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Consistent Landmark and Intensity-Based Image
Registration

H. J. Johnson* and G. E. Christensen

Abstract—Two new consistent image registration algorithms than the TPS model, anisotropic landmark interactions [4] and
are presented: one is based on matching corresponding landmarks directed landmarks [26].
and the other is based on matching both landmark and intensity Most landmark-based registration algorithms, including the

information. The consistent landmark and intensity registration d ived in thi that Il def tion i
algorithm produces good correspondences between images nearP"€S UESCIIDET IN thiS paper, assume that a small deformation IS

landmark locations by matching corresponding landmarks and Sufficient to register a set of images. In cases where the small
away from landmark locations by matching the image intensi- deformation assumption holds, registration algorithms may ef-

ties. In contrast to similar unidirectional algorithms, these new ficiently estimate diffeomorphic transformations in a solution
consistent algorithms jointly estimate the forward and reverse 506 that contain nondiffeomorphic transformations. The small

transformation between two images while minimizing the inverse def tion limitation i t uni I licabl d K
consistency error—the error between the forward (reverse) eformation imitation 1s not universally applicable, and wor

transformation and the inverse of the the reverse (forward) trans- Py Joshi and Milleet al.[27]-[29] estimates large deformation
formation. This reduces the ambiguous correspondence betweentransformations in a solution space of diffeomorphisms by con-
the forward and reverse transformations associated with large straining the transformations to obey diffeomorphic fluid prop-
inverse consistency errors. In both algorithms a thin-plate spline erties

(TPS) model is used to regularize the estimated transformations. . . . .
Two-dimensional (2-D) examples are presented that show the The UL-TPS algorithm (see Section II-B) defines a unique

inverse consistency error produced by the traditional unidirec- Smooth registration from a template image to a target image
tional landmark TPS algorithm can be relatively large and that based on registering corresponding landmarks. Correspondence
this error is minimized using the consistent landmark algorithm.  gway from the landmark points is defined by interpolating the
Results using 2-D magnetic resonance imaging data are presentedy 4 sformation with a TPS model. Although TPS interpolation
that demonstrate that using landmark and intensity information - .

together produce better correspondence between medical images_r"’rc)duceS a SmOOth tran_Sformat'on from one image to another,
than using either landmarks or intensity information alone. it does not define a consistent correspondence between the two
images except at the landmark points. This can be seen by com-
paring the transformation generated by matching a set of tem-
plate landmarks to a set of target landmarks with the transforma-
tion generated by matching the target landmarks to the template
. INTRODUCTION landmarks. If the correspondence is consistent then the forward

MAGE registration algorithms are used to define correspofnd reverse transformations will be inverses of one another. This
I dences between sets of images. Various characteristicdSoROt the case as shown by the examples in Section Ill. Con-
image data are exploited to drive image registration algorithniéstency of the forward and reverse transformations is a neces-
The characteristics exploited range from designated landm&&Y condition to define a unique correspondence between two
positions [1]-[4], to contours [5]—[7] or surfaces [8]-[11], andmages since it insures that the correspondence defined by the
to volumetric functions of voxel intensities [6], [12]-[21]. forward transformation is consistent with the correspondence
There are many image registration algorithms based on @@fined by the reverse transformation. Without consistency, the
exact matching of corresponding landmarks in two images [239rward transformation would define one correspondence be-
The unidirectional landmark thin-plate spline (UL-TPS) imagBveen the images while the reverse transformation would define
registration technique pioneered by F. Bookstein [1], [2], [23] B different correspondence.
the most commonly used landmark driven nonrigid image regis-The consistent registration methods presented in this paper
tration algorithm. Generalizations of UL-TPS procedure includd!ilds on the unidirectional landmark and intensity methods de-

kriging methods [24], [25] that use regularization models oth&fribed in [30] which used a Fourier series basis to parameterize
the transformation and the method developed by Kybic [31] that

. . . _ used B-splines.
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Fig. 1. Flow chart describing the steps of the consistent landmark and intensity image registration algorithm. The images being registereeldaie lzessum
rigidly aligned before starting this procedure.

of one another. The merger of these two approaches producedfter the landmark initialization step, the iterative CL-TPS

a consistent landmark-based TPS (CL-TPS) and a consistaigiorithm described in Section 1I-C is used to produce a con-
landmark- and intensity-based TPS (CLI-TPS) image regisistent set of forward and reverse transformations. This algo-
tration algorithms. The CL-TPS algorithm (see Section II-Qjthm jointly estimates a set of transformations that minimize
provides a means to estimate a consistent pair of forward dmath the inverse consistency error and the bending energy of
reverse transformations given a set of corresponding poirttse TPS model while maintaining exact correspondence at the
The CLI-TPS algorithm (see Section II-A) combines botlkandmarks. The resulting forward and reverse transformations
landmark and intensity information to estimate a consistehéve orders of magnitude less inverse consistency error than the
pair of forward and reverse transformations. The performancgginal unidirectional TPS transformations as shown by the ex-
of these algorithms are compared using two-dimensional (2-p@riments in Section Ill.

magnetic resonance imaging (MRI) brain data images. The last step of the algorithm is to use the consistent inten-
sity registration algorithm [32]—[34], that is briefly described in
Il. METHODS Section 1I-D, to refine the transformations based on matching

the intensities of the images. This step matches the images in
regions away from the landmarks by minimizing the intensity
The consistent landmark and intensity image registration alifferences in these regions. The intensity matching does little in
gorithm is outlined in Fig. 1. Itis assumed that the images beimnggions near corresponding landmarks since these regions have
registered have been rigidly rotated and translated to put themilar intensity patterns that have all ready been matched by
into a standard orientation, such as the Talairach coordin#ite landmark registration. During the intensity matching step,
system [35], before applying this procedure. In this paper, thige landmark correspondence error increases in regions where
data sets did not need to be scaled to the same size beforetlagre are bad landmark initializations. The landmark correspon-
plying the algorithms since the landmark registration takes catence error also increases in this step due to the TPS regular-
of the global scale differences. The first step of the algorithimation model that can pull corresponding landmarks apart. The
is to produce a good initial nonrigid registration using a landandmark registration error can be minimized by applying the
mark initialization step. This step consists of: 1) picking comronsistent landmark registration step followed again by the in-
responding landmarks in the two images; 2) solving the unidensity registration step.
rectional TPS algorithm modified to produce periodic boundary The process of alternating between matching the landmarks
conditions for the forward and reverse transformations; and &)d then the image intensities is repeated until an appropriate
averaging the forward transformation with the inverse of the retopping criteria is met. In this work, a fixed number of itera-
verse transformation, amite versaThe full details of the land- tions was used as the stopping criteria. Alternatively, the algo-
mark initialization are described in Section II-B. rithm could be stopped after an acceptable intensity similarity

A. Consistent Landmark and Intensity-Based Registration
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and landmark error cost is achieved. The optimal strategy foolation such that the overall transformation smoothly maps

stopping the algorithm can be quite complex and will be studi¢lde template into the shape of the target image.

in future work. The unidirectional landmark image registration problem can
The consistent landmark and intensity-based TPS algoritira thought of as a Dirichlet problem [25] and can be stated math-

can be thought of as estimating a consistent set of forward agmatically as finding the displacement fielthat minimizes the

reverse transformations that minimize the intensity differenceest function

between two images while being guided by the landmark cor-

respondences. The landmarks guide the solution by initializing / || Lu(x)||*dx Q)

the consistent intensity registration algorithm with transforma-

tions that are nearly inverse consistent and have exact corresp@ibject to the constraints thafp;) = ¢; —p; fori = 1,..., M.

dence at the landmarks. This initialization helpS the ConSiSteme operatoﬁ denotes a Symmetric linear differential Operator

intensity registration avoid some local minima and, thereforgg] and is used to interpolate the displacement fielbtween

produce more biologically relevant correspondence maps.  the corresponding landmarks. Whén= V2, the problem re-
The final registration is determined from the intensity inforduces to the TPS registration problem given by

mation alone. The landmark matching is used to get the two im-

ages close in a global sense and then the intensity information / 1V 2u(2)|2de = Z/ <8 ui(x )

is used to fine tune the registration in the neighborhood of the o\ 9z

landmarks. The choice not to use the landmarks for the final reg- 92 P 2

istration was motivated by the fact that the landmarks are gener- +2 <M> + < ul(x)) dz1dxs (2
ally located on object edges or in regions of changing intensity 91102 9%y

in the image. Therefore, once the landmark matching gets cetbject to the constraints thatp;) = ¢; —p; fori = 1,..., M.

responding regions of the images close, the intensity matchindt is well known [1], [2], [23] that the TPS displacement field
finishes the job by matching all of the points in the neighbor:(x) that minimizes the bending energy defined by (2) has the
hood of the landmark based on their intensities. form

Another reason that the final registration only used intensity
information was that we encountered problems when we tried
to force the landmarks and intensity to match at the same time. Z §i (@ —pi) + Av 4 ®)
The problems occured in regions where the landmarks did not
correspond to the same location on the intensity profile in botthere¢(r) = r% logr and¢; are 2x 1 weighting vectors. The
data sets. The Jacobian of the transformation would go ne@a< 2 matrixA = [a1, az] and the 2< 1 vectorb define the affine
tive at the landmark locations when the intensity and landmaiansformation where; anday are 2x 1 vectors. The proce-
forces moved in different directions. This problem was due tlure used to determine these unknown constants is described in
the fact that the landmark driving force was focused at the lanéippendix A.
mark and the intensity driving force was distributed. The Jaco-The TPS interpolany(r) = r?logr is derived assuming
bian of the transformation would go negative as the landmairinite boundary conditions, i.e£) is assumed to be the
point moved in one direction and the material surrounding thehole planeR?. The TPS transformation is truncated at the

landmark would go in the opposite direction. image boundary when it is applied to an image. This presents
The following notation will be used throughout the rest o mismatch in boundary conditions at the image edges when
the paper. The variableg andp,, fori = 1,..., M, denote comparing forward and reverse transformations between two

the M corresponding landmarks in the templdtend targetS images. It also implies that a TPS transformation is not a
images, respectively. The domain of the template iniEged one-to-one and onto mapping between two image spaces. To
target imageS is denoted by2. The forward transformation overcome this problem and to match the periodic boundary
h : Q — Qis defined as the mapping that transforffisnto  conditions assumed by the intensity-based consistent image
the shape of5 and the reverse transformatign: Q@ — € is registration algorithm [32], [34], we use the following pro-
defined as the mapping that transfor§isnto the shape of’. cedure to approximate periodic boundary conditions for the
The forward and reverse displacement displacement fields difeS algorithm. In the future we plan to replace the following
defined as«(z) = h(z) —z andw(z) = g(x) — z, respectively. periodic approximation method with an exact solution for
The inverse of the forward and reverse transformations denotbd periodic landmark matching. This will be important for
by h=1(z) andg~'(x), respectively, can be expressed in termaxtending the algorithm from 2-D to three-dimensional (3-D)
of the displacement field&(x) = h=*(x) — x andw(z) = since the computation time and storage requirements increase
g~ (z) — =, respectively. by a factor of 27 for the 3-D case.

