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Consistent Landmark and Intensity-Based Image
Registration

H. J. Johnson* and G. E. Christensen

Abstract—Two new consistent image registration algorithms
are presented: one is based on matching corresponding landmarks
and the other is based on matching both landmark and intensity
information. The consistent landmark and intensity registration
algorithm produces good correspondences between images near
landmark locations by matching corresponding landmarks and
away from landmark locations by matching the image intensi-
ties. In contrast to similar unidirectional algorithms, these new
consistent algorithms jointly estimate the forward and reverse
transformation between two images while minimizing the inverse
consistency error—the error between the forward (reverse)
transformation and the inverse of the the reverse (forward) trans-
formation. This reduces the ambiguous correspondence between
the forward and reverse transformations associated with large
inverse consistency errors. In both algorithms a thin-plate spline
(TPS) model is used to regularize the estimated transformations.
Two-dimensional (2-D) examples are presented that show the
inverse consistency error produced by the traditional unidirec-
tional landmark TPS algorithm can be relatively large and that
this error is minimized using the consistent landmark algorithm.
Results using 2-D magnetic resonance imaging data are presented
that demonstrate that using landmark and intensity information
together produce better correspondence between medical images
than using either landmarks or intensity information alone.

Index Terms—Correspondence, deformable templates, image
registration, inverse transformation, landmark registration.

I. INTRODUCTION

I MAGE registration algorithms are used to define correspon-
dences between sets of images. Various characteristics of

image data are exploited to drive image registration algorithms.
The characteristics exploited range from designated landmark
positions [1]–[4], to contours [5]–[7] or surfaces [8]–[11], and
to volumetric functions of voxel intensities [6], [12]–[21].

There are many image registration algorithms based on the
exact matching of corresponding landmarks in two images [22].
The unidirectional landmark thin-plate spline (UL-TPS) image
registration technique pioneered by F. Bookstein [1], [2], [23] is
the most commonly used landmark driven nonrigid image regis-
tration algorithm. Generalizations of UL-TPS procedure include
kriging methods [24], [25] that use regularization models other
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than the TPS model, anisotropic landmark interactions [4] and
directed landmarks [26].

Most landmark-based registration algorithms, including the
ones described in this paper, assume that a small deformation is
sufficient to register a set of images. In cases where the small
deformation assumption holds, registration algorithms may ef-
ficiently estimate diffeomorphic transformations in a solution
space that contain nondiffeomorphic transformations. The small
deformation limitation is not universally applicable, and work
by Joshi and Milleret al. [27]–[29] estimates large deformation
transformations in a solution space of diffeomorphisms by con-
straining the transformations to obey diffeomorphic fluid prop-
erties.

The UL-TPS algorithm (see Section II-B) defines a unique
smooth registration from a template image to a target image
based on registering corresponding landmarks. Correspondence
away from the landmark points is defined by interpolating the
transformation with a TPS model. Although TPS interpolation
produces a smooth transformation from one image to another,
it does not define a consistent correspondence between the two
images except at the landmark points. This can be seen by com-
paring the transformation generated by matching a set of tem-
plate landmarks to a set of target landmarks with the transforma-
tion generated by matching the target landmarks to the template
landmarks. If the correspondence is consistent then the forward
and reverse transformations will be inverses of one another. This
is not the case as shown by the examples in Section III. Con-
sistency of the forward and reverse transformations is a neces-
sary condition to define a unique correspondence between two
images since it insures that the correspondence defined by the
forward transformation is consistent with the correspondence
defined by the reverse transformation. Without consistency, the
forward transformation would define one correspondence be-
tween the images while the reverse transformation would define
a different correspondence.

The consistent registration methods presented in this paper
builds on the unidirectional landmark and intensity methods de-
scribed in [30] which used a Fourier series basis to parameterize
the transformation and the method developed by Kybic [31] that
used B-splines.

In this paper, the idea of consistent image registration
[32]–[34], [38] is combined with the UL-TPS algorithm
[1]–[4], [23] to overcome the problem that the forward and
reverse transformations generated by the UL-TPS algorithm are
not inverses of one another. In the consistent image registration
approach, the forward and reverse transformations between two
images are jointly estimated subject to the constraints that they
minimize the TPS bending energy and that they are inverses
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Fig. 1. Flow chart describing the steps of the consistent landmark and intensity image registration algorithm. The images being registered are assumed to be
rigidly aligned before starting this procedure.

of one another. The merger of these two approaches produced
a consistent landmark-based TPS (CL-TPS) and a consistent
landmark- and intensity-based TPS (CLI-TPS) image regis-
tration algorithms. The CL-TPS algorithm (see Section II-C)
provides a means to estimate a consistent pair of forward and
reverse transformations given a set of corresponding points.
The CLI-TPS algorithm (see Section II-A) combines both
landmark and intensity information to estimate a consistent
pair of forward and reverse transformations. The performance
of these algorithms are compared using two-dimensional (2-D)
magnetic resonance imaging (MRI) brain data images.

