com-l. db f the tedi d ti - h t f
prehensive design of a three-dimensional (3-D) active appearance Ized because o e_ e_ I0US and time-consuming ¢ _arac _er 0
model (AAM) is reported for the first time as an involved extension Manual analyses. This is even more so when three-dimensional
of the AAM framework introduced by Cootes et al. The model's image data need to be processed and analyzed. Image segmen-
behavior is learned from manually traced segmentation examples tation is a prerequisite to quantitative analysis, and thus devel-

during an automated training stage. Information about shape ,inq methods for highly automated three-dimensional cardiac
and image appearance of the cardiac structures is contained in a .

single model. This ensures a spatially and/or temporally consistent IM2g€ segmentation is of primary importance.
segmentation of three-dimensional cardiac images. There are three main reasons why existing methods fre-

The clinical potential of the 3-D AAM is demonstrated in quently exhibit lower the success rate in comparison with
short-axis cardiac MR images and four-chamber echocardio- hyman expert observers, especially when applied to clinical-

graphic sequences. The method’s performance was assessed b P . ayicti ; -
comparison with manually identified independent standards in }ﬁuallty Images: existing methods do not incorporate a sufficient

56 clinical MR and 64 clinical echo image sequences. The AAM @mount of a priori knowledge about the segmentation problem;
method showed good agreement with the independent standard do not consider three-dimensional or temporal context as an in-
using quantitative indexes of border positioning errors, endo- tegral part of their functionality; and position the segmentation
o o e o o EOUnCeries t ocatons of the songest local mage featres
mass correlation co;affiF::ients between ‘manual and AAM were not considering true anatpmlgal boundary Ipcatlons.
R? = 0.94,0.97,0.82, respectively. For echocardiographic A humber of 3-D medical image analysis approaches have
analysis, the area correlation wasR? = 0.79. The AAM method  occurred recently, many of them addressing one or more of the
shows high promise for successful application to MR and echocar- above-mentioned shortcomings of available segmentation tech-
diographic image analysis in a clinical setting. niques. A detailed review of existing 3-D cardiac modeling ap-
Index Terms—Active appearance model, active shape model, proaches is provided in [1]. In the context of our work and con-
ﬁiﬂeﬁgsiﬁgﬁfenfﬁffgné ::;og;rdlographuc image analysis, mag-giqering the goal of segmenting three-dimensional volumetric
ysis. and temporal cardiac images and image sequences, statistical
modeling of 3-D shape and 3-D image properties is crucial.
|. INTRODUCTION Vemuri et al. concentrated on a 3-D model that combines de-

ARDIOVASCULAR disease is the number one cause dfrmed superquadric primitives with a local displacement field

death in the Western world. Cardiac imaging is an estaﬁ)_fpressed on an orthonormal wavelet basis [2]. As a resu.It of
lished approach to diagnosing cardiovascular disease and piiy orthonormal basis, the shape parameters become physically
an important role in its interventional treatment. Three-dimeffl®aningful, and thus a preferred shape can be imposed based
sional (3-D) imaging of the heart and the cardiovascular syst&tj Parameter distributions in a set of training samples. Simi-
is now possible with X-ray computed tomography, magnetl@rly' Staibet aI_.deveIoped gthree—d|men3|onal baIIoon_modeI_
resonance (MR), positron emission tomography, single photBﬂ- The modelis pgrgmeterlzed on gn orthopqrmal Fourler.b{:lss
emission tomography, and ultrasound, to name just the maich that the stat|§t|cs _of the Fourier Coeﬁ|C|§qts ina training
imaging modalities. While cardiac imaging capabilities are g&et allow a constrained image search. Model fitting in these two

veloping rapidly, the images are mostly analyzed visually, afgethods is performed by balancing an internal energy term with
an external, gradient-derived scalar field.

, . . o Cootes and Taylor developed a statistical point distribution
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the point distribution model ideas, Kelemenal. built a statis- II. METHODS
tical model of three-dimensional shapes using parametric SWYI-
face representations [8]. Similar to PDMs, shape and gray-level =~ R _ _
information in the boundary vicinity was incorporated in the Point distribution models describe populations of shapes
model. The method's performance was demonstrated on 3BNg statistics of sets of corresponding landmarks of the
segmentation of neuroanatomical structures. A multiscale 339ape instances [4], [5], [18]. By aligniny shape samples
shape modeling approach called M-reps was developed by Piggnsisting of: landmark points) and applying a principal com-

et al.[9]. M-reps support a coarse-to-fine hierarchy and modBpnent analysis (PCA) on the sample distribution, any sample
shape variations via probabilistically described boundary po-Within the distribution can be expressed as an average shape
tions with width- and scale-proportional tolerances. Three-dfWith & linear combination of eigenvectaFssuperimposed
mensional echocardiographic image segmentation using core x = X + Pb. (1)
atoms was reported by Stetten [10]. Davatzi&bal. presented a

deformable model in which geometric information is embedddf two-dimensional modelg, = min(2n, N' — 1) eigenvectors

via a set of affine-invariant attribute vectors; these vectors chdr-form the principal basis functions, while in a three-dimen-
acterize the geometric structure around a model point fronsi@nal modelp = min(3n, N — 1) eigenvectors are formed.
local to a global scale, forming an adaptive focus deformabfEhe minimum operator is needed since we frequently have
statistical shape model [11]. The methodology was applied fPre corresponding shape points than training set samples.) In
segmentation of neuroanatomical structures. both cases, the corresponding eigenvalues provide a measure for

In all the above-referenced approaches, the models primagmPactness of the distribution along each axis. By selecting
hold information about shape and its allowed variations. THEe largesy eigenvalues, the number of eigenvectors can be re-
information about image appearance is only considered in cl¢&4ed, where a proportioh of the total variance is described
proximity to the object borders. A powerful, model-driversUch that
segmentation technique called active appearance model (AAM) E P
was recently introduced by Cootes al. [12]-[14]. An AAM Z Ai 2 k - Total where Total= Z Ai- @)
describes the image appearance and the shape of an objectin a =1 =t
set of examples as a statistical shape-appearance model. AAMs , , i
can be applied to image segmentation by minimizing tte REPresenting Shape of 3-D Cardiac Ventricles
difference between the model and an image along statisticallyExtending the two-dimensional PDM to three dimensions is
plausible shape/intensity variations (analysis by synthesig)nontrivial task. To create a compact and specific model, point
AAMs have shown to be highly robust in the segmentation ebrrespondences between shapes are required. Even if land-
routinely acquired single-phase single-slice cardiac MR [1B)ark points are easily identifiable in both models, specifying
and echo images [16], because they exploit prior knowledgeiquely corresponding boundary points in between these land-
about the cardiac shape, image appearance, and obsemerks is difficult in 3-D. In a 2-D case [15], boundary points
preference in a generic way. For a detailed background oray be identified by evenly sampling points on a boundary
AAMs and their application to image segmentation, the read&pm one landmark to the next. In a 3-D case, the problem lies
is referred to [13]. in defining a unique sampling of the object surfaces.

Until now, AAMs have only been applied to 2-D images For the purpose of ventricular segmentation, a normalized
and to normalized (fixed-phase) 2-D time sequences [15]-[1}lindrical coordinate system is defined with its primary axis
Two-dimensional active appearance motion models [16], [1&ligned with the long axis of the heart and the secondary axis
have demonstrated the ability of time-continuous segmentatiaggned with the posterior junction of the right and left ventricles
by exploiting temporal coherency in the data. However, theliethe basal slice. The cardiac ventricles resemble a cylindrical
2-D + time AAMSs do not represent a true 3-D approach. Thefir paraboloid shape. First, contours are sampled slice-by-slice
segmentation ability is limited to cases with fixed numbers @t even angle increments. To transform the rings in the nor-
preselected frames; they rely on a priori knowledge of imag@alized cylindrical coordinate system, each point on the ring is
frame correspondences within each cardiac cycle. connected by a straight line to the next adjacent corresponding

The primary contribution of this paper is the development ¢¥oint on the rings above and below. Starting from the apex slice
a fully three-dimensional active appearance model (3-D AAMY the basal slice, a fixed number of slicing planes are placed
that requires no additional interactively supplied informatiorgvenly along the long axis. New points are interpolated where
A demonstration of its segmentation performance in volumeti@de planes intersect the lines. This yields a set of corresponding
or temporal image segmentation of cardiac structures is giveaundary points for each sampled left ventricle across the pop-
below. No 3-D AAM has been reported to date that is capable @gtion of ventricles (Fig. 1).
successful segmentation of cardiac MR and echocardiographic , ) ) o
images. The model’s behavior is learned from manually tracéd Three-Dimensional Point Distribution Models
segmentation examples during an automated training stage. Thaligning shape samples to a common scale, rotation, and
shape and image appearance of the cardiac structures are tramslation is important for a compact model to be generated
tained in a single model. This ensures a spatially and/or teduring the PCA stage. Procrustes analysis [19], [20] is used,
porally consistent segmentation of three-dimensional cardiatiereby an arbitrary shape is selected as the initial average
images. shape estimate. All the other shapes are aligned to this average

Point Distribution Model Concept



MITCHELL et al: 3-D ACTIVE APPEARANCE MODELS 1169

Base | Base D. Modeling Volume Appearance

The first part of creating an appearance model of volume is to
warp all the sample volumes to the average shape to eliminate
shape variation and bring voxel-wise correspondence across all
the training samples, such that the voxel intensities can be rep-
resented as a shape-free vector of intensity values. Warping an
imagelI to a new imagd’ involves creating a function that
maps control pointg; to x; as well as the intermediate points
o N in between. For the 2-D case, either piecewise affine warping

Apex Apex or thin-plate spline warping is adequate. In our models, piece-
Fig. 1. A cross-sectional depiction of transforming a cardiac MR stack witffiS€ warping is preferred because it is significantly faster than
manually placed landmarks to a normalized cylindrical coordinate system. thin-plate spline warping.
In 2-D piecewise affine warping, landmark points are used to

using a least squares minimization. A new average is compuf@fstruct the shape area as a set of triangles. The well-known
by a simple mean across the corresponding points, and theRg/aunay triangulation algorithm is suitable for computing
gorithm repeats until convergence. such atriangular mesh and can be found in many computational

For the 2-D case, aligning one shape to another can be solgg@metry references. Individual triangular patches are locally
analytically by minimizing scale, rotation, and translation term@arped using barycentric coordinates. Given a triangle with
Extending to 3-D, the minimization of scaling, translations, arffe three corners;, x, andxs, we can represent any point
rotation differences along the three axes may lead to singular-within the triangle asx = ax; + f#x2 + yx3, where
ities known as gimbal lock. Assuming that 3-D translation i3 = 1 — (o + ) anda + 3 + v = 0. In order for a poini to
represented by a separate translation vettar quaterniory fall inside a trianglep) < «, 3, v < 1 must be true.
representation of scaling and rotation avoids such behavior [21] Piecewise affine warping is implemented as follows.

A quaterniony is defined as the linear combination of a scalar For each pixel locatiog’ in I':
termgo > 0 and three right-handed orthonormal vectdrg( 1) Find the triangle’ that contains<’ by solvinga, 3, and
andk) ~ for each triangle and finding the triangle wherec o,

L By < L
9= qo+qui+g2j + gsk. 3) 2) Find the equivalent pixel location by computingx =

axy + xs + yx3, wherexy, x5, andxs are the triangle
points from the original image.

