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ABSTRACT

In this paper we present a coarse-to-�ne approach for the transformation of digital anatomical textbooks from

the ideal to the individual that uni�es the work on landmark deformations and volume based transformation.

The Hierarchical approach is linked to the Biological problem itself, coming out of the various kinds of information

which is provided by the anatomists. This information is in the form of points, lines, surfaces and sub-volumes

corresponding to 0,1,2 and 3 dimensional sub-manifolds respectively. The algorithm is driven by these sub-

manifolds. We follow the approach that the highest dimensional transformation is a result from the solution of a

sequence of lower dimensional problems driven by successive re�nements or partitions of the images into various

Biologically meaningful sub-structures.

�This work was supported by NIH grants RR01380 and RO1-MH52158-01A1 and ARO DAAL-03-86-K-0110



1 Introduction

We have been studying the variability of human and macaque anatomy by generating smooth maps from a

single template to a family of targets.1{5 In our approach the template represents the typical structure; variation

is accommodated by the de�nition of probabilistic transformations applied to the templates. The transformations

form groups (translation, scale, and rotation), globally applied (rigid) for registration and locally applied for �ne

detailed shape deformation. The transformations on which we focus are de�ned by vector �elds u(�), applied

throughout the coordinate system of the template (de�ned as 
), thereby accommodating a very �ne variation

in anatomy: x = (x1; x2; x3) 2 
 7! (x1 � u1(x); x2 � u2(x); x3 � u3(x)) 2 
. The maps constructed from these

high dimensional vector �eld transformations allow for the dilation, contraction, and warping of the underlying

ideal coordinates of the template into the coordinates of the individual anatomy.

Herein, we concentrate on whole brain volumes generated via CRYOSECTION imaging. The target is analyzed

by constructing the transformation which carries the coordinate systems of the template into the target, with the

driving function for the registration forced by a distance measure D(u) between the transformed textbook and the

target. The distance measures used are derived from the physics of the sensing modality; we have predominantly

used Gaussian distance measures between the deformed template and the data (see1 for example).

As the transformation from the template to the target is used to study geometric properties, the transforma-

tion must be smooth so that connected sets remain connected, surfaces are mapped as surfaces, and the global

relationships between structures are maintained. To enforce smoothness properties on the transformation, the

transformations are forced to arise from a prior probability distribution with energetics E(u) re
ecting the kine-

matics associated with elastic and 
uid media.1,5,2,3 The introduction of the prior distribution places our solution

in the class of Bayesian inference problems, that of inferring the transformation of the template minimizing both

the distance measure D(u) and the potential energy E(u) of the prior distribution.

The 3-D whole brain maps correspond to the Bayesian maximizer, whose variational solution corresponds to

a solution of a non-linear PDE, consisting of between 107 � 108 parameters in the vector �eld on the whole 3-D

lattice. We believe that there should be a coarse-to-�ne principal in ultimately deriving the full vector �eld,

the coarse to �ne driven by the Biological problem itself. We have been building such a procedure based on

information which is provided by the anatomists themselves about the various substructures of the brain, and

varying degrees of knowledge about these substructures. In what we now develop, this will imply that the brain

mapping algorithm will be driven by subsets of de�ned points, lines, surfaces and or prede�ned volumes that serve

as preconditioning or input to the ultimate Bayesian solution of the PDE on the full continuum. Our motivation

is to follow the approach that the highest dimensional transformation will ultimately be completely driven by the

3-dimensional imaging data alone. However, lower dimensional information input by the anatomists will provide

e�cient preconditioning to the �nal solution, and will result in the full solution via a solution of a sequence

of lower dimensional problems driven by successive re�nements or partitions of the images into the Biologically

meaningful sub-information. This approach uni�es the elegant work of Bookstein on landmark deformations and

the volume based transformation work described by various authors.1,2,5,3,6,7

As the prior distribution is the glue which uni�es our hierarchical approach it will play an important role in

our formulation, we therefore brie
y summarize its construction.

2 Mathematical construction of the Gaussian prior

Begin with a brain volume de�ned on the domain 
 = [0; 1]3 � <
3, the unit cube. The prior distribution

is induced by de�ning the transformation �elds fu(x); x 2 
g, to satisfy stochastic partial di�erential equations

of the type L u(x) = e(x), x 2 
, L a local (bounded support) self-adjoint positive di�erential operator.



