a) Say the 2 colors are black and white.
 For each vertex in G,
 if u is not colored
 Color [u] ← black ← for each start vertex of disjointed subgraph
 Q ← {u}
 While Q is not Empty
 t ← Dequeue [Q]
 for each v ∈ adj [t]
 if v is not Colored
 Color [v] = ~ Color [t]
 Enqueue (Q, v)

 Complexity = O(V+E)

b) Decision Problem.
 For an undirected graph G(v,e) and a positive integer
 k ≥ 2, is there a k-coloring for G?

d) For any truth assignment t for ϕ.
 Set C(xi) = ϕ(xi) C(¬xi) = ϕ (¬xi) i = 1...n
 Then one of xi and ¬xi is colored c(true) and the other c(false)

Hence the graph G containing only the literal edges is
with each ending at 'RED'

This function C is a 3-coloring of G.
e. Take the case \(\pi = \psi = \Phi = \text{false} \) and show that it will not give a 3 colorable graph.

\[
\begin{array}{c}
\text{false} \\
\text{false} \\
\text{false} \\
\text{true}
\end{array}
\]

Since \(\pi = \psi, \text{false}, \) 3 must be false. Leaving 1, 2 with assignment true or false, then we have both 2 and 3 with false. But now we have to assign a 'true' vertex with false - contradiction.

Since \(\pi, \psi, \Phi \) can only be assigned true or false, then one of them has to be assigned true.

f) 3 Color is NP. Given a graph we can verify it in polynomial time. Whether \(C(u) \neq C(v) \) for every edge \((u,v) \in E \).

To show 3SAT \(\equiv \) 3 Color

Transformation as in the textbook. For any clause \(C_i \) construct a widget with 3 literals in the clause.

Proof of Equivalence:

If there is a truth assignment for \(\phi \) then every \(C(i) = \text{true} \). It means at least one literal in \(C_i \) is true.

Color the 3 special vertices as \(C(\text{true}) \), \(C(\text{false}) \) and \(C(\text{red}) \).

Color every vertex of variables and negation with

\[
C(x_i) = C(+x_i) \quad C(-x_i) = C(+(-x_i))
\]

For any widget, at least one literal is colored \(C(\text{true}) \).
According to (c) it is 3-colorable. It means every clause edge satisfies 3-coloring and color 'clause' edge satisfies 3-coloring. According to (d) every literal edge satisfies 3-coloring.

So C is a 3-coloring of G.

Now we know \(3\text{-SAT} \leq \text{3-coloring}\)

and \(3\text{-SAT} \leq \text{NPC}\).

\(\therefore 3\text{-Coloring} \leq \text{NPC}\).

Q2: a)

![Graph image]

Dominating set \(\{a, c\}\)

b) Decision Problem:

Does there exist a subset \(V' \subseteq V\) such that for \(|V'| \leq k\) for every vertex in \((V - V')\) is linked to at least one vertex in \(V'\) such that \(e \in E\)?

Proof

We choose Vertex Cover (VC) as the source problem and will show that it is a reducible to our dominating set problem (DSP). First note that DSP \(\in \text{NP}\), since a non-deterministic algorithm need to find only a subset \(V'\) of \(V\) and check in polynomial time that there exists an edge between \((V - V')\) and \(V\) in the original graph.

Now let's transform VC to DSP.
Let say V' is a VC for a graph $G(V,E)$.
As per the hint we can add additional vertices to the set V' and it will still remain a VC.

Now $<V_1,V_2,...,V_k>$ where $|V'| = \text{size of VC}$.

edges $<e_1,e_2,...>$ total edges on the graph.

Each edge e_i on VC must be linked with at least one member in V'.

Now for every edge (u,v) add 2 edges (u,x) and (x,v).

2 cases to analyse:

Case 1: If both u,v are members of VC, then additional vertex x, does not affect the VC.

Case 2: If only one of (u,v) is in VC, in order to cover edge (u,x) (x,v) we have to choose at least one more from u,v,x.

Say we choose x.

Now after selecting all such vertices, members of $(V-V')$ will have at least one edge between them and the V' set, since it's a VC. But this has however now reduced to a dominating set problem. Reduction complete. $\text{VC} \leq \text{DSP}$.

But we know that VC is NPC

$\Rightarrow \therefore \text{DSP is NPC.}$