The magnitude of the quaternion is defined as

]2 2 2 2 3) Copy the pixel value i located byx into the warped
lal = \/qo ot @ imagel’ located atx’. Some form of pixel interpolation
and any unit length quaternion can be written as such as bilinear may be used at this stage.
. In our 3-D models, piecewise affine warping is extended to
q = cos(p) - u+sin(p) -u (3)  tetrahedrons with four corness;, x», x3, andx. Any point

whereu is a unit vector angh represents a rotational twist along/Vithin the tetrahedron is represented@s ax; + fx2+7x3+
the unit vector. Thus, any scaling and rotation in 3-D can ¥&s4- In a general case, creating a tetrahedral representation of
expressed as a quaternion, where scaling is expressed byVflgme is solved using a 3-D Delaunay triangulation algorithm.
magnitude of the quaternion and the 3-D rotation is expressediigwever, due to the cylindrical nature of the left ventricular
the direction of the unit vectar and rotationp. The Cartesian (LV) shape, a manually defined volume partitioning in regular
rotation matrix is shown in (6) at the bottom of the page. tetrahedrons was utilized. Each slice level is constructed of pie-
Together, the position and orientation of a 3-D obshaped wedges built on four tetrahedrons with exterior profile
ject can be represented as a seven-element pose vegtdes built with five tetrahedrons. Piecewise affine warping is
(alt) = [90, 91,2, g3, ti, tj, tic]. implemented in a similar fashion as in the 2-D case. Because
The alignment of two 3-D shape instances is accomplishall volumes are warped to the average volume, barycentric co-
using a well-known procedure given by Beslal.[22] to op- ordinatesy, 3,, 6 are precomputed for each fixed voxel point,
timize for q andt. Aligning all the shapes is a matter of em-eliminating the time-consuming process of searching for the en-
ploying the Procrustes analysis using Besl's procedure to calelesing tetrahedron for each voxel point during the matching.
late the pose parameters. Once shape alignment is finished, pfine to the regular geometry of the tetrahedrons in our volume
cipal component analysis is applied to the 3-D models in a wagrtitioning, the barycentric coordinate computation did not be-
that is no different from the conventional 2-D application [5]. come ill-posed.

@+a—a—a  2(q192 — q043) 2(q1q3 + qog2)
R=| 2lqez+qew) @+6-G-3 2(0e—qon) (6)
2(q1q3 — qoq2) 2(qqs +901) @B+aG-—di— ¢
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After the warping phase, the shape-free intensity vectors areGradient descent optimization requires the partial derivatives
normalized to an average intensity of zero and an average vaifithe error function defined by the intensity of the target and
ance of one to remove the effects of brightness and contrast vayinthesized model volume. While it is not possible to create
ations across scans. Next, PCA is applied to the shape-freesneh a function analytically, these derivatives may be approx-
tensity vectors to create an intensity model. In agreement withated using fixed matrices computed by randomly perturbing
the AAM principle, shape information and intensity informamodel coefficients for a set of known training images and ob-
tion are combined into a single active appearance model. Lasigyving the resulting difference in error images [23]. Using a
another PCA is applied to the coefficients of the shape and set of training images, their corresponding modeling parame-
tensity models to form a combined appearance model [23]. tersc, t, q, andh are randomly displaced, thus creating a dif-

In the equations below, the subscriptorresponds to shapeference betweeg, andg,,. From the parameter displacements
parameters and the subscriptepresents intensity (gray-level)and the resulting difference intensity vectors, gradient approx-
parameters. To summarize, the 3-D AAM is created as followisnating matrices4., A, A,, andA; can be determined using
1) Letx; denote a vector of 3-D landmark points for a givefieduced-rank multivariate linear regression. Alternatively, the

samplei. Compute a 3-D PDM and approximate each shajgéadient matrices may be built one column at a time by aver-
sample as a linear combination of eigenvectors, where ~ aging the Gaussian weighted differences between the target and
PT(x — X) represents the sample shape parameters. synthesized image of each individual model perturbation. The
2) Warp each image to the mean shape using a warping slfter method is preferred for 3-D AAM matching due to lower
as piecewise affine or thin plate spline warping to creatéeémory requirements, better representation of high order eigen-
shape-free intensity vectors. modes, and faster computation. This iterative refinement tech-
3) Normalize each intensity vector, applying a global intensifj§ique of precomputed fixed matrices versus brute-force gradient
transform with parametets;, to match the average intensitydescent optimization was formulated by Cootes [13] as well as
Vectorg. by Baker and Matthews [24]. Formally, the gradient matrices
4) Perform a PCA on the normalized intensity images. are created as follows.
5) Express each intensity sample as a linear combination af) Select an object from the training set with known appear-
eigenvectors, whefle, = PgT(g—g) represents the sample ance model parametets, to, qo, andhg.

shape parameters. 2) For each element in the model parameters,, q, or h,
6) Concatenate the shape vectbrsand gray-level intensity perturb a single element by a fixég with the rest oféc,
vectorsb, in the following manner: 0t, 6q, anddh assigned to zero. Typically, is perturbed
Tio - within +1.5 standard deviatiom,by 3-5 voxels, and;, h
b= (w{)m) = <W;% (x _X)> @) by 10% of their original value.
g s (8-8) 3) Letc = §c + co. Compute shape and textures,,,.