II. M ETHODS

A. Consistent Landmark and Intensity-Based Registration

The consistent landmark and intensity image registration al-
gorithm is outlined in Fig. 1. It is assumed that the images being
registered have been rigidly rotated and translated to put them
into a standard orientation, such as the Talairach coordinate
system [35], before applying this procedure. In this paper, the
data sets did not need to be scaled to the same size before ap-
plying the algorithms since the landmark registration takes care
of the global scale differences. The first step of the algorithm
is to produce a good initial nonrigid registration using a land-
mark initialization step. This step consists of: 1) picking cor-
responding landmarks in the two images; 2) solving the unidi-
rectional TPS algorithm modified to produce periodic boundary
conditions for the forward and reverse transformations; and 3)
averaging the forward transformation with the inverse of the re-
verse transformation, andvice versa. The full details of the land-
mark initialization are described in Section II-B.

After the landmark initialization step, the iterative CL-TPS
algorithm described in Section II-C is used to produce a con-
sistent set of forward and reverse transformations. This algo-
rithm jointly estimates a set of transformations that minimize
both the inverse consistency error and the bending energy of
the TPS model while maintaining exact correspondence at the
landmarks. The resulting forward and reverse transformations
have orders of magnitude less inverse consistency error than the
original unidirectional TPS transformations as shown by the ex-
periments in Section III.

The last step of the algorithm is to use the consistent inten-
sity registration algorithm [32]–[34], that is briefly described in
Section II-D, to refine the transformations based on matching
the intensities of the images. This step matches the images in
regions away from the landmarks by minimizing the intensity
differences in these regions. The intensity matching does little in
regions near corresponding landmarks since these regions have
similar intensity patterns that have all ready been matched by
the landmark registration. During the intensity matching step,
the landmark correspondence error increases in regions where
there are bad landmark initializations. The landmark correspon-
dence error also increases in this step due to the TPS regular-
ization model that can pull corresponding landmarks apart. The
landmark registration error can be minimized by applying the
consistent landmark registration step followed again by the in-
tensity registration step.

The process of alternating between matching the landmarks
and then the image intensities is repeated until an appropriate
stopping criteria is met. In this work, a fixed number of itera-
tions was used as the stopping criteria. Alternatively, the algo-
rithm could be stopped after an acceptable intensity similarity
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and landmark error cost is achieved. The optimal strategy for
stopping the algorithm can be quite complex and will be studied
in future work.

The consistent landmark and intensity-based TPS algorithm
can be thought of as estimating a consistent set of forward and
reverse transformations that minimize the intensity differences
between two images while being guided by the landmark cor-
respondences. The landmarks guide the solution by initializing
the consistent intensity registration algorithm with transforma-
tions that are nearly inverse consistent and have exact correspon-
dence at the landmarks. This initialization helps the consistent
intensity registration avoid some local minima and, therefore,
produce more biologically relevant correspondence maps.

The final registration is determined from the intensity infor-
mation alone. The landmark matching is used to get the two im-
ages close in a global sense and then the intensity information
is used to fine tune the registration in the neighborhood of the
landmarks. The choice not to use the landmarks for the final reg-
istration was motivated by the fact that the landmarks are gener-
ally located on object edges or in regions of changing intensity
in the image. Therefore, once the landmark matching gets cor-
responding regions of the images close, the intensity matching
finishes the job by matching all of the points in the neighbor-
hood of the landmark based on their intensities.

Another reason that the final registration only used intensity
information was that we encountered problems when we tried
to force the landmarks and intensity to match at the same time.
The problems occured in regions where the landmarks did not
correspond to the same location on the intensity profile in both
data sets. The Jacobian of the transformation would go nega-
tive at the landmark locations when the intensity and landmark
forces moved in different directions. This problem was due to
the fact that the landmark driving force was focused at the land-
mark and the intensity driving force was distributed. The Jaco-
bian of the transformation would go negative as the landmark
point moved in one direction and the material surrounding the
landmark would go in the opposite direction.