It is assumed for all of the algorithms presented in this paper
that the images being matched have the same field of view and
that they contain the same structures. We further assume that

The UL-TPS image registration algorithm [1], [2], [23]the objects in the images are centered within the image and are
registers a template imad&(x) with a target image5(«) by padded with the background intensity.
matching corresponding landmarks identified in both images.Fig. 2 illustrates the concept of periodic boundary conditions
Registration at nonlandmark points is accomplished by intdor the landmark TPS registration problem. Cyclic boundary

B. Unidirectional Landmark Thin-Plate Spline Registration
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d3 while it was away from the boundaries for the case of periodic
boundary conditions.
The inverse consistency error of the forward and reverse
transformations generated by the UL-TPS can be made smaller
by averaging the forward transformation with the inverse of
d2< dl > the reverse transformation. This averaging will be referred to
" N as the averaged UL-TPS (AUL-TPS) algorithm and is used to
initialize the consistent landmark TPS algorithm described in
d4 the next section. Note that this procedure does not significantly
effect the error at the landmarks since the displacement at the
pl p2 landmark locations in the forward, reverse, inverse-forward,
and inverse-reverse transformations are nearly zero as com-
puted by the UL-TPS algorithm.

p3 C. Consistent Landmark Thin-Plate Spline Registration

(@) The AUL-TPS image registration algorithm produces con-
sistent correspondence only at the landmark locations. The
e o o o e o CL-TPS image registration algorithm is designed to align the
landmark points and minimize the consistency errors across the
® ® entire image domain.

¥d3 The CL-TPS algorithm is solved by minimizing the cost func-

_l dl tion given by
Rlgs B €= [ Weu@)P? + |£w(o)|ds
Q

B +x/Q [lu(z) — ()| + [lw(z) - a(e)|]*dz
e o e o o o subject to
pitu(p:) = ¢ andg; +w(g;) = p;ifori=1,... M.

(4)
() The firstintegral of the cost function defines the bending energy
_ , - _ _ of the TPS for the displacement fieldsandw associated with
Fig. 2. Diagrams describing the coordinate system and points used to ensure . . .
that the resulting displacement field demonstrates continuous periodic boun 9f0rward and reverse transformations, respectively. This term
conditions. (a) The toroidal coordinate system. (b) The layout of the point usp@nalizes large derivatives of the displacement fields and pro-
to solve the TPS with approximate circular boundaries. vides the smooth interpolation away from the landmarks. The

second integral is called the inverse consistency constraint (ICC)

conditions implies a toroidal coordinate system such that thed is minimized when the forward and reverse transformations
left—right and top—bottom boundaries of the dom&nare are inverses of one another. This integral couples the estimation
mapped together. Modifying the boundary conditions in thisf the forward and reverse transformations together and penal-
manner causes an infinite number of interactions betweles transformations that are not inverses of one another. The
landmarks for a given finite set of landmark points. Fig. 2(ljonstantg andy define the relative importance of the bending
shows two such interactions between landmark pgintand energy minimization and the inverse consistency terms of the
p2; one within the domairf2 and another between adjacentost function. Notice that this problem is a nonlinear minimiza-
image domains. We approximate the solution of Laplacet®mn problem since the ICC is a function of the inverse-forward
Equation with periodic boundary conditions by solving thé=1(x) = x + @(z) and inverse-reversg ! (z) = = + w(x)
TPS registration problem with replicated landmark locations transformations.
the eight adjacent domains as shown in Fig. 2(b). This providesEquation (4) is minimized numerically using the CL-TPS al-
a good approximation to periodic boundary conditions singmrithm described in Fig. 3. The algorithm is initialized with
the the kernel functiong(r) = r?logr, causes interactions the forward and reverse displacement fieldmduw either set to
between landmarks to decrease rapidly as the distance betwsso as in Fig. 3 or with the result of a previous registration algo-
landmarks increases. In our tests, there were differengéghm. The temporary variablesands; are initially set equal to
between the transformations found using infinite and periodice landmark locationg andp;, respectively, foi = 1,... M.
boundary conditions but there was nearly no difference rhe value ofr; converges fromy; to p; as the algorithm con-
terms of the magnitude of the landmark errors. The majoerges and in similar fashion, the valuespiconverges fronp;
differences between the two sets of boundary conditions wiasy;.
in the location of the maximum inverse consistency error. Ateach iteration of the algorithm, the UL-TPS algorithm with
The maximum inverse consistency error was located on theriodic boundary conditions is used to solve for the perturba-
image boundaries in the case of infinite boundary conditiotien field f; that minimizes the distance between the current

o o&
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Consistent Landmark Thin-plate Spline (CL-TPS) Registration Algorithm

1. Initialization: Set u(z) =0, w(z) =0, 1, = ¢, and s, = p;.

2. Compute fi(z) that satisfies V4 fi(z) = 0 subject to fi(r;) = pr — 1 VI using the periodic boundary UL-TPS
algorithm.

3. Compute fo(x) that satisfies V4 fo(z) = 0 subject to fa(si)
algorithm.

Set u(r) = u(z) + afi(z) and w(z) = w(z) + af(z).