where the weighting matri¥ is a diagonal matrix relating 4) Apply an affine transformation te by first transformingk

the different units of shape and intensity coefficients. usingst andéq, then transforming the result by andqo.
7) Apply a PCA to the sample set of &llvectors, yielding the This cascaded transform is required to maintain linearity.
appearance model 5) Create the image patgh warped from the target image to
the mean shape using shape
b = Qc. (8)  6) Apply global intensity scaling tg, by usingsh first and

then scaling the result by,.
) 7) Computedg = gs — Zm.-

E. Matching 3-D AAM to Image Data 8; Comgute tghe sgl;opé,sg = 6g/ép. Weight the slope by a
Matching an appearance model to image data involves mini- normalized Gaussian function with tHe8 standard devia-
mizing the root mean square (rms) intensity difference between tion set to the maximum and minimum model perturbation

the image data and appearance model instance by modifying values.
the affine transformation, global intensity parameters, an®) Accumulate the slope with previous slopes for that given
appearance coefficients. A gradient descent method is used that element.
employs the relation between model coefficient changes amd) Go to Step 2) and repeat until all elements and perturba-
changes in the voxel intensity difference between the target tions of each element are sufficiently covered. Place the
image and synthesized model [23]. This relation is derived average slope into the appropriate column in the gradient
during a training stage. matricesA., A;, Aq, OF Ap,.

Let t andq represent the translation and quaternion trang1) Go to Step 1) and repeat until there is sufficient coverage
formation parameters andthe intensity transform parameters. of displacement vectors.
As shown above, shapeis derived in the targetimage fromthe  The corresponding model correction steps are computed as
appearance coefficiert and the affine transformation vectors
t andq. Then, shape intensity vectgt is sampled from the Sc =A.(g

s — 8m (9)
target volume data after warping the space defined Iy the _ )

(
ot :At (gs

mean shap&. The model intensity vectas,, is derived from gm) (10)
the appearance coefficientsvith the global intensity corrected 6q =Ay(gs — 8m) (11)
via h. The error function® is the rms difference ofs — g,,. dh =An(gs — 8m)- (12)
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Matching the AAM to the image data is accomplished as fol-
lows.

1) Place the mean appearance modgh(= 0; t, q defined by
the initial model position) roughly on the object of interest
and compute the difference image — g,,..

2) Compute the rms error of the difference imdge

3) Compute the model correctiobs, 6t, 6q, anddéh from the
difference image [(9)—(12)].

4) Setk = 1.

5) Compute new model parameters@s= ¢ — kéc, t :=
t — két, q := q — kéq, andh := h — kéh. . Fig. 2. A wireframe representation of the mean LV shape in the normalized

6) Based on these new parameters, recomguites,,, and find  cyiindrical coordinate system.
the rms error.

7) Ifthe rms error is less thah, accept these parameters and Training Using Leave-One-Out Approacifo maximize
go to Step 2). the effective size of the training set, validation was performed
8) Else try settingt to 1.5, 0.5, 0.25, 0.125, etc., and go tQising a leave-one-out approach [25]. AAM models were trained
Step 5. Repeat steps 5-8 until the error cannot be reduegfimage and contour data from 55 subjects, and the model
any further. matching performance was subsequently evaluated on the one
left-out data set. The training process was repeated 56 times,
Ill. CASE STUDIES always leaving out a different data set, which was then used

To investiaate the clinical potential of the reported 3-D activfor validation. The model voxel size varied from one data set
9 P P another, but in general with 338 subsampling, the model

appearance model under clinically realistic conditions, AAM& cupied approximately 6000 voxels and required about 1 h of

yvere.trained an_d tested_iq two substa_ntially .different m_edict? ining and 2—3 min for matching on a 1-GHz Windows PC.
imaging modalities: multislice short-{ms CaI‘FiIE?.C magnetic res'Matching Procedure:In midventricular short-axis MR im-
onance and four-chamber e.chocar(.jlog'rapmc 'mage sequengsgS, the left ventricle can usually be identified as an approxi-
V\I_h|le_ the overall approach IS identical in the tW_O re_ported a nately circular object [Fig. 3(a)]. This fact is used for automated
p!|cat|on areas, some modaht_y- as well as application-speci lfitialization of the 3-D AAM. A previously validated Hough
differences exist and are provided as follows. transform-based method determines a 2-D centroid of the LV
. long axis for each MR image slice [26]. A 3-D centroid of a
A. Cardiac MRI line segment fitted through the 2-D centroids of individual MR
Data: Cardiac MR image sequences were collected from 3ces defines the initial position of the 3-D AAM.
normal subjects and 18 patients, yielding a total of 56 short-axisTo make the 3-D segmentation procedure completely inde-
3-D cardiac MR data sets. Patients were selected who weendent from any user interaction regarding the rotation and
suffering from different common cardiac pathologies (amorggale of the heart in the short-axis plane, the matching process
others, different types of myocardial infarction, hypertrophiwas repeatedly performed for a range of five orientations and
cardiomyopathy, arrhythmia). Images were acquired using stainree scales. This multiple initialization is important because
dard electrocardiography (ECG) gated fast field echo MR pulgAM matching may be dependent on initial positioning since
sequences on a Philips Gyroscan NT 15 scanner. Slices wereggadient descent may contain local minima. The matching re-
quiredin a per-slice manner, under breathhold in end-expiraticult yielding the smallest quadratic intensity error was selected
End-diastolic images were used in this study. Image resolutiaa the final match. The matching procedure resulted in a set of
was 256x 256 pixels, with a field of view of 400—450 mm andendo- and epicardial contours for each volumetric MR image.
slice thickness of 8—11 mm. Between eight and 14 slices wereQuantitative Validation: To exclude obvious matching er-
scanned to at least cover the entire left ventricle, dependingrans from further quantitative analyses, matching results were
LV dimensions and slice spacing. visually evaluated. A matching result was scored as acceptable
Independent StandardThe left ventricular endocardiumwhen the ENDO and EPI contours in the majority of slices
and epicardium were manually traced by an expert obsengowed good agreement with the image data. The number of un-
who was blinded to the results of the computer analysiacceptable results yielding matching failures is reported. Studies
Following common practice in clinical quantitative cardiac MRvith a poorly localized apex but with correctly localized mid-
analysis, endocardial (ENDO) contours were drawn behind thentricular segments were graded as acceptable. In some cases,
papillary muscles and trabeculae, and epicardial (EPI) contotine 3-D model did not deploy far enough to span over all the
were drawn on the inside of the epicardial fat layer. The apicslices for which manual contours were available. Then, manual
slice was defined as the last slice with both ENDO and ERBbntours were present in extreme apical or basal slices but no
contours visible. Apex slices with merely a small visibleutomatic contours were identified there. Such segmentations
muscle cap were excluded. In each slice, a reference paidre not excluded, and the numbers of slices missed by the
was manually placed at the posterior junction of the left allAM method are reported below.
right ventricular walls to define point correspondence betweenTo quantitatively assess the performance of the 3-D AAM ap-
different samples as required during the AAM training. proach, surface positioning errors were determined comparing