The following notation will be used throughout the rest of
the paper. The variables and , for , denote
the corresponding landmarks in the templateand target
images, respectively. The domain of the template imageand
target image is denoted by . The forward transformation

is defined as the mapping that transformsinto
the shape of and the reverse transformation is
defined as the mapping that transformsinto the shape of .
The forward and reverse displacement displacement fields are
defined as and , respectively.
The inverse of the forward and reverse transformations denoted
by and , respectively, can be expressed in terms
of the displacement fields and

, respectively.

B. Unidirectional Landmark Thin-Plate Spline Registration

The UL-TPS image registration algorithm [1], [2], [23]
registers a template image with a target image by
matching corresponding landmarks identified in both images.
Registration at nonlandmark points is accomplished by inter-

polation such that the overall transformation smoothly maps
the template into the shape of the target image.

The unidirectional landmark image registration problem can
be thought of as a Dirichlet problem [25] and can be stated math-
ematically as finding the displacement fieldthat minimizes the
cost function

(1)

subject to the constraints that for .
The operator denotes a symmetric linear differential operator
[36] and is used to interpolate the displacement fieldbetween
the corresponding landmarks. When , the problem re-
duces to the TPS registration problem given by

(2)

subject to the constraints that for .
It is well known [1], [2], [23] that the TPS displacement field

that minimizes the bending energy defined by (2) has the
form

(3)

where and are 2 1 weighting vectors. The
2 2 matrix and the 2 1 vector define the affine
transformation where and are 2 1 vectors. The proce-
dure used to determine these unknown constants is described in
Appendix A.

The TPS interpolant is derived assuming
infinite boundary conditions, i.e., is assumed to be the
whole plane . The TPS transformation is truncated at the
image boundary when it is applied to an image. This presents
a mismatch in boundary conditions at the image edges when
comparing forward and reverse transformations between two
images. It also implies that a TPS transformation is not a
one-to-one and onto mapping between two image spaces. To
overcome this problem and to match the periodic boundary
conditions assumed by the intensity-based consistent image
registration algorithm [32], [34], we use the following pro-
cedure to approximate periodic boundary conditions for the
TPS algorithm. In the future we plan to replace the following
periodic approximation method with an exact solution for
the periodic landmark matching. This will be important for
extending the algorithm from 2-D to three-dimensional (3-D)
since the computation time and storage requirements increase
by a factor of 27 for the 3-D case.

It is assumed for all of the algorithms presented in this paper
that the images being matched have the same field of view and
that they contain the same structures. We further assume that
the objects in the images are centered within the image and are
padded with the background intensity.

Fig. 2 illustrates the concept of periodic boundary conditions
for the landmark TPS registration problem. Cyclic boundary
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(a)

(b)

Fig. 2. Diagrams describing the coordinate system and points used to ensure
that the resulting displacement field demonstrates continuous periodic boundary
conditions. (a) The toroidal coordinate system. (b) The layout of the point used
to solve the TPS with approximate circular boundaries.

conditions implies a toroidal coordinate system such that the
left–right and top–bottom boundaries of the domainare
mapped together. Modifying the boundary conditions in this
manner causes an infinite number of interactions between
landmarks for a given finite set of landmark points. Fig. 2(b)
shows two such interactions between landmark pointsand

; one within the domain and another between adjacent
image domains. We approximate the solution of Laplace’s
Equation with periodic boundary conditions by solving the
TPS registration problem with replicated landmark locations in
the eight adjacent domains as shown in Fig. 2(b). This provides
a good approximation to periodic boundary conditions since
the the kernel function, , causes interactions
between landmarks to decrease rapidly as the distance between
landmarks increases. In our tests, there were differences
between the transformations found using infinite and periodic
boundary conditions but there was nearly no difference in
terms of the magnitude of the landmark errors. The major
differences between the two sets of boundary conditions was
in the location of the maximum inverse consistency error.
The maximum inverse consistency error was located on the
image boundaries in the case of infinite boundary conditions

while it was away from the boundaries for the case of periodic
boundary conditions.

The inverse consistency error of the forward and reverse
transformations generated by the UL-TPS can be made smaller
by averaging the forward transformation with the inverse of
the reverse transformation. This averaging will be referred to
as the averaged UL-TPS (AUL-TPS) algorithm and is used to
initialize the consistent landmark TPS algorithm described in
the next section. Note that this procedure does not significantly
effect the error at the landmarks since the displacement at the
landmark locations in the forward, reverse, inverse-forward,
and inverse-reverse transformations are nearly zero as com-
puted by the UL-TPS algorithm.