Randomness enters into the prior through e(x) a 3 � 1 white Gaussian random �eld. In all of our previous work

we have used operators induced by continuum mechanics corresponding to elasticity1,5,3,4 and 
uid operators.5,2

We shall focus on the elasticity operators herein, in which case L = ar2 + brr � +cI. r2 and r are the

Laplacian and divergence operators @2

@x1
+ @2

@x2
+ @2

@x3
, r = [ @

@x1
; @
@x2

; @
@x3

]T , and a, b and c are constants. As L is

a linear operator, this induces Gaussian random �elds (see,8 for example) as follows.

Proposition 1. Let L be a constant coe�cient local (bounded support),positive (invertible) di�erential oper-

ator, and let fu(x); x 2 
g be a random process satisfying

Lu(x) = e(x) (1)

where e(x) is white noise. Then fu(x); x 2 
g is a zero-mean Gaussian process with covariance

K(x; y) =

Z
G(x; u)G(y; u)du ;

where G is the Green's function of L satisfying LG(x; y) = �(x� y).

Proof: Let ef =
R
e(x)f(x)dx, f 2 S the family of test functions. By de�nition of u in Eqn. 1

ef =

Z
Lu(x)f(x)dx =

Z
u(x)Lyf(x)dx ;

(�)y denoting the adjoint. As e(x) is white noise, ef is zero-mean with variance < f; f >. Let Ku be the covariance

operator of u, then by de�nition of the covariance operator of a Gaussian �eld (Kuo9 pg. 15), for all f 2 S,

< f; f > = < Lyf;KuL
yf >

= < f;LKuL
yf >

implying LKuL
y = I. Now as the covariance is a positive operator by the square root lemma10 we can write

Ku = GGy, and with G de�ned to be a positive operator gives LG(x; y) = �(x�y), where the dirac delta function

�(x� y) is interpreted as the identity operator. 2

3 A Hierarchical Solution Via The Generalized Dirichlet Mapping

of Brain Manifolds

The hierarchical approach is fundamentally driven by the Biological problem itself. The procedure is based

on information provided by the anatomists themselves about the various substructures of the brain, and varying

degrees of knowledge about these substructures. The information will correspond to easily identi�able points,

lines, surfaces and subvolumes in the target corresponding to landmarks, sulcal lines, cortical surfaces, and major

nuclei. These points, lines, surfaces, and subvolumes are examples of 0,1,2,3 dimensional manifolds and will

initially constrain the transformation from one brain to the other.

As we show below, the idea of constraining the maps via manifolds can be viewed as the solution of a generalized

Dirichlet problem. Our strategy will be to solve the Dirichlet problem associated with elastically extending the

transformation from the various easily identi�able components to the full volume continuum. This provides a

\coarse registration", and is the initial step in our brain deformation process. Its only purpose is to act as a

preconditioning of the �nal mapping solution based on the full PDE formulation.

We begin by assuming that 
 can be written as a disjoint partition 
 = [
i=3
i=0M(i);M(i) an i = 0,1,2, or 3

dimensional manifolds constituting the various Biologically meaningful sub-structures. To illustrate examples of



manifolds, shown in Figure 1 are renderings corresponding to the 3-D whole brain volumes of a macaque consisting

of the 640� 480� 200 voxel volume (left panel). Superimposed over the rendering are the observable sulcal maps

sitting on the pial surface of the whole brain. The middle panel shows a C2 manifold representing the cortical

surface. The right panel shows a slice through a whole brain cryosection with the cortical surface embedded in

the volume delineating the interface between the gray and the white matter.

Figure 1: SULCAL PATTERN EXTRACTION. Left panel shows a whole macaque brain with the sulci depicted.

The middle panel shows the C2 manifold representing the cortical surface. The right panel shows a slice through

a whole brain cryosection with the cortical surface embedded in the volume delineating the interface between the

gray and the white matter.

Considering a subset of manifolds as predetermined, or given with perfect resolution, gives us the notion of

observable manifolds.

Definition 3.1. A manifold M2 
 of dimension m = 0,1 or 2 is called an observable manifold if its map

in the observed data can be identi�ed exactly.

We use this concept to condition the prior distribution, that is assume we are given the observable manifolds

M(i) along with the vector �eld on the manifold i.e. u(x) = k(x); x 2 M(i) mapping the observable manifolds

in the template to the data. Such observable manifolds will most naturally correspond to �ducial landmarks

(0-dimensional points) and sulcal maps (1-dimensional lines), cortical surfaces (2-dimensional) and major nuclei

(3-dimensional subvolumes). The equality constrained Bayesian problem becomes the following.