Base

Apex
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(b)

Fig. 3. Example cardiac MR images used for validation. (a) LV segmentation was performed in volumetric images consisting of 8-12 full-size MiRemages |
the one shown here. (b) Subimages depicting LV detail in all nine images of this volumetric data set. See Fig. 4 for the segmentation results.

Fig.4. Segmentation results in testing-set image data. (a) Manually identified contours forming an independent standard. (b) Three-diibhdeinaiined
segmentation of the left ventricle. The 3-D AAM segmentation was performed in full-size image volumes; see Fig. 3.

the automatically detected endo- and epicardial surfaces withThree clinically important measures were calculated and used
the independent standard. The average signed and unsignedfsumperformance assessment: LV cavity volume, LV epicardial
face positioning errors were defined by measuring the distaneetume, and LV myocardial mass. The volumetric indexes were
between points along rays perpendicular to the centerline laetermined using all slices for which both manually traced con-
tween the respective manual contours and the computer-detewrs and computer-determined surfaces were available and were
mined surfaces; 100 rays were used for each contour. Surfaggressed in ci The LV mass measurements are reportegd in
positioning errors are expressed in millimeters as meatan- Regression analysis was used to compare the computer mea-
dard deviation. A negative sign of the signed error value measisrements with the independent standard.

that the automatically determined surface was inside of the ob-Results: Fig. 4 shows an example of an automatically ana-
server-defined surface. lyzed volumetric MR data set. Fig. 5 demonstrates several stages
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(b)

(d)

Fig. 5. 3-D AAM matching process. (a) The initial position of the model in the volumetric data set. (b), (c) Stages during the iterative model matelsisg p
(d) The final match. Note the color coding of all frames and the coordinate axes. The color-coded straight lines show position of frames in thewttirey two
planes.

of the model matching process, starting with the initial modshowing a slightly negative border detection bias. The mean
position and ending with the final fit. The leave-one-out validainsigned positioning errors were 2.5 0.86 mm for the
tion yielded 56 fully automatically detected 3-D segmentatiogndocardial contours and 2.630.76 mm for the epicardium,
results depicting endocardial and epicardial surfaces—with démonstrating small absolute differences from the independent
testing surfaces being fully disjoint from the training sets. In 5&andard (voxel sizes ranged from 1:68.56x 8 mm to

out of 56 cases, the matching procedure resulted in an accepf6x 1.76x 11 mm). Fig. 6 shows a very good correlation of
able match. Inthree cases (two patients and one normal subjegig, manually identified and 3-D AAM-determined LV endo-
the matching diverged from a plausible solution because it wagd epicardial volumes as well as correlation of computer-de-

attracted by a neighboring structure. These three cases wereg¥nined LV wall mass with the independent standard.
cluded from further quantitative analyses.

In the 53 volumetric MR images, manually identified con- Echocardiography
tours were available in 391 MR slices. As mentioned above, the
3-D model sometimes does not fully deploy in the longitudinal The 3-D AAM segmentation was also applied to endocar-
direction to cover the apical or basal slices. In 28 of 53 dathal border detection in echocardiographic ultrasound image
sets, computer-determined contours were present in all slisegjuences. In these temporal sequences, the third dimension
for which manual contours were available. In 18 data sets, compresents time. Spatial 2-D coordinates were converted from
puter-determined contours were missing in one MR slice (apigaikels into millimeters by applying the image calibration
or basal), and in seven data sets, two MR slices with missifagtor. A consistent 3-D set is formed by converting the time
contours were present. Overall, the 3-D AAM identified cordimension (s) into a spatial dimension (mm) using a fixed ratio
tours in 359 of 391 MR slices, or in 96.2% of all cases in whic{ispeed” of 40 mm/s). This ratio was chosen to obtain similar
manual contours were deemed identifiable. The 359 slices wsiees of the 3-D object in all three dimensions. A consistent
used for quantitative validation. 3-D voxel space is obtained in which the shape and appearance

Mean signed endo- and epicardial surface positioning errafthe heart over a full cardiac cycle can be modeled as a
were —0.46 + 1.33 mm and-0.29+ 1.16 mm, respectively, 3-D object. A 3-D AAM for this object was applied to image
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Fig. 6. Comparison of observer-defined and computer-determined LV measurements in 53 volumetric MR images used for validation. (a) Endaeexdial vol
(b) Epicardial volume. (c) Myocardial mass.

specifically for this shape. The actual image volume was sam-
pled sparsely (factor 5-7) after appropriate Gaussian filtering to
limit the dimension of the intensity vector to a practical size of a
few thousand voxels. The 3-D AAM provides time-continuous
segmentation for one complete cardiac cycle, located automat-
ically in both time and space. An ultrasound-specific initializa-
tion procedure was followed, in which the model was allowed
ﬂfV to iterate from 25 different initializations (five 3-D size factors

ranging between 0.9 and 1.3 compared to the average size and
! , , o five temporal positions along the time axis). The matching re-
Fig. 7. Motion of the left ventricular endocardium in ultrasound four-chamber . L . .
cross-section represented as a 3-D object. Time axis from bottom left to I%Hlt with the lowest quadratic intensity error was considered the
right. best match.