C. Consistent Landmark Thin-Plate Spline Registration

The AUL-TPS image registration algorithm produces con-
sistent correspondence only at the landmark locations. The
CL-TPS image registration algorithm is designed to align the
landmark points and minimize the consistency errors across the
entire image domain.

The CL-TPS algorithm is solved by minimizing the cost func-
tion given by

subject to

and for

(4)

The first integral of the cost function defines the bending energy
of the TPS for the displacement fieldsand associated with
the forward and reverse transformations, respectively. This term
penalizes large derivatives of the displacement fields and pro-
vides the smooth interpolation away from the landmarks. The
second integral is called the inverse consistency constraint (ICC)
and is minimized when the forward and reverse transformations
are inverses of one another. This integral couples the estimation
of the forward and reverse transformations together and penal-
izes transformations that are not inverses of one another. The
constants and define the relative importance of the bending
energy minimization and the inverse consistency terms of the
cost function. Notice that this problem is a nonlinear minimiza-
tion problem since the ICC is a function of the inverse-forward

and inverse-reverse
transformations.

Equation (4) is minimized numerically using the CL-TPS al-
gorithm described in Fig. 3. The algorithm is initialized with
the forward and reverse displacement fieldsand either set to
zero as in Fig. 3 or with the result of a previous registration algo-
rithm. The temporary variablesand are initially set equal to
the landmark locations and , respectively, for .
The value of converges from to as the algorithm con-
verges and in similar fashion, the value ofconverges from
to .

At each iteration of the algorithm, the UL-TPS algorithm with
periodic boundary conditions is used to solve for the perturba-
tion field that minimizes the distance between the current
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Fig. 3. The CL-TPS algorithm registers two images by matching corresponding landmarks in the images while minimizing the inverse consistency error between
the forward and reverse transformations.

position of and its final position . The perturbation field
times the step size is added to the current estimate of

the forward displacement field where is a positive number
less than one. This procedure is repeated to update the reverse
displacement field . Next, the forward displacement field
is updated with the step size times the gradient of the ICC
with respect to assuming that is constant. The displacement
field is computed by taking the inverse of the transformation

as described in our previous paper describing
the consistent intensity registration algorithm [34]. This step is
repeated in the reverse direction to update the displacement field

. These steps are repeated until the landmark error and the
inverse consistency error fall below problem specific thresholds
or until a specified number of iterations are reached. In practice,
this algorithm converges to an acceptable solution within five to
ten iterations and, therefore, we use a maximum number of it-
erations as our stopping criteria.

D. Consistent Intensity-Based Registration

The consistent intensity-based registration (CI-TPS) algo-
rithm [32]–[34] using TPS regularization is briefly described
here. It is based on minimizing the cost function given by

(5)

The intensities of and are assumed to be scaled between
zero and one. The first integral of the cost function defines
the cumulative squared error similarity cost between the trans-
formed template and target image and between
the transformed target and the template image .
To use this similarity function, the imagesand must cor-
respond to the same imaging modality and they may require
preprocessing to equalize the intensities of the image. The simi-
larity function defines the correspondence between the template
and target images as the forward and reverse transformations

and , respectively, that minimize the squared error intensity
differences between the images. The second integral is used to

regularize the forward and reverse displacement fieldsand ,
respectively. This term is used to enforce the displacement fields
to be smooth and continuous. The third integral is called the ICC
and is minimized when the forward and reverse transformations

and , respectively, are inverses of each other. The constants
, and define the relative importance of each term of the

cost function.
The cost function in (5) is discretized to numerically mini-

mize it. The forward and reverse transformationsand and
their associated displacement fieldsand are parameterized
by the discrete Fourier series defined by

and

(6)

for where the basis coefficients and
are (2 1) complex-valued vectors and

. The basis coefficients have
the property that they have complex conjugate symmetry,
i.e., and . The nota-
tion denotes the dot product of two vectors such that

. The basis coef-
ficients and of the discretized forward and reverse
displacement fields are then minimized using gradient descent
as described in [32] and [34].

The intensity similarity component of the cost function is
forced to register the global intensity patterns before local in-
tensity patterns by restricting the similarity gradient to modify
only the low frequencies of the displacement field parameters.
Restricting the similarity cost gradient to modifying the low-
frequency components is analogous to filtering with a zonal
low-pass filter. To mitigate the Gibbs ringing associated with
zonal low-pass filters, a low-pass Butterworth filter is applied
to the similarity cost gradient in the gradient decent algorithm.