Problem Statement: The Bayesian equality constrained problem becomes

Minimize

Z



jLu(x)j2dx subject to u(x) = k(x) ; x 2

3[
i=0

M(i) : (2)

3.1 The Generalized Dirichlet Problem

Proposition 2. Let M be a smooth manifold and L self adjoint. Then the minimizer of the functional

F (u) =

Z



jLu(x)j2dx subject to u(x) = k(x) ; x 2M (3)

is unique satisfying L2û(x) = 0, 8x 2 
nM, with the solution written in the form of a Fredholm integral equation

û(x) =

Z
M

K(x; y)�(y)dS(y) ; (4)



where K = GGy and G the Green's function of L, and dS the Hausdor� measure on the manifold.

Proof: Using the usual de�nition of the Gateaux di�erential (pg. 171 of11) of the functional F gives

�F (u; �) = lim
�!0

F (u+ ��)� F (u)

�
j�=0 (5)

=

Z



�(x)L2u(x)dx : (6)

Here we have used the fact that the operator L is self-adjoint. A necessary condition for the minimizer is that

the Gateaux di�erential �F (u) is zero for all allowable perturbations �. This implies that if û is a minimizer of

Eqn. 3 then

L2û = 0 subject to u(x) = k(x) ; x 2M :

This is the Dirichlet problem and has a unique Fredholm solution given by Eqn. 4 (see Reed and Simon10 Pg.

204-206). 2

There are several special cases of interest when the observable manifoldsM are surfaces (cortical folds), lines

(sulci), and points (landmarks). We can now state the Bayesian problem and the solution associated with each

of the cases.

1. Surface manifolds. When the observable manifold in Eqn. 2 is a 2-dimensional closed surface the problem

is the classical Dirichlet Problem. To see this, let M(2) be a smooth 2-dimensional closed surface. Then

the Bayesian estimator,

û = argminfug

Z



jLu(x)j2dx subject to u(x) = k(x) ; x 2M(2) ; (7)

is unique satisfying L2û(x) = 0, 8x 2 
 nM(2); the solution given by a Fredholm integral equation,

û(x) =

Z
M(2)

K(x; y)�(y)dS(y) ;

with K = GG and G the Green's function of L, and dS the surface measure.

2. Linear manifolds (sulci). For considering manifolds which are lines, M(1) , we need only change the

surface measure to line measures. Given equality constraints u(x) = k(x); x 2 M(1) associated with

a collection of 1-dimensional linear manifolds M(1), the solution can be written in form of a Fredholm

integral equation given by

û(x) =

Z
M(1)

K(x; y)�(y)dl(y) ;

with dl the line measure on M(1).

3. Point manifolds (landmarks). For considering manifolds which are points ,M(0), we need only change

the surface measure to atomic measures. The 0-dimensional manifold work is of course directly analogous

to what has emerged from the work of Bookstein12,13 on landmark-based deformations. In fact, for the

landmarks (points) , the solution can be computed in closed form by a solution of N linear equations.14,15

Given the equality constraints associated with the collection of N -points u(x) = k(x); x 2M(0) =
SN

i=1 xi,

the minimizer û is unique and satis�es N -linear equations

û(x) =

NX
i=1

�iK(x; xi) :

Our proof follows the clear exposition of Kent14 on Kriging methods.



Corollary 1. Given the equality constraints associated with the collection of N -points u(x) = k(x); x 2

M(0) =
SN

i=1 xi, the minimizer û is unique and satis�es N -linear equations

û(x) =

NX
i=1

�iK(x; xi) ; (8)

where �1; � � � ; �N satis�es the system of linear equations

2
6664

K(x1; x1) K(x1; x2) � � � K(x1; xN)

K(x2; x1) K(x2; x2) � � � K(x2; xN)
.
.
.

.

.

.
.
.
.

.

.

.

K(xN ; x1) K(xN ; x2) � � � K(xN ; xN )

3
7775

2
6664

�1
�2
.
.
.

�N

3
7775 =

2
6664

k1
k2
.
.
.

kN

3
7775 ; (9)

and K is the covariance determined by the Green's operator squared, K(x; y) =
R


G(x; s)G(y; s)ds.