Data: To allow comparison of 3-D AAM results with the
sequences extending over three cardiac cycles. This approadh + time AAM approach, the method was tested on the
allows fully automated detection of time-continuous contougame data set [16]. Sets of transthoracic echocardiographic
in time sequences of arbitrary length without knowledge of entbur-chamber sequences were acquired at 25 frames/s from 129
diastolic (ED) and end-systolic (ES) time points. The modginselected infarct patients participating in a clinical trial. These
adjusts itself in both time and space and locates a compliétere single-beat (end-diastole to end-diastole) sequences with
cardiac cycle automatically. This is an important differenck5—33 image frames per heartbeat artificially extended to three
from the previously reported 2-B time AAM approach [16]. cardiac cycles as described above. Images were digitized at a

In a training set, corresponding shape points on the endog#@solution of 768« 576 pixels with different calibration factors
dial contour are defined for each frame of one complete cardiés28 to 0.47 mm/pixel). The total data set was split randomly
cycle (ED to ED) based on expert-drawn contours. Point corriéto a training set of 65 patients and a testing set of 64 patients.
spondence in the third (time) dimension is defined by using tié&e model voxel size varied from one data set to another,
relative cardiac phase of each image. The relative cardiac phlge in general with 8 subsampling the model occupied
of each image is modeled as a value between zero and two, @eproximately 7000 voxels, required about 1 h of training and
fined for systolic frames as the frame’s relative position betwe@s3 min for matching on a 1-GHz Windows PC. The larger
ED and ES (range 0—1) and for diastolic frames as its relative gs#sampling of the echocardiographic model reduced the voxel
sition between ES and following ED incremented by one (rangé&ze and complexity to approximately the same as the MR
1-2). For each training case, 17 time slices with equidistamodel, resulting in similar training and matching times.
relative phase (starting and ending with ED) are identified by Independent Standardtn all sequences, an expert observer
nearest neighbor interpolation. Of these frames, the 2-D shapgo was blinded to the computer analysis results manually out-
point coordinates are extended to 3-D spatial coordinates lisyed the contours of the endocardium in all frames of the image
multiplying the frame’s time by the speed ratio. The resultingequences. To compare the performance of 3-D AAMs with
3-D shape is represented as a surface of 3-D points (Fig. at of human experts, inter- and intraobserver variabilities of
The image appearance of the heart is modeled as a vectormanual contour tracing were determined in a subset of 19 ran-
voxel intensity values in an image volume patch spanned by ttiemly chosen image sequences. Manual contour definition was
manual contour surface, extended equally in all directions. Paitidependently repeated by the same expert observer and by an-
tioning of the image volume into regular tetrahedrons was codether expert observer.
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Fig. 8. Example of the 3-D AAM matching process in an ultrasound time sequence. The position of the model within the 3-D image data is shown in red. The
independent standard is shown in green. Top row gives the initial positioning of the 3-D AAM; bottom row provides its final match. The left thregppeset

image information along three perpendicular planes cutting through the three-dimensional data set. The leftmost column provides an imagéewigiurath

plane; the two middle columns depict image data along the horizontal and vertical cutting planes. Note the color-coding of all frames and tteesoasditee
color-coded straight lines show position of this frame in the other two cutting planes. In the rightmost panel, a 3-D rendering of model and insteypeiaden

is shown.

Quantitative Validation: To compare the automatically de-
tected contours with the observer-identified independent stan- o
dard, the number of segmentation failures was determined. Fail- 40
ures were identified as segmentations in which the 3-D AAM-
defined borders did not agree well with the independent stan-
dard (average unsigned spatial distance compon&r mm).

In the successfully segmented images, unsigned three-dimen-
sional endocardial border positioning errors were defined as
unsigned distances between matched model points and image-
based 3-D shape points extracted for the testing-set images in a
same manner as the training-set shape points. These distances 10
were calculated in 3-D and also split into spatial) and tem- Manual

poral (Z) co_mponents,_vyhere the ter_nporgl component can P@ 9. Comparison of observer-defined and computer-determined LV
expressed in mm or milliseconds by inverting the “speed” coBndocardial areas in all time slices of the 57 echocardiographic four-chamber
version specified above. Furthermore, endocardial areas wagguences (969 images) used for validation.

determined for all time slices; regression analysis was used to

compare the computer-determined areas with the independent IV. DiscussION

standard. A method for three-dimensional segmentation of medical im-

Results: In 57 of the 64 tested echocardiographic imaggges has been presented and its performance demonstrated in
sequences (success rate 89%), the 3-D AAM-defined bordex® cardiac image analysis applications. The method allows
agreed well with the independent standard. An example of thely automated segmentation of volumetric or temporal im-
matching procedure is given in Fig. 8. In the successful %§es. Its inherent 3-D character incorporates information con-
temporal sequences, three-dimensional absolute endocargigi in all three dimensions—a feature frequently not possible
surface positioning errors were 3.90 1.38 mm; the 2-D with previous approaches. The step leading from existing 2-D
spatial component was 3.3% 1.05 mm, which compares active appearance models to a functional 3-D AAM is not an
favorably with two-dimensionally determined (within the sameasy one. Mastering the fully 3-D behavior will facilitate the
image frame) interobserver variability of 3.82 1.44 mm. method’'s extension to analysis of three-dimensional temporal
The intraobserver variability was 2.32 0.75 mm. The result sequences, one of the ultimate goals of medical image analysis.
also compares reasonably well with the previously reportddhis discussion will focus on three areas: 1) performance of the
two-dimensional endocardial border positioning errors of 3.3&irrent method,; 2) its limitations with respect to design of 3-D
+ 1.22 mm (success rate 97%) achieved by our less genek&lMs for clinical applications; and 3) future extensions of the
2-D + time active appearance motion model implementationethodology to facilitate four-dimensional image analysis.

[16]. The temporal error of border positioning was 3Z£@9.6

ms, less than a single frame duration of 40 ms. Frame-badedPerformance of the Current Method

endocardial area regression over the 57 successful matches Ehe described method is fully automated, with no user inter-
given in Fig. 9. action. This is a significant strength in comparison to existing

y=0.83x+338

20

10 20 30 40y 50
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semiautomated approaches to cardiac segmentation that regoicealization. For the 2-Br time AAM approach in ultrasound,
almost undivided attention of the analysis operator. In additensity distributions were normalized nonlinearly to deal with
tion, the value of the matching function after the 3-D AAM’aultrasound-specific intensity properties [16]. This resulted in a
convergence can identify the situation when the model failedibstantially improved accuracy of the border localization. The
to segment the cardiac structures successfully, thus potentiagnlinear normalization improved both the systematic area un-
allowing to incorporate yet another level of automated qualiyerestimation and the slope of the area regression line. The 3-D
control. Consequently, it should be possible to identify segmeversion of this correction has not yet been developed. After its
tation successes with high confidence and then limit review mhplementation, further improvements of segmentation accu-
the results to a small number of image data sets for which treey in the echocardiographic images are expected.
possibility of imperfect segmentation is indicated. Another problem observed in the testing case studies is as-
At present, performance robustness is achieved by multigleciated with incomplete deployment of the model in the lon-
initializations; 15 initial positions of the model were used fogitudinal (z) direction in the MR studies. In 32 of 391 MR
MR segmentation and 25 different initializations for echocaslices, the contours were not determined by the 3-D AAM due
diographic data. This approach improves the results but alsot@-insufficient pulling force in the longitudinal direction, thus
creases computational demands. While the processing timeshgrecovering one of the apical or basal slices. Currently, such
quite favorable—between 2—3 min for one data setin both appiiices were excluded from quantitative assessments. Missing
cations (this includes the multiple initializations; 1-GHz Winslices may, however, substantially influence volumetric indexes
dows PC)—the number of model matching processes can @&omplete ventricles. Substantial MR slice thickness and con-
decreased by replacing brute-force multiple initializations withequently lack of detail in thedirection are the main reason. In
better positioning of the model. For example, information aboffte analyzed data sets, there is a lack of a clear “end” of the LV at
the ventricular size and orientation is available in MR data frof€ basal level. Making the 3-D AAM to cover the entire longi-
the Hough transform steps. In ultrasound, an estimate of ED dHdinal length of the cardiac ventricles requires future attention.

ES frames can be derived from ECG information or image sk addition, the apical part of the ventricle only asserts a small

quence analysis, and there are several methods for estimalf{j@nce in the volumetric matching error function, due to the
tively small volume of the apex. As a result, the matching

the size and position of ventricles automatically. No such infof€! » . .
mation is currently utilized. procedure tends to “sacrifice” apex accuracy for better mid-ven-

The border positioning errors as well as the volume and m ggular accuracy. Currently, improvements in apex boundary

measures revealed a slight but systematic bias toward smalfei lization performance_by nonunn‘ormly weighting the thrge
arts of the ventricle (apical, mid-ventricular, basal) are being

contours. The presented 3-D AAM assumes the image data to?r?\?esti ated
truly three-dimensional. However, the MR data sets are acquired 9 '
over several heartbeats as sequences of 2-D slices, not in a vglucyrrent Limitations
metric fashion. Individual slices are frequently acquired during _ . N d bet h . itical factor f
separate breath-holds. Differences in inspiration level and théj oint correspondence between shapes 1S a critical factor Tor
. . o - -D AAMs to become a general purpose method for segmen-
heart position lead to variable shifts in the LV position betweetn ; . T )
. e ation of volumetric data. Due to the limited complexity of the
slices. The effect of these shifts is threefold.

) o ) ) left ventricle shape, simple parameterization of the surface was
1) During the training of the model, unsystematic shifts arg sicient in this work. However, developing methodologies

modeled in the shape model, decreasing the sensitivitysgf creating point correspondence among a population of more

the model with respect to real shape variation. complex 3-D shape instances is an actively researched area.
2) During the matching, the match for multiple other adja- There are several solutions to developing correspondence in

cent slices is greatly disturbed by a single shifted slice.yolumetric data. One of the simplest, representing a 3-D shape
3) The border positioning and volumetric errors are affecteg a stack of 2-D contours, was used in our implementation.

by the shifted slices. Another popular method is projecting landmark points on
This may well explain a large part of the underestimation of tre spherical coordinate system, but this method is generally
reported MR volume measures. limited to single convex objects [27]. Loreret al. present a

For the ultrasound application, results were promising botethod whereby a 3-D template mesh is created from a shape
less convincing than those achieved using our previously iiestance. This template is deformed to other shape instances
ported 2-D+ time AAM approach. Area regression (Fig. 9) ovein the population providing landmark and intermediate points
the 57 successful matches exhibited a systematic area und€i2®}: Duta et al. specify an automatic construction of 2-D
timation of 3.8% { = 0.83z + 3.6, R?> = 0.79). Compared shape models by approximating shape instances to polygons
to the 2-D+ time AAM (y = 0.91z + 1.73, R?> = 0.76; area of a common number of boundary points. These polygons are
underestimation 2.9%), a slightly higher systematic area eraigned using Procrustes analysis, and the corresponding points
and a flatter regression line were observed. In part, this cande extracted from the nearest polygon vertices [29]. Although
attributed to the extra degree of freedom with which the 3-B2-D method is reported, it may be extended to 3-D models. A
AAM has to cope. The 2-B+ time AAM uses a priori knowl- framework for automated landmark identification in 2-D was
edge of the phase/time aspect. However, the non-Gaussian degorted by Hillet al.[30]. The correspondence algorithm that
tribution of intensity values in ultrasound is likely an even moreas developed with PDMs in mind locates a matching pair of
important problem. Its indication is that model localization isparse polygonal approximations by maximizing a landmark
the time dimension is much more accurate than in the spatahilarity cost function using a greedy algorithm. Extension
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to 3-D is under investigation. Guestt al. describe point accountthe temporal relationship between frames. For example,
correspondence based on sensitivity of the point being matcte technique by Jac@bal.[34] solves temporal coherency be-
to movement [31]. The driving idea is that a perturbation dfveen active shape models in echocardiograms through the use
reliable corresponding points shall not result in large displacefa Kalman filter, creating a motion model to predict the cardiac
ments. The method was used for 2-D and 3-D registration ofcle in addition to a shape model. An alternative method by
pre- and postoperative facial range scans. Keleeteh create Montagnatet al. [35] segments cylindrical echocardiographic
point correspondence by an area-preserving parameterizatinages using deformable models. Here temporal coherence is
followed by object-oriented normalization of its starting pointaccomplished by reinitializing the deformable model using the
thus yielding a continuous mapping function between simil@revious segmentation, while incorporating a 4-D anisotropic
objects in 3-D [8]. Lastly, Davi®t al. create statistical shapediffusion filter that significantly improves the spatial and tem-
representation based on minimizing the total informatigmoral information between frames.
required to encode and decode the original shape samples usinfp extend the 3-D AAM framework to 3-B- time, we pro-
information theory. This is done by creating correspondingopse to incorporate atime element into the model by phase-nor-
points via a parametric representation of each individual shapealizing objects to a common time correspondence and con-
and optimizing this function with respect to the compactnesstenating shape and texture vectors of individual phases into a
of the final shape model [32]. single shape and texture vector. Such a technique has been found

As with 2-D AAMs, another limitation of 3-D AAMs is an un- efficient in 2-D + time AAM and ASM models [16], [17], [36]
certainty of adequate covering of all pathologies in training setnd is promising as a future extension of 3-D AAMs.
Although the AAM technique demonstrated segmentation reli-
ability, there are always concerns using a model-based method
built upon a finite set of training data to correctly handle often
grossly abnormal patient data. One solution to this problem isA three-dimensional active appearance model method for
to utilize larger training sets to cover all representative patholanalysis of volumetric cardiac images and temporal image
gies. User interaction is another solution to the limitations ofsequences was presented and its performance demonstrated
finite model. Cootes proposes adding a statistical frameworkito two substantially different cardiac imaging modality case
the AAM matching technique, thereby introducing a prior termstudies. To our knowledge, this is the first report describing a
to the matching phase. Using this model, a user can intergomprehensive design of a well-validated three-dimensional
tively provide constraints to landmarks improving the accuractive appearance model-based segmentation. The model's
of the matching [33]. Another possible technique is allowingaining from manually traced segmentation examples as well
the user to interactively correct segmentation results and adagfits segmentation of previously unseen images are fully auto-
the AAM model to incorporate these corrections. Taking advamated. It carries substantial promise for successful application
tage of the inherent linearity of AAM models, it is believed thah a clinical setting.
such modifications may be used to improve the model. Lastly,
local deformations are often lost due to the overgeneralizing of
PCA given a finite number of samples in the training set. We
previously reported the hybrid AAM whereby an edge-based Ultrasound data and echocardiographic independent standard
technique such as ASM is employed simultaneously with thgere provided by F. Nijland, M.D., and O. Kamp M.D., Ph.D.,
region-based AAM. After each iteration, the shape and poggee University Hospital, Amsterdam. Data visualization sup-
results are combined using a weighted average. This methgsit was provided by J. Schaap and M. Danilouchkine. Their
was originally proposed for fully automated segmentation @bntribution is gratefully acknowledged.
2-D cardiac MR and shown to produce better results than AAM
alone [15].

To keep data size, memory requirements, and processing time
within acceptable limits, subsampling of image data was applied1] A. F. Frangi, W. J. Niessen, and M. A. Viergever, “Three-dimensional

; ; ; ; ; modeling for functional analysis of cardiac images: A revielEEE
in generating the intensity models (up to a factor of eight for Trans. Med. Imagyol. 20, pp. 225, Jan, 2001

ultrasound). Although appropriate Gaussian filtering was used,2] B. c. Vemuri and A. Radisavijevic, “Multiresolution stochastic hybrid

this may compromise the overall accuracy. Improvements in  shape models with fractal priorsACM Trans. Graph.vol. 13, pp.

n r n be ex when a multiscal r 177-207, Oct. 1994, -
speeda .d accuracy ca .be expected en amultiscale approa ] L. H. Staib and J. S. Duncan, “Model-based deformable surface finding
as described by Cootes is employed [12]. However, memory re- " o medical images,1EEE Trans. Med. Imagyvol. 15, pp. 720731,

guirements remain a concern due to the 3-D nature of the pro-  1996.

V. CONCLUSION
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