E. Appending the Consistent Landmark and Intensity
Registration Algorithms

The parameterization of the transformations used in the con-
sistent landmark (CL-TPS) algorithm and the consistent inten-
sity (CI-TPS) algorithm are different. A spatial sampling param-
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(a) (b)

(c) (d)

Fig. 4. The location of local displacements at the landmarks points for
the forward, and reverse transformations of images with 100� 100 pixels.
Application of the TPS deformation fields to uniformly spaced grids for the
forward and reverse transformations.

eterization of the displacement field is used in the CL-TPS al-
gorithm while a Fourier series parameterization of the displace-
ment field is used in the CI-TPS algorithm. The parameteriza-
tion used in one algorithm must be converted into the parameter-
ization of the other in order to use the result from one algorithm
to initialize the other as outlined in the CLI-TPS algorithm de-
fined in Fig. 1. This is accomplished by using the fast Fourier
transform (FFT) and the inverse FFT (IFFT) to convert the spa-
tial representation of the displacement field to the Fourier Series
representation andvice versa.

III. RESULTS

A. Landmark Registration

The first experiment compares the inverse consistency error
associated with the traditional UL-TPS algorithm to that of the
consistent landmark CL-TPS algorithm. This simple experiment
is designed to show that the UL-TPS algorithm can have sig-
nificant inverse consistency error while this error is minimized
using the CL-TPS algorithm. The experiment shown in Fig. 4
consisted of matching eight landmarks in one image to their cor-
responding landmarks in a second image using both the UL-TPS
and the CL-TPS algorithm. The arrows in Fig. 4(a) and (b)
shows the displacement between the corresponding landmarks
in the forward and reverse directions, respectively. The four
landmarks in the corners of the images were fixed. The forward
transformation maps the four inner points to the four outer

points and the reverse transformationmaps the outer points to
the inner points. Applying the CL-TPS transformations to a rect-
angular grid shows that the forward transformation—defined
with respect to a Eulerian frame of reference—causes the center
of the image to expand [Fig. 4(c)] while the reverse transfor-
mation causes a contraction of the central portion of the image
[Fig. 4(d)].

The top row of Fig. 5 shows the spatial locations and magni-
tudes of the inverse consistency errors of the forward and reverse
transformations generated by the UL-TPS algorithm. The im-
ages in the left column were computed by taking the Euclidean
norm of the difference between the forward transformation
and the inverse of the reverse transformation. The images
in the center column were computed in a similar fashion with
and . The CL-TPS result was created using AUL-TPS ini-
tialization and minimizing for 100 iterations with 0.5 and

0.012. This registration took approximately 3 min on a
single 667-MHz alpha processor.

The tables in Fig. 5 tabulate the inverse consistency error at
four representative points in the images. The pointsand are
located at points away from landmarks while the pointsand

are located at landmark locations. The inverse consistency
error at the landmark points is small for both algorithms. How-
ever, the landmark error is quite large away from the landmark
locations in the UL-TPS algorithm. The range of intensities on
the color bar for each method shows that the range of inverse
consistency errors for the UL-TPS algorithm was in the range
of 0.002 to 4.9 pixels while this same error for the CL-TPS algo-
rithm ranged from 0.00 to 0.009. This shows that the CL-TPS al-
gorithm reduced the inverse consistency error by over 500 times
that of the UL-TPS algorithm for this example.

A pair of transformations are point-wise consistent if the
composite function maps a point to itself. Spatial
deviations from the identity mapping can be visualized by
applying the composite mapping to a uniformly spaced grid.
The grid is deformed by the composite transformation in
regions where the forward and reverse transformations have
inverse consistency errors. The composite transformation
does not deform the grid for a perfectly inverse consistent
set of forward and reverse transformations. Fig. 6 shows the
composite mapping produced by the UL-TPS [Fig. 6(a)] and
the CL-TPS [Fig. 6(b)] applied to a rectangular grid for this
experiment. Notice that there is a considerable amount of
inverse consistency error in the UL-TPS algorithm while there
is no visually detectable inverse consistency error produced
by the CL-TPS algorithm. The blurring of the grid is due to
bilinear interpolation used to deform the grid images with the
error displacements. Both images are created with the same
technique, but the inverse consistent image needs very little
interpolation since there is nearly zero displacement error.