Proof: Let û be as de�ned in Eqn. 8, then any function f(x) satisfying the constraints becomes

f(x) = û(x) + �(x)

=

NX
i=1

�iK(x; xi) + �(x)

where �(xi) = 0; i = 1; � � �N . Then

Z



jLf(x)j2dx =

Z



jL[

NX
i=1

�iK(x; xi)]j
2 + jL�(x)j2dx+ 2

NX
i=1

�i

Z



LK(x; xi)L
y�(x)dx :

But Z



L(

Z



G(xi; t)G(x; t)dt)L
y�(x)dx =

Z



L(G(xi; x)�(x))dx

= �(xi) = 0 ;

implying

Z



jLf(x)j2dx =

Z



jL[

NX
i=1

�iK(x; xi)]j
2 + jL�(x)j2dx

=

Z



jLû(x)j2dx+ jL�(x)j2dx :

Thus for all f satisfying the constraints

Z



jLf(x)j2dx �

Z



jLû(x)j2dx :

2

Now let us suppose that the manifolds are collections of points and are not fully observable in the data but

there are errors associated with the observation process. Assume Gaussian noise around the observations.

Definition 3.2. A noisy observable manifold of N -points M(0) = [
N
i=1xi is one which can be identi�ed to

within a random neighborhood of Gaussian radius with variance �2.



We assume that errors are independent and Gaussian distributed with zero mean and variance �2. Then the

Bayesian problem and solution becomes:

Corollary 2. Given noisy observable points ki = u(xi) + n(xi); i = 1 : : :N , n(xi) are Gaussian distributed

with variance �2, the minimizer of

û = argmin
u

Z



jLuj2 +

NX
i=1

jki � u(xi)j
2

�2
(10)

satis�es

û(x) =

NX
i=1

�iK(x; xi)

where � = [�1; � � � ; �N ]
t
satisfy the system of linear equations

(K + �2I)� = k

with k = [k1; � � � ; kN ]
t
, and K; I are N �N matrices with K(i; j) = K(xi; xj) and I the identity matrix.

Proof: We �rst note that if u(xi) are �xed then the optimal solution is given by Theorem 2. Hence we can

restate the problem as �nding � which minimize

1

�2
jk�K�j2 + �tK� :

The solution to this is readily found to be � that satisfy system of linear equations

(K + �2I)� = k :

2

Note above that the matrix K is invertible as it is a covariance matrix of the Gaussian process de�ned in

Section 2.

4 Coarse-to-�ne mapping via a basis solution of the PDE.

The solution of the Dirichlet problem based on the observable manifolds represents the coarse step in the

transformation. Having completed the coarse step in the transformation, the volumes are roughly aligned and

attention can now be focused on the �ne featured substructures. The second step is to solve the registration

problem using the full volume data. The cryosection volume data is the only information on which this part of

the algorithm runs. The sulcal maps play only the role of providing an initial alignment at the coarsest level.

4.1 Bayesian estimation of the transformation

The Bayesian maximum a-posteriori (MAP) estimator solving the �nal registration problem is the transfor-

mation satisfying the maximization

û = argmax
u

(�D(u) �E(u)) ; (11)

where D(u) is the distance measure between the transformed textbook and the target and E(u) is the energetics of

the prior probability distribution re
ecting the kinematics associated with elastic media. The distance measures



used are derived from the physics of the sensing modality; we have predominantly used Gaussian distance measures

between the deformed template and the data. The maximization in Eqn 11 is conditioned using the information

provided by the anatomists about the various substructures by writing the deformation �eld as a re�nement of the

Dirichlet solution associated with the various observable sub-manifolds. Let uM be the solution of the Dirichlet

problem associated the with sub-manifoldsM. We write the deformation as

u(x) = uM(x) + u1(x)

where u1 is the re�nement of the Dirichlet solution. The MAP estimator is the variational calculus maximizer

û corresponding to partial di�erential equations (PDE's) de�ned on the continuua. For linear elastic solids the

stress or restoring force grows proportionately to the strain or deformation distance away from the template. The

resulting PDE which the MAP estimator û satis�es for a linear elastic solid is given by

�r2u(x) + (�+ �)r(r � u(x)) = b(x� u(x)) ; (12)

where the distributed body force b(x � u(x)) = ruD(u) is the gradient of the registration distance (See1,5,2 for

details). A coarse to �ne approach is used in solving the elasticity based PDE, Eqn. 12, on the full volume as

follows. The vector �eld u1(�) de�ned on 
 = [0; 1]3 is written using a complete orthonormal basis expansion.