Set r; = g + u(r;) and s; = p + w(sy).

Compute ™! and g~! using procedure described in [34].

Set ii(z) = h~(z) — x and W(z) = g~} (z) — .

Set u(z) = u(z) + Blu(z) — w(z)] and w(z) = w(z) + flw(z) — @(x)].

If the maximum landmark error |u(g) — (p — )| or |w(p:) — (@ — p1)| is greater than a threshold €; or the maximum
inverse consistency error ju(z) — w(z)| or |w(z) — @(z)| is greater than a threshold e; then Goto 2.

q — s; VIl using the periodic boundary UL-TPS

-~

© PN o>

Fig. 3. The CL-TPS algorithm registers two images by matching corresponding landmarks in the images while minimizing the inverse consistehegenror b
the forward and reverse transformations.

position of r; and its final positionp;. The perturbation field regularize the forward and reverse displacement fieldadw,

/1 times the step sizer is added to the current estimate ofespectively. Thisterm is used to enforce the displacement fields
the forward displacement field where« is a positive number to be smooth and continuous. The third integral is called the ICC
less than one. This procedure is repeated to update the revarsegis minimized when the forward and reverse transformations
displacement fieldv. Next, the forward displacement field A andg, respectively, are inverses of each other. The constants
is updated with the step size times the gradient of the ICC &, p andy define the relative importance of each term of the
with respect ta: assuming thai is constant. The displacementcost function.

field w is computed by taking the inverse of the transformation The cost function in (5) is discretized to numerically mini-
g(z) = = +w(x) as described in our previous paper describingize it. The forward and reverse transformatiégnand g and

the consistent intensity registration algorithm [34]. This step their associated displacement fieldandw are parameterized
repeated in the reverse direction to update the displacement fieydthe discrete Fourier series defined by

w(x). These steps are repeated until the landmark error and the _ (n,Bk

in\(/e)rse consistency error fall below problem specific thresholds ualn] = Z u[k]ej< * and

or until a specified number of iterations are reached. In practice, bt ol

this algorithm converges to an acceptable solution within five to wqn] = Z n(kle’ fr.014D) (6)

ten iterations and, therefore, we use a maximum number of it- kesta

erations as our stopping criteria. for n € Q4 where the basis coefficientsu[k] and
nlk] are (2x1) complex-valued vectors and[k] =

D. Consistent Intensity-Based Registration [(27k1)/ N1, (27ka)/No)¥'. The basis coefficients have

The consistent intensity-based registration (CI-TPS) alght€ Property :E_hat they have comple*x conjugate symmetry,
rithm [32]-[34] using TPS regularization is briefly describedt® #[¥] = #'[N — k] andylk] = #"[N — k]. The nota-
here. It is based on minimizing the cost function given by 10N (-} denotes the dot product of two vectors such that

(n,0lk]) = (2wkin1)/N1 + (2rkano)/No. The basis coef-

C :0—/ |T(h(z)) — S(x)|* + |S(g(x)) — T(x)|*dz ficients p[k] and nk] of the discretized forward and reverse
Q displacement fields are then minimized using gradient descent
+ p/ I Lu(z)]|? + || Lw(z)|? dx as described in [32] and [34].
Q The intensity similarity component of the cost function is

o 2 o~ 2 forced to register the global intensity patterns before local in-

+ X/Q lua) = @)+ llwle) = @)l de. (5) tensity patterns by restricting the similarity gradient to modify
The intensities ofl” and $ are assumed to be scaled betweepnly the low frequencies of the displacement field parameters.
zero and one. The first integral of the cost function defind3estricting the similarity cost gradient to modifying the low-
the cumulative squared error similarity cost between the trarfg2quency components is analogous to filtering with a zonal
formed templatel’(h(z)) and target imagé(z) and between low-pass filter. To mitigate the Gibbs ringing associated with
the transformed targef(g(y)) and the template imagg(y). zonal low-pass filters, a low-pass Butterworth filter is applied
To use this similarity function, the imag&sand.S must cor- to the similarity cost gradient in the gradient decent algorithm.
respond to the same imaging modality and they may require i ) )
preprocessing to equalize the intensities of the image. The sifpi- APPeNding the Consistent Landmark and Intensity
larity function defines the correspondence between the templgdistration Algorithms
and target images as the forward and reverse transformation$he parameterization of the transformations used in the con-
I andg, respectively, that minimize the squared error intensisistent landmark (CL-TPS) algorithm and the consistent inten-
differences between the images. The second integral is usegitg (CI-TPS) algorithm are different. A spatial sampling param-
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points and the reverse transformatipmaps the outer points to

* te ® theinner points. Applying the CL-TPS transformations to a rect-
angular grid shows that the forward transformation—defined
(24,76)\ .9’76) (24’76)\ }ﬁ*%) with respect to a Eulerian frame of reference—causes the center
of the image to expand [Fig. 4(c)] while the reverse transfor-
(34,66)  (66,66) (34,66) (66,66) mation causes a contraction of the central portion of the image
(34,34) (6634) (34,34) (6634) [Fig. 4(A)]. . . . .
’ \ ’ \ The top row of Fig. 5 shows the spatial locations and magni-
tudes of the inverse consistency errors of the forward and reverse
(24.24) (76,24) (24,24) (76,24 transformations generated by the UL-TPS algorithm. The im-
® ® o agesin the left column were computed by taking the Euclidean

norm of the difference between the forward transformation
and the inverse of the reverse transformatjorl. The images
in the center column were computed in a similar fashion with

, andh~!. The CL-TPS result was created using AUL-TPS ini-
== tialization and minimizing for 100 iterations witlh = 0.5 and
\ £ = 0.012. This registration took approximately 3 min on a
single 667-MHz alpha processor.

The tables in Fig. 5 tabulate the inverse consistency error at
four representative points in the images. The paihtsxdC are
located at points away from landmarks while the poiitand
i, D are located at landmark locations. The inverse consistency
4. | error at the landmark points is small for both algorithms. How-

V 1 ever, the landmark error is quite large away from the landmark
N | locations in the UL-TPS algorithm. The range of intensities on
' (@ the color bar for each method shows that the range of inverse
Fig. 4. The location of local displacements at the landmarks points fCronSIStenCy err(-)rs for the U-L-TPS algorithm was in the range
the forward, and reverse transformations of images with 1000 pixels. ??f 0.002to 4.9 pixels while this Sam_e error for the CL-TPS algo-
Application of the TPS deformation fields to uniformly spaced grids for théithm ranged from 0.00 to 0.009. This shows that the CL-TPS al-
forward and reverse transformations. gorithm reduced the inverse consistency error by over 500 times
that of the UL-TPS algorithm for this example.

eterization of the displacement field is used in the CL-TPS al-A pair of transformations are point-wise consistent if the
gorithm while a Fourier series parameterization of the displacg@mposite functiom(g(z)) maps a points to itself. Spatial
ment field is used in the CI-TPS algorithm. The parameterizéleviations from the identity mapping can be visualized by
tion used in one algorithm must be converted into the paramet@pplying the composite mapping to a uniformly spaced grid.
ization of the other in order to use the result from one algorithirhe grid is deformed by the composite transformation in
to initialize the other as outlined in the CLI-TPS algorithm deregions where the forward and reverse transformations have
fined in Fig. 1. This is accomplished by using the fast Fouriéfverse consistency errors. The composite transformation
transform (FFT) and the inverse FFT (IFFT) to convert the spgoes not deform the grid for a perfectly inverse consistent
tial representation of the displacement field to the Fourier Seriggt of forward and reverse transformations. Fig. 6 shows the
representation anvice versa composite mapping produced by the UL-TPS [Fig. 6(a)] and
the CL-TPS [Fig. 6(b)] applied to a rectangular grid for this
experiment. Notice that there is a considerable amount of
) , inverse consistency error in the UL-TPS algorithm while there
A. Landmark Registration is no visually detectable inverse consistency error produced
The first experiment compares the inverse consistency ertyyr the CL-TPS algorithm. The blurring of the grid is due to
associated with the traditional UL-TPS algorithm to that of thieilinear interpolation used to deform the grid images with the
consistentlandmark CL-TPS algorithm. This simple experimeetror displacements. Both images are created with the same
is designed to show that the UL-TPS algorithm can have sigchnique, but the inverse consistent image needs very little
nificant inverse consistency error while this error is minimizeihterpolation since there is nearly zero displacement error.
using the CL-TPS algorithm. The experiment shown in Fig. 4 The minimum and maximum Jacobian values of the
consisted of matching eight landmarks in one image to their cdorward (reverse) transformation specify the maximum ex-
responding landmarks in a second image using both the UL-TP&1sion and contraction of the transformation, respectively.
and the CL-TPS algorithm. The arrows in Fig. 4(a) and (Bjhe Jacobian error (JE), calculated B2| min{Jac(h)} —
shows the displacement between the corresponding landmarksnax{Jac(g)}| + 1/2| min{Jac(g)} — 1/ max{Jac(h)}|,
in the forward and reverse directions, respectively. The foprovides an indirect measure of the inconsistency between
landmarks in the corners of the images were fixed. The forwatlte forward and reverse transformations. The JE is zero if
transformation, maps the four inner points to the four outethe forward and reverse transformations are inverses of one

() (b)
Forward Trans. h

Applied to Grid

Reverse Trans. g
Applied to Grid

Ill. RESULTS
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Fig. 5. The left and center panels show the inverse consistency errors of the forward and reverse transformations, respectively. The tablesdluthegigst
the landmark errors associated with selected image points. The top and bottom rows are the inverse consistency errors associated with the WEFPRS and C
landmark algorithms, respectively.

Concat. of forward & reverse
thin-plate spline transformations
applied to grid

Concat. of forward & reverse
CL-TPS transformations
applied to grid

TABLE |
COMPARISON BETWEEN THEUL-TPS, AUL-TPS,AND CL-TPS MAGE
REGISTRATION ALGORITHMS. THE TABLE COLUMNS ARE THE EXPERIMENT,
(ICC), TRANSFORMATION DIRECTION (TD), AVERAGE LANDMARK ERROR

(ALE) IN PIXELS, MAXIMUM LANDMARK ERROR (MLE), MAXIMUM
INVERSE ERROR (MIE) IN PIXELS, AVERAGE INVERSE ERROR (AIE) IN
PIXELS, MINIMUM JACOBIAN (MJ) VALUE, INVERSE OF THEMAXIMUM

JacoBIAN VALUE (1J), AND JE

[ i _;_ Experiment[ICC| TD ALE MLE AIE MIE [MJ 1J JE
_# e} ] UL-TPS || No {Forward| 0.010 0.016 2.2 41 (24 48 14
I ] Reverse| 0.0056 0.010 2.0 4.9 |29 32
T i AUL-TPS || No |Forward| 0.0074 0.013 0.091 0.20 [0.28 0.47 0.011
(@) (b) Reverse| 0.0072 0.012 0.082 0.29 |0.45 0.27
CL-TPS || Yes |Forward{0.00055 0.0011 0.0028 0.0078[0.28 0.48 0.0012
Fig. 6. Deformed grids showing the error between the forward and rever (100 iter.) Reverse |0.00046 0.00094 0.0024 0.0088/0.48 0.28

transformations estimated with (a) the landmark-based TPS algorithm &na
(b) the CL-TPS algorithm. The grids were deformed by the transformation

constructed by composing the forward and reverse transformations together, rt.e., . .
g(h(x)). Ideally, the composition of the forward and reverse transformationgndmarks were manually defined in data sBtsand B4 and

is the identity mapping which produces no distortion of the grid as in (b). Th& subset of the 39 landmarks were manually defined in the
fuzziness associated with the grids are due to the bilinear interpolation. additional three data sets (see Fig. 7). Only data B&tsind
B4 had all 39 landmarks identified on them since it was not
another, but the converse is not true. Table | shows that the gfssible to locate the corresponding locations for all the land-
was 1000 times smaller for the CL-TPS algorithm compargflarks on the other data sets due to missing or different shaped
with the UL-TPS algorithm. sulci. Only corresponding landmarks between two images were
) ) ] used for registration and calculating the landmark error, i.e., if
B. Landmark and Intensity Registration one image set was missing landmark 15, then landmark 15 was
The five 2-D transverse MRI data sets shown in Fig. 7 weret used for registration or for calculating the landmark error.
used to compare the performance of the UL-TPS, CL-TPS,Table Il lists the parameters used for each algorithm and
CI-TPS, and consistent landmark and intensity TPS (CLI-TP8)e computation time that each algorithm required to run on a
algorithms. These 256 320 pixel images with 1 millimeter single 667-MHz alpha processor. The algorithmic parameters
isotropic pixel dimension were extracted from 3-D MRI datavere chosen to demonstrate the registration performance of
sets such that they roughly corresponded to one another. Ed@halgorithms independent of optimizing the run times. These
data set was registered with the other four data sets for emdmputation times can be decreased significantly by optimizing
of the four algorithms producing ten forward and reverstie computer code and reducing the number of iterations. The
transformations for each algorithm. For brevity of presentatio@LI-TPS algorithm was run for five iterations of the CL-TPS
we only present some of the results of the experiments that aegistration algorithm followed by 95 iterations of the CI-TPS
representative of all of the results. A set 39 of correspondimggistration algorithm.
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i1 2 3 =4 i

Fig. 7. Five corresponding image slices from MRI acquired brains with manually identified points of correspondence.

TABLE I tion provides additional local deformation as compared with

SUMMARY OF ALGORITHM PARAMETERS AND COMPUTATION TIMES ON ;s gy the landmark information alone. This improved registra-
A SINGLE 667-MHz ALPHA PROCESSOR . . .

tion between landmarks produces more distortion of the tem-

Algorithm | Iterations | Computation Time | x P g _a B plate image and, therefore, there is a larger range of Jacobian
UL-TPS 1 5 seconds NA NA NA NA NA . .
CL-TPS 2 3 minutes NA  NA NA 10 o006 Vvalues for the CLI-TPS algorithm than the CL-TPS algorithm
CI-TPS 1000 1 hour 500 0.0000075 0.10 NA NA as shown by the color bar scales.

CLI-TPS 300 1 hour 500 0.0000075 0.50 1.0 0.0061

Inverse consistency error images are computed by taking the
Euclidean norm of the difference between the forward and the

The result of transforming MRI data s&% in to the shape inverse of the reverse transformations at each voxel location in
of B2 using each of the four registration algorithms is showtie image domain. Fig. 10 shows the inverse consistency error
in Fig. 8. These results are typical of the other pairwise retgnages for the registration of data sé#@ and B5 using the
istration combinations. The images are arranged left to right-TPS, CL-TPS, CI-TPS, and and CLI-TPS algorithms. Note
from the worst to the best similarity match as shown by thbat each images is on its own color-scale and that the UL-TPS
corresponding difference images shown below the transformagorithm has 10-200 times more maximum inverse consistency
images. The UL-TPS and CL-TPS algorithms perform almostror than the consistent registration algorithms. The UL-TPS
identically with respect to similarity matching. The CI-TPS andlgorithm had 50-500 times more average inverse consistency
CLI-TPS intensity-based registrations produce better similarigyror than the consistent registrations algorithms. This can be
match than the two landmark only methods. In particular, tfeeen by comparing large regions of bright pixels in the UL-TPS
intensity-based methods match the border locations and nonage to the small regions of bright pixels in the other images.
landmark locations better than the landmark TPS or CL-TP&his figure shows that consistent registration algorithms pro-
algorithms. The difference between the CI-TPS and CLI-TR$iced forward and reverse transformations that had subvoxel in-
methods is that the CLI-TPS method produces much small@rse consistency errors at all voxel locations. The inverse con-
landmark errors than the CI-TPS method which cannot be sesstent errorsinthe UL-TPS and CL-TPS algorithms are greatest
in the intensity difference images. away from the landmark driving forces because the landmark