The minimum and maximum Jacobian values of the
forward (reverse) transformation specify the maximum ex-
pansion and contraction of the transformation, respectively.
The Jacobian error (JE), calculated as

,
provides an indirect measure of the inconsistency between
the forward and reverse transformations. The JE is zero if
the forward and reverse transformations are inverses of one
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Fig. 5. The left and center panels show the inverse consistency errors of the forward and reverse transformations, respectively. The tables in the right columns list
the landmark errors associated with selected image points. The top and bottom rows are the inverse consistency errors associated with the UL-TPS and CL-TPS
landmark algorithms, respectively.

(a) (b)

Fig. 6. Deformed grids showing the error between the forward and reverse
transformations estimated with (a) the landmark-based TPS algorithm and
(b) the CL-TPS algorithm. The grids were deformed by the transformation
constructed by composing the forward and reverse transformations together, i.e.,
g(h(x)). Ideally, the composition of the forward and reverse transformations
is the identity mapping which produces no distortion of the grid as in (b). The
fuzziness associated with the grids are due to the bilinear interpolation.

another, but the converse is not true. Table I shows that the JE
was 1000 times smaller for the CL-TPS algorithm compared
with the UL-TPS algorithm.

B. Landmark and Intensity Registration

The five 2-D transverse MRI data sets shown in Fig. 7 were
used to compare the performance of the UL-TPS, CL-TPS,
CI-TPS, and consistent landmark and intensity TPS (CLI-TPS)
algorithms. These 256 320 pixel images with 1 millimeter
isotropic pixel dimension were extracted from 3-D MRI data
sets such that they roughly corresponded to one another. Each
data set was registered with the other four data sets for each
of the four algorithms producing ten forward and reverse
transformations for each algorithm. For brevity of presentation,
we only present some of the results of the experiments that are
representative of all of the results. A set 39 of corresponding

TABLE I
COMPARISONBETWEEN THEUL-TPS, AUL-TPS,AND CL-TPS IMAGE

REGISTRATION ALGORITHMS. THE TABLE COLUMNS ARE THE EXPERIMENT,
(ICC), TRANSFORMATION DIRECTION (TD), AVERAGE LANDMARK ERROR

(ALE) IN PIXELS, MAXIMUM LANDMARK ERROR (MLE), MAXIMUM

INVERSEERROR(MIE) IN PIXELS, AVERAGE INVERSEERROR(AIE) IN

PIXELS, MINIMUM JACOBIAN (MJ) VALUE, INVERSE OF THEMAXIMUM

JACOBIAN VALUE (IJ), AND JE

landmarks were manually defined in data setsand and
a subset of the 39 landmarks were manually defined in the
additional three data sets (see Fig. 7). Only data setsand

had all 39 landmarks identified on them since it was not
possible to locate the corresponding locations for all the land-
marks on the other data sets due to missing or different shaped
sulci. Only corresponding landmarks between two images were
used for registration and calculating the landmark error, i.e., if
one image set was missing landmark 15, then landmark 15 was
not used for registration or for calculating the landmark error.

Table II lists the parameters used for each algorithm and
the computation time that each algorithm required to run on a
single 667-MHz alpha processor. The algorithmic parameters
were chosen to demonstrate the registration performance of
the algorithms independent of optimizing the run times. These
computation times can be decreased significantly by optimizing
the computer code and reducing the number of iterations. The
CLI-TPS algorithm was run for five iterations of the CL-TPS
registration algorithm followed by 95 iterations of the CI-TPS
registration algorithm.
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Fig. 7. Five corresponding image slices from MRI acquired brains with manually identified points of correspondence.

TABLE II
SUMMARY OF ALGORITHM PARAMETERS AND COMPUTATION TIMES ON

A SINGLE 667-MHZ ALPHA PROCESSOR

The result of transforming MRI data set in to the shape
of using each of the four registration algorithms is shown
in Fig. 8. These results are typical of the other pairwise reg-
istration combinations. The images are arranged left to right
from the worst to the best similarity match as shown by the
corresponding difference images shown below the transformed
images. The UL-TPS and CL-TPS algorithms perform almost
identically with respect to similarity matching. The CI-TPS and
CLI-TPS intensity-based registrations produce better similarity
match than the two landmark only methods. In particular, the
intensity-based methods match the border locations and non-
landmark locations better than the landmark TPS or CL-TPS
algorithms. The difference between the CI-TPS and CLI-TPS
methods is that the CLI-TPS method produces much smaller
landmark errors than the CI-TPS method which cannot be seen
in the intensity difference images.

The images in Fig. 9 show the Jacobian of the forward and
reverse transformations between imagesand produced
by the CL-TPS[Fig. 9(a) and (b)] and CLI-TPS [Fig. 9(c) and
(d)] algorithms, respectively. The value of the Jacobian at a
point is encoded such that bright pixels represent expansion,
and dark pixels represent contractions. Notice that the inten-
sity pattern of the forward and reverse Jacobian images appear
nearly opposite of one another since expansion in one domain
corresponds to contraction in the other domain. These images
show the advantage of using both landmark and intensity in-
formation together as opposed to just using landmark informa-
tion alone. Notice that the CL-TPS algorithm has very smooth
Jacobian images compared with the CLI-TPS algorithm. This
is because the CL-TPS algorithm matches the images at the
corresponding landmarks and smoothly interpolates the trans-
formation between the landmarks. Conversely, the patterning
of the local distortions in the CLI-TPS registration resemble
the underlying intensity patterning. This indicates that com-
bining the intensity information with the landmark informa-

tion provides additional local deformation as compared with
using the landmark information alone. This improved registra-
tion between landmarks produces more distortion of the tem-
plate image and, therefore, there is a larger range of Jacobian
values for the CLI-TPS algorithm than the CL-TPS algorithm
as shown by the color bar scales.

Inverse consistency error images are computed by taking the
Euclidean norm of the difference between the forward and the
inverse of the reverse transformations at each voxel location in
the image domain. Fig. 10 shows the inverse consistency error
images for the registration of data sets and using the
UL-TPS, CL-TPS, CI-TPS, and and CLI-TPS algorithms. Note
that each images is on its own color-scale and that the UL-TPS
algorithm has 10–200 times more maximum inverse consistency
error than the consistent registration algorithms. The UL-TPS
algorithm had 50–500 times more average inverse consistency
error than the consistent registrations algorithms. This can be
seen by comparing large regions of bright pixels in the UL-TPS
image to the small regions of bright pixels in the other images.
This figure shows that consistent registration algorithms pro-
duced forward and reverse transformations that had subvoxel in-
verse consistency errors at all voxel locations. The inverse con-
sistent errors in the UL-TPS and CL-TPS algorithms are greatest
away from the landmark driving forces because the landmark
driving forces are implicitly inverse consistent. The largest in-
verse consistency errors in the CI-TPS and CLI-TPS algorithms
occur near edges where there is a correspondence ambiguity as-
sociated with the intensity matching solution.

Fig. 11 shows plots of the intensity similarity cost, land-
mark error cost, and the maximum inverse consistency error
costs as a function of iteration for CLI-TPS registration of
data sets and . The protocol used for this experiment
was five iterations of the CL-TPS algorithm followed by 95
iterations of the CI-TPS algorithm. The intensity similarity
cost decreases during the CI-TPS algorithm when the intensity
is being matched and increases during the CL-TPS algorithm
as the landmarks are matched. Conversely, the landmark error
decreases during the CL-TPS algorithm and increases during
CI-TPS algorithm as the intensity is matched. The plot of the
maximum inverse consistency error shows that switching from
the intensity (CI-TPS) to the landmark (CL-TPS) algorithm
causes a jump in the inverse consistency error which is quickly
minimized. We observed that smaller landmark and intensity
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Fig. 8. Intensity matching results for registering datasetB5 to datasetB2 with the four registration algorithms. The top row shows the data setB5 transformed
into the shape ofB2 using each algorithm and the bottom row shows the absolute difference image between the transformedB5 image and the targetB2 image.
Note that the intensity difference images of the CI-TPS and CLI-TPS are very similar since both algorithms minimize the intensity differences between the deformed
template and target images. However, the difference between these two results is that the CLI-TPS also produces much smaller landmark errors which cannot be
seen in the intensity difference images.

(a) (b) (c) (d)

Fig. 9. This figure shows the Jacobians of the forward and reverse transformations for the registration of data setsB2 andB1 for the CL-TPS [(a) and (b)] and
CLI-TPS [(c) and (d)] algorithms. The bright pixels of the Jacobian images represent regions of expansion and dark pixels represent regions of contraction.

error is achieved by the CLI-TPS in one-third of the number of
iterations than by either CI-TPS or CL-TPS alone.

Fig. 11(c) shows the minimum and maximum Jacobian values
of the forward and reverse transformations as a function of it-
eration. These plots show that the ICC causes the minimum Ja-
cobian value of the forward transformation to track with the in-
verse of the maximum Jacobian value (IJ) of the reverse trans-
formation andvice versa. Note that these plots give an upper

bound on the inverse consistency error since the minimum and
maximum Jacobian values of the forward and reverse transfor-
mations do not correspond to the same points.

Table III summarizes the representative statistics collected
from the experiments. Comparing the results of the UL-TPS and
CL-TPS algorithms shows that the addition of ICC improved the
inverse consistency of the transformations with no degradation
of the landmark matching. Note that for the UL-TPS algorithm,
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Fig. 10. Images that display the magnitude and location of forward transformation inverse consistency errors for matching data setsB2 andB5 with UL-TPS,
CL-TPS, CI-TPS, and CLI-TPS registration algorithms.

(a) (b)

(c) (d)

Fig. 11. Plots of the intensity and landmark costs as a function of iteration for the CLI-TPS registration of data setsB2 andB4.

the inverse consistency error tends to be be larger as one moves
away from landmarks and that the inverse consistency error can
be decreased by defining more corresponding landmarks.

Table III also demonstrates that the CI-TPS and CLI-TPS reg-
istrations have a smaller average intensity difference but larger
landmark errors. The CLI-TPS has smaller average intensity dif-
ference and smaller landmark errors than the CI-TPS registra-
tion algorithm. The CLI-TPS algorithm produces a better simi-
larity match because the landmark driving force pulls the inten-
sity driving function out of local minima. It should be noted that

the large number of landmarks used in the CLI-TPS registration
limits the effect of the intensity driving force in neighborhoods
of the landmarks. In practice, when the the landmark points are
more sparse the intensity driving force plays a more important
role.

IV. SUMMARY AND CONCLUSION

This work presented two new image registration algorithms
based on TPS regularization: landmark-based CL-TPS image
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TABLE III
EXPERIMENTAL RESULTSPRODUCED BY MAPPING MRI BRAIN IMAGE 2 INTO

IMAGES 1, 3, 4,AND 5 (SEEFIG. 7). THE TPS ALGORITHMS COMPARED IN THIS

TABLE ARE THE UL-TPS, AUL-TPS, CL-TPS, CI-TPS,AND CLI-TPS
ALGORITHMS. THE STATISTICS COMPUTED FORTHESEEXPERIMENTSWERE

THE ALE IN PIXELS, MLE, MIE IN PIXELS, AIE IN PIXELS, MASKED AVERAGE

INTENSITY DIFFERENCE(MAID), MJ, IJ, AND JE

registration and landmark and CLI-TPS image registration.
Experiments in two dimensions were used to show that the
inverse consistency error between the forward and reverse
transformations generated from the traditional UL-TPS could
be minimized using the CL-TPS algorithm. Inverse consistency
error images showed that the largest error occurred away from
the landmark points for the UL-TPS algorithm and near the
landmark points for the CL-TPS algorithm. The maximum
CL-TPS inverse consistency error was reduced by 500 times
in the inner-to-outer dots example and greater than 6 times in
the 2-D MRI brain example when compared with the UL-TPS
registration. The JE was reduced from 1.4 to 0.0012 for the
inner-to-outer dots example and from 0.050 to 0.034 for the
MRI brain example. Using landmark and intensity information
with the MRI brain example gave a better intensity matching
between the images than just using the landmark information
as visualized in Fig. 8 and by a decrease in the average intensity
difference recorded in Table III. It was shown that using both
landmark and intensity information gave a better registration
of the MRI brain images than using the intensity or landmark
information alone.

Although the results presented in this paper are restricted to
2-D experiments, the extension of the algorithmic principles to
three dimensions is straight forward. A few of the issues in-
volved with going from 2-D to 3-D include, the 3-D implemen-
tation require more computer memory and computation time to
converge, and the periodic landmark extension presented in Sec-
tion II-B requires that the landmarks be replicated in 27 adjacent
image domains in 3-D. Another desired improvement in going
from 2-D to 3-D would be to develop an exact method for the
periodic landmark registration problem to reduce memory and

computational requirements when dealing with large numbers
of landmarks.

APPENDIX

ESTIMATING THIN-PLATE SPLINE PARAMETERS

The unknown UL-TPS parameters
in (3) are determined by solving the linear

system of equations that result by fixing the displacement field
values at landmark locations. Let and build
the matrix

where

...
...

...
...

...
...

...
(7)

where is a 3 3 matrix of zeros. Also, define the
matrix of landmark displacements as

where for
. The equations formed by substituting the

landmark constrains into (3) can be written in matrix form
as . The solution to this matrix equation is
determined by least squares estimation since the matrixis
not guaranteed to be full rank.
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