De�ne

u(x) =

1X
k=0

�k�k(x) +

NX
i=1

�iK(x; xi) (13)

where the basis f�g corresponds to the eigenfunctions of the elasticity operator L = ar2u(x) + brr�, derived

in2,5 and the second term is the solution to the Dirichlet problem derived in section 3. The optimization is

accomplished by solving a sequence of optimization problems from coarse to �ne scale via parametrically de�ned

deformation �elds. This is analogous to multi-grid methods but here the notion of re�nement from coarse to �ne

is accomplished by increasing the number of basis components. The iterations are started with the solution of

the Dirichlet problem and then the eigenfunctions are incrementally added. As the number of basis functions is

increased, smaller and smaller variabilities between the textbook and target are accommodated.

5 Results

Examine the whole macaque cryosection brains (5002 � 200 voxels) shown in Fig. 1 in which the gyri and

associated sulci have been labeled in David Van Essen's laboratory in the Department of Anatomy and Neu-

robiology at Washington University. We have de�ned sulci as piecewise linear curves. We have done this in

several whole brains following the nomenclature used in Felleman and Van Essen.16 The sulcal maps constrain

the transformation from one brain to the other. In Fig. 1 each of the sulci have been identi�ed and placed into

the whole brains discretized to 16 points in each of the brains. The deformation �eld was constrained so that

the corresponding points where mapped on to each other involving roughly 200 parameters total to represent the

solution based on mapping the sulci.

To accommodate the global rigid motion between the two brain we add the a�ne group. De�ne the vec-

tor �eld transformations x 7! x + Ax + ~a � u(x), where A represents GL(3) , ~a the translation and u(x) =

[u1(x); u2(x); u3(x)], with energetics E(u) =
R
jLu(x)j2dx and the Laplacian operator L = r

2 + bI. Then

fu(x); x 2 
g is a vector valued Gaussian �eld over 
 de�ned by the covariance

Ku(x; y) =

2
4 K(x; y) 0 0

0 K(x; y) 0

0 0 K(x; y)

3
5 ;

with the covariance given by the squared Green's function, implying K(x; y) = e�bjx�yj.



Figure 2: The left panel shows the template 87A. The middle shows the the transformed templates with the

deformation driven only by the sulcal maps. The right panel shows two targets 93G and 90C and their sulcal

maps.

The Bayesian estimator becomes

û = argmin
fug

3X
i=1

Z



jr
2ui(x) + bui(x)j

2dx subject to u(x) = k(x) x 2 f[Ni=1xig :

The optimum deformation �eld becomes

û(x) =

NX
i=0

Ku(x; xi)~�i

where ~�i = [�1; �2; �3] satis�es the system of Equations 9.

Figure 2 is the volume rendering of the template 87A (left panel) and the template mapped to the targets

(middle panel) using only the sulcal line constraints to de�ne the transformation. The right panel shows the

target brains 90C and 93G. Figure 3 shows corresponding slices through the template 87A (left) the target 93G

(right) and the deformed template (middle). Notice that there is a large di�erence in the shape and positions

of the major subvolumes (the thalamus and the cortical folds) between the undeformed template and the target.

Notice the improvement in the alignment of the major subvolumes in the deformed template with the target after

the sulcal map deformation.

The transformation was further re�ned by solving the the elasticity based PDE, Eqn. 12, on the full volume

using the procedure outlined in section 4. Figure 4 demonstrates the hierarchical procedure. The �gure shows

slices through the template volume 87A and the corresponding slices through the deformed template at the

di�erent levels of the hierarchy. Column two shows the result based on the sulcal map constraints. Column three

shows the result after the solution of the PDE. The target 93G is shown on the right.



Figure 3: The left panel shows slices through the template 87A and the corresponding slices through the deformed

template (middle) and the target 93G (right). Notice the improvement in the alignment of the major subvolumes

after the sulcal map deformation.

The 
ow of coarse to �ne information is depicted in Figure 5. The left panel shows the large di�erences

before any transformation has been applied. The middle panel shows the correspondence after the solution of the

Dirichlet problem associated with constraining the sulcal maps. The right panel shows the correspondence after

the application of the parametrically de�ned, basis transformation. Notice, the local transformation associated

with the PDE allow for small adjustments of the �ne featured substructures.
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