The images in Fig. 9 show the Jacobian of the forward amliiving forces are implicitly inverse consistent. The largest in-
reverse transformations between imagisand B1 produced verse consistency errors in the CI-TPS and CLI-TPS algorithms
by the CL-TPSJ[Fig. 9(a) and (b)] and CLI-TPS [Fig. 9(c) and@ccur near edges where there is a correspondence ambiguity as-
(d)] algorithms, respectively. The value of the Jacobian atsaciated with the intensity matching solution.
point is encoded such that bright pixels represent expansionFig. 11 shows plots of the intensity similarity cost, land-
and dark pixels represent contractions. Notice that the intenark error cost, and the maximum inverse consistency error
sity pattern of the forward and reverse Jacobian images appeeasts as a function of iteration for CLI-TPS registration of
nearly opposite of one another since expansion in one domdata setsB2 and B4. The protocol used for this experiment
corresponds to contraction in the other domain. These imagess five iterations of the CL-TPS algorithm followed by 95
show the advantage of using both landmark and intensity iiterations of the CI-TPS algorithm. The intensity similarity
formation together as opposed to just using landmark informeest decreases during the CI-TPS algorithm when the intensity
tion alone. Notice that the CL-TPS algorithm has very smootk being matched and increases during the CL-TPS algorithm
Jacobian images compared with the CLI-TPS algorithm. Thes the landmarks are matched. Conversely, the landmark error
is because the CL-TPS algorithm matches the images at ttezreases during the CL-TPS algorithm and increases during
corresponding landmarks and smoothly interpolates the tra@-TPS algorithm as the intensity is matched. The plot of the
formation between the landmarks. Conversely, the patterningaximum inverse consistency error shows that switching from
of the local distortions in the CLI-TPS registration resembithe intensity (CI-TPS) to the landmark (CL-TPS) algorithm
the underlying intensity patterning. This indicates that contauses a jump in the inverse consistency error which is quickly
bining the intensity information with the landmark informaminimized. We observed that smaller landmark and intensity
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Mo Registration UL-TP5 CL-TPS CI-TRS CLI-TPS

Fig. 8. Intensity matching results for registering datd3gtto datasef32 with the four registration algorithms. The top row shows the dat®setransformed
into the shape oB2 using each algorithm and the bottom row shows the absolute difference image between the tranBfoimage and the targé®2 image.
Note that the intensity difference images of the CI-TPS and CLI-TPS are very similar since both algorithms minimize the intensity differencabeelefeamed
template and target images. However, the difference between these two results is that the CLI-TPS also produces much smaller landmark emarst éich ca

seen in the intensity difference images.

CL-TPS CLI-TPS
For, Tu=. Jac Bev, Tos. Jac. For. Tos. Jac. Rev., Tus. Jac.

@) (b) (© (d)

Fig. 9. This figure shows the Jacobians of the forward and reverse transformations for the registration of dtasdtB81 for the CL-TPS [(a) and (b)] and
CLI-TPS [(c) and (d)] algorithms. The bright pixels of the Jacobian images represent regions of expansion and dark pixels represent regiart®af contra

error is achieved by the CLI-TPS in one-third of the number dfound on the inverse consistency error since the minimum and
iterations than by either CI-TPS or CL-TPS alone. maximum Jacobian values of the forward and reverse transfor-
Fig. 11(c) shows the minimum and maximum Jacobian valugsations do not correspond to the same points.
of the forward and reverse transformations as a function of it- Table Ill summarizes the representative statistics collected
eration. These plots show that the ICC causes the minimum ffam the experiments. Comparing the results of the UL-TPS and
cobian value of the forward transformation to track with the ineL-TPS algorithms shows that the addition of ICC improved the
verse of the maximum Jacobian value (13) of the reverse traimsserse consistency of the transformations with no degradation
formation andvice versa Note that these plots give an uppepf the landmark matching. Note that for the UL-TPS algorithm,
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Inwverse Consistency Ervor [[hie) — g~ )|

UL-TP5 CL-TP5 CI-TPS CLI-TPS

o S o a W o S e LI o CE T &

Fig. 10. Images that display the magnitude and location of forward transformation inverse consistency errors for matching2fatmdd®$ with UL-TPS,
CL-TPS, CI-TPS, and CLI-TPS registration algorithms.
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Fig. 11. Plots of the intensity and landmark costs as a function of iteration for the CLI-TPS registration of d&2 astk34.

the inverse consistency error tends to be be larger as one mdhedarge number of landmarks used in the CLI-TPS registration
away from landmarks and that the inverse consistency error demits the effect of the intensity driving force in neighborhoods
be decreased by defining more corresponding landmarks. of the landmarks. In practice, when the the landmark points are
Table Il also demonstrates that the CI-TPS and CLI-TPS reqgrore sparse the intensity driving force plays a more important
istrations have a smaller average intensity difference but largete.
landmark errors. The CLI-TPS has smaller average intensity dif-
ference and smaller landmark errors than the CI-TPS registra-
tion algorithm. The CLI-TPS algorithm produces a better simi-
larity match because the landmark driving force pulls the inten- This work presented two new image registration algorithms
sity driving function out of local minima. It should be noted thabased on TPS regularization: landmark-based CL-TPS image

IV. SUMMARY AND CONCLUSION
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TABLE I
EXPERIMENTAL RESULTS PRODUCED BY MAPPING MRI BRAIN IMAGE 2 INTO
IMAGES 1, 3, 4,AND 5 (SEEFIG. 7). THE TPS ALGORITHMS COMPARED IN THIS
TABLE ARE THE UL-TPS, AUL-TPS, CL-TPS, CI-TPSyND CLI-TPS
ALGORITHMS. THE STATISTICS COMPUTED FORTHESE EXPERIMENTS WERE
THE ALE IN PIXELS, MLE, MIE IN PIXELS, AIE IN PIXELS, MASKED AVERAGE
INTENSITY DIFFERENCE(MAID), MJ, I3, AND JE

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002

computational requirements when dealing with large numbers
of landmarks.

APPENDIX
ESTIMATING THIN-PLATE SPLINE PARAMETERS

The unknown UL-TPS parametersy = [¢,...,
En, a1, a2, b in (3) are determined by solving the linear
system of equations that result by fixing the displacement field
values at landmark locations. Let ; = ¢(|p; — p;|) and build
the matrix

Algorithm ||Exp.] ALE MLE AIE MIE MAID|MJ 1J JE
None ([b2bl| 6.9 12 0.23
b2b3} 4.9 13 0.19
b2b4| 8.8 21 0.22
b2b5| 8.7 19 0.26
UL-TPS {|b2b1| 0.066 0.087 0.90 2.7 0.16 |0.56 0.75 0.053
b2b3| 0.073 0.098 0.78 3.1 0.18 [0.50 0.57 0.092
b2b4| 0.062 0.088 094 3.4 0.13 |0.51 0.66 0.090
b2b5{ 0.030 0.061 1.2 3.8 0.16 |0.56 0.67 0.050
AUL-TPS{{b2b1{ 0.016 0.029 0.0057 0.13 0.16 [0.59 0.73 0.00048
b2b3{ 0.017 0.053 0.0066 0.10 0.18 [0.55 0.53 0.0023
b2b4| 0.030 0.065 0.0096 0.22 0.13 (0.54 0.62 0.0010
b2b5| 0.031 0.046 0.0096 0.12 0.16 [0.56 0.62 0.0011
CL-TPS ||b2b1{0.000030 0.00011 0.0012 0.028 0.16 [0.59 0.73 0.0011
20 iter. ||b2b3/0.000034 0.00014 0.0016 0.022 0.18 [0.55 0.53 0.0014
b2b4| 0.0083 0.083 0.079 042 0.13 [0.54 0.62 0.0011
b2b5|0.000006 0.00037 0.0024 0.015 0.16 |0.56 0.62 0.00021
CI-TPS ||b2bl| 1.5 3.1 0.0045 0.048 0.097 {0.26 0.47 0.011
1000 iter. ||b2b3| 1.6 2.9 0.0043 0.052 0.11 |0.25 0.29 0.017
b2b4| 1.0 2.2 0.0040 0.063 0.084 {0.26 0.44 0.0075
b2b5| 1.4 3.4 0.0044 0.099 0.092 }0.18 0.32 0.0091
CLI-TPS {|b2bl| 1.1 2.0 0.020 0.40 0.091]0.19 0.37 0.036
300 iter. ||b2b3] 1.1 20 0021 062 0.10 |0.13 0.23 0.030
b2b4| 0.75 1.6 0.017 0.61 0.080(0.12 0.39 0.025
b2b5| 1.1 2.8 0.021 096 0.0880.10 0.17 0.034 D

i =

o A
K=lar 0
where
P11 Pu2 P1,Mm
P21 P22 2. M
¢ = ) ) X
Lorry  Par2 PM M
Tpr ¢ 1
P2 q2 1
A=) . (7)
Lo g 1

where O is a 3x 3 matrix of zeros. Also, define the
(M + 3) x 2 matrix of landmark displacements as
= [dl,...,dM,O,O,O]T where d; =

g — pi for
1,..., M. The equations formed by substituting the

registration and landmark and CLI-TPS image registratiopyndmark constrains into (3) can be written in matrix form
Experiments in two dimensions were used to show that thg p = KW. The solutionW to this matrix equation is

inverse consistency error between the forward and reveg&ermined by least squares estimation since the matris
transformations generated from the traditional UL-TPS coulght guaranteed to be full rank.

be minimized using the CL-TPS algorithm. Inverse consistency
error images showed that the largest error occurred away from
the landmark points for the UL-TPS algorithm and near the
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the 2-D MRI brain example when compared with the UL-TPS
registration. The JE was reduced from 1.4 to 0.0012 for the
inner-to-outer dots example and from 0.050 to 0.034 for the[1]
MRI brain example. Using landmark and intensity information
with the MRI brain example gave a better intensity matching 2]
between the images than just using the landmark information
as visualized in Fig. 8 and by a decrease in the average intensiti?]
difference recorded in Table lll. It was shown that using both
landmark and intensity information gave a better registration
of the MRI brain images than using the intensity or landmark [4]
information alone.

Although the results presented in this paper are restricted to
2-D experiments, the extension of the algorithmic principles to 5]
three dimensions is straight forward. A few of the issues in-
volved with going from 2-D to 3-D include, the 3-D implemen-
tation require more computer memory and computation time tol®l
converge, and the periodic landmark extension presented in Seg,
tion II-B requires that the landmarks be replicated in 27 adjacent
image domains in 3-D. Another desired improvement in going (8]
from 2-D to 3-D would be to develop an exact method for the
periodic landmark registration problem to reduce memory and
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