Q1: Stack-print-tree(x)
 Push (s, x)
 While (! stack-empty (s))
 a ← pop(s)
 print key [a]
 if right [a] ! = NIL
 push (s, right [a])
 if left [a] ! = NIL
 Push (s, left [a])

Q2: Queue-print-tree(x)
 Enqueue (Q, x)
 While (! queue-empty (Q))
 a ← Dequeue (Q)
 print key [a]
 if left [a] ! = NIL
 Enqueue (Q, left [a])
 if right [a] ! = NIL
 Enqueue (Q, right [a])

for the same example above
 output: 1 2 4 7 5 3 6

Q3: Worst-case: When the inputs are sorted, resulting in a tree of single branch. Hence the complexity of insertion is $O(n)$.

Best case: When the binary tree is balanced. Thus an order of $O(\log(n))$
Q4: Bipartite \iff no odd cycle

\underline{Necessary} \implies

Start from V_1, after odd number of traversals on edges in E, we will only end up in a vertex in V_2 and thus no way we could form a cycle.

\therefore If bipartite \implies No odd cycles.

\underline{Sufficient} \iff

We vo in V as a starting point and apply DFS. For disconnected part, choose unlabeled vertex and apply again. It is easily seen that disconnected part will not affect each other. Therefore we will examine only the connected graph.

Once DFS is applied put all odd number vertices in V_1 and even numbered ones in V_2. Now we show that $(u,v) \not\in E$ if u,v are in the same partition.

Without losing generality, we assume that uv belongs to V_1.

So $d[u]$ and $d[v]$ are both odd. If (u,v) belongs to E, then $u \to u_0 \to v \to (u,v) \to u$ forms a cycle whose length is $d[u]+d[v]+1$ which is again odd.

\therefore Contradiction.

Hence our assumption that (u,v) is in E is wrong.

Thus proved.
Algorithm

for u in V do {
 BFS(G, u);
 for (color(v) = black and u != v) do {
 E' = E' + (u, v);
 }
}

Complexity = O((|V| + |E| + |V|) * |V|) = O(|V| * (|V| + |E|))

Example:

G =

G' =

Diagram of G:

Diagram of G':

Diagram of G' with additional edges:

Diagram of G' with additional edges highlighted: