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Deformable Templates Using
Large Deformation Kinematics

Gary E. Christensen, Member, IEEE, Richard D. Rabbitt, and Michael 1. Miller, Senior Member, IEEE

Abstract— A general automatic approach is presented for
accommodating local shape variation when mapping a two-
dimensional (2-D) or three-dimensional (3-D) template image
into alignment with a topologically similar target image. Local
shape variability is accommodated by applying a vector-field
transformation to the underlying material coordinate system of
the template while constraining the transformation to be smooth
(globally positive definite Jacobian). Smoothness is guaranteed
without specifically penalizing large-magnitude deformations of
small subvolumes by constraining the transformation on the
basis of a Stokesian limit of the fluid-dynamical Navier-Stokes
equations. This differs fundamentally from quadratic penalty
methods, such as those based on linearized elasticity or thin-
plate splines, in that stress restraining the motion relaxes
over time allowing large-magnitude deformations. Kinematic
nonlinearities are inherently necessary to maintain continuity
of structures during large-magnitude deformations, and are
included in all results. After initial global registration, final
mappings are obtained by numerically solving a set of nonlinear
partial differential equations associated with the constrained
optimization problem. Automatic regridding is performed
by propagating templates as the nonlinear transformations
evaluated on a finite lattice become singular. Application of the
method to intersubject registration of neuroanatomical structures
illustrates the ability to account for local anatomical variability.

1. INTRODUCTION

O meet the greater challenges of observing and tracking

global biological shapes and structures, mathematical
representations began to appear in the early 1980°s under the
name of Grenander’s global shape models. Applications have
appeared in human hands, cellular organelles, leaves, tracks,
brains, and amoebas [1]-[10]. The global shape models repre-
sent image ensembles via the construction and deformation
of typical image templates. Individual variabilities associ-
ated with the shapes of constituent biological structures are
described using probabilistically constrained transformations
applied to the templates. The transformations generate a rich
family of shapes from a single template while maintaining its
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global properties. The ability to maintain, track, and recognize
global structures in the presence of relatively large local image
variability is one of the major advances of these approaches
over conventional pixel-based imaging paradigms.

It is well known that biological structures, such as human
neuroanatomies, vary in both global and local shape across a
population. Although image volumes of two different normal
brains may contain the same global structures—white mat-
ter, gray matter, ventricles, etc.—the internal structures will
differ in shape, orientation, and fine structure. Our goal is
to develop a method to represent the variabilities associated
with individual neuroanatomies. The approach is to define the
anatomical template as a three-dimensional (3-D) deformable
continuum, with a deformation vector field applied throughout
the continuum to provide a map from the individual anatomy
back to the standard brain template. The vector field specifies
the transformation.

We follow the approach defined in [6] and [11] to repre-
sent human neuroanatomies via deformable templates. The
template is essentially an electronic atlas or anatomy atlas
and individual variation is generated by deformation of the
atlas coordinate system. The anatomical template is a vector
function on the spatial domain Q@ C R where Q is often
taken to be the unit cube. Throughout, each template within
the atlas is assumed to be an N (typically 256) gray-level space
corresponding to one or several imaging modalities. Variation
is accommodated via the set of space-time transformations
(-, -) : 2 x [0, T] — €. These transformations are generated
from translations applied to the continuum evaluated on all
points in . The time-dependent displacement field (%, t)
is defined in terms of (%, ¢) by the expression R(Z, t) =
# — @(&, t). The template is applied to individual subjects
or anatomies by constructing the time-dependent (real or
computational) map from the data volume {S(&), ¥ € Q}
back to points in the template to register the data with the
atlas. The atlas and study (i.e., data) are said to be registered
when the transformation is found that minimizes a consistent
nonnegative distance measure C(-, -) between the deformed
atlas T[Z — #(Z)] and the data S(&'), subject to constraints
imposed by mechanics.

In order to represent complex anatomical patterns such as
ventricles, cortical folds, etc., the transformations are repre-
sented by vector fields. Because these vector fields are infinite
dimensional, regularization is required to ensure preservation
of various topological properties of the mapping [12]. Such
properties include preservation of landmarks or local maxima
in the atlas images or connectedness of structures that would
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be associated with a positive Jacobian, and other smoothness
features such as continuity of the mapping.

Our approach herein is to derive partial differential equa-
tions (PDE’s) that the transformation fields must satisfy. The
PDE’s are crafted using principles obtained directly from
continuum mechanics for deformable bodies. The deformation
process does not attempt to model the physical process of brain
growth; we use mechanical analogies to enforce topological
properties that adhere to large deformation kinematics. Toward
this end, the classical conservation equations of mechan-
ics have been modified to account for nonmass-conserving
deformations. This allows for the growth and shrinkage of
regions within the continuum. When combined with the var-
ious constitutive laws (which have been well studied in
continuum mechanics), we are provided with a mathematical
framework that constrains our deformations with smoothness
properties of which we have complete control. For example,
under circumstances in which we do not choose to force the
deformed template to stay close to its original configuration,
the restricting force associated with large deformations can be
relaxed while still maintaining smoothness of the deformation
field. This PDE formulation is consistent with our previous
work [2], [6], [11] based on Bayesian estimation by viewing
the PDE as the minimizer of a posterior distribution (see the
following section on choosing the body force).

A. Relationship to Previous Work

There has been a great deal of work done on multimodal-
ity image fusion, warping, and registration in a deformable
anatomy context (see [13]-[15], for example). For much of
the neuroanatomical work, the anatomical brain images being
matched are assumed to be highly similar, requiring only
global course features to be matched with rigid transformations
(global rotation and translation) and/or simple scaling to
match surface features and/or boundaries. For such cases,
investigators often define a small number of features, surface
or internal fiducials, and/or landmarks that serve to drive
the registration, with high-dimensional transformations not
required. The kinematics of the continuum and the associated
PDE’s that are proposed herein do not play a significant
role for such transformations. Such low-dimensional rigid
motions and or scale transformations are straightforwardly
accommodated in our method as initial conditions.

Although the goal of image understanding is similar, the
deformable template in this work differs fundamentally from
deformable contour shape models such as those used in
[16]-[18] and the deformable surface shape models such as
those in [9] and [19]. In the previous approaches, deformable
models correspond to parameterized contours and surfaces in a
2-D or 3-D image. These tend to be low-dimensional models,
the dimension determined by number of control points on the
curves or surfaces. The work proposed here requires volume
transformations proportional to the number of pixels in 2-D or
voxels in 3-D of the images being deformed.

The current work is perhaps most akin to the pioneering
work in surface [20], [21] and solid deformation [22], [23],
in which transformations are constructed to obey physical
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laws. The computerized surface models of facial motion apply
local viscous damping. The deformable solid work for brain
matching uses linear elastic penalties. For all such approaches,
quadratic penalties derived for beams or solids are always used
and the nonlinear kinematics of large deformations required
to achieve a homeomorphism is ignored. Previous methods
[21, [6], [24], [25] are limited in the sense already described.
First, large magnitude displacements are severely penalized by
regularization methods such as those based on linear elasticity
or thin plates that develop restoring forces monotonically
increasing with strain. Except for the smallest deformations,
such penalties prevent full deformation of the template into
the data. Secondly, these models are derived with small
deformation approximations [26], [27] and are therefore not
valid for large distance, nonlinear deformations. As we shall
demonstrate, the transformations under these linear models
do not enforce such physical properties such as 1-1 and
smoothness of the transformation.

The contribution of this work is a new general approach
for accommodating the large-distance, nonlinear kinematics
required for transforming a template image into a target image
when refining an initial global transformation. This is achieved
by modeling the template as a highly viscous fluid allowing for
large-magnitude, nonlinear deformations of small subvolumes.
The resulting optimization problem is solved on an adaptive
computational mesh associated with the propagated template.
This work builds on and extends on previous work reported
in [6], in which we describe an automatic, multiresolution ap-
proach for accommodating complex shape variation based on
a linear elastic model. Some preliminary results of the current
approach were provided in [8] for comparison to 3-D elastic
deformations of neuroanatomical template images. The present
work completes the presentation of the theory and provides
details of the massively parallel computer implementation.

II. DILATATIONAL-VISCOUS FLUID PDE

A. Eulerian Reference Frame and a Framework
for Large Deformations

In describing large distance deformations, we use the Euler-
ian reference frame, as depicted in Fig. 1. The displacement
field (&, t) is defined as a map from points in the template
to fixed observation points in the deforming continuum, i.e., a
mass particle instantaneously located at Z at time ¢ originated
at point ¥ — #(Z, t). The Eulerian description of material
deformations specifies the time evolution of particle positions
and velocities as observed at fixed points. Because the data
S(Z) is constant over the minimization procedure and the fact
that it is stored as discrete voxels, @(Z, t) is parameterized
by its spatial samples located at the center coordinate of each
voxel of S(Z). Spatial tracking of the transformation in this
manner allows very fine (on the order of voxel volumes)
resolution structural variability to be accommodated.

In the Eulerian frame, accounting for the difference between
the velocity ¢ and the time rate of change of the deformation
1 is critical to using a fixed spatial grid to track the large
deformation of templates. The material derivative, denoted
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Fig. 1. Eulerian frame showing coordinate system used to track the kinemat-

ics of the deformation. In the Eulerian frame, vector and scalar field variables
are associated with fixed spatial positions through which particles move rather
than with moving material particles. The point Z— (&, t;) denotes the particle
from the template which is resident at location Z at time t,.

d/dt, provides the time rate of change experienced by an
element of material instantanecously at point & at time ¢
and is defined by d/dt = 3/0t + Yo_, v;(8/8z;) where
7= [v1(Z,t) va(Z,t) wvs(Z, t)]T. Using this, the velocity
of an element of mass passing through 7 at time ¢ is

L di
S

oF S~ @
_E_'_Z;Uia_xi (1

where @ = [u1(Z, t) ua(F, 1) us(Z, t)]T. The summation
term in (1) accounts for the kinematic nonlinearities of the
displacement field 4. Note that for small deformations the total
material derivative with respect to time ¢ and partial derivative
with respect to time ¢ are approximately equal.

B. Conservation of Momentum

We now derive the conservation of momentum equation,
which gives the relationship between forces applied to the
continuum and the resulting deformation. Consider a fixed
control volume 2 with boundary 92 and assume that a source
supplies or extracts mass from the volume at a rate of 7 per unit
volume. Distributed traction force 7 acts on the surface, and
a distributed body force b per unit volume acts on all material
elements within the body. Using i) Newton’s second law in
the form of conservation of linear momentum, ii) the fact that
the traction force 7 is related to the Cauchy stress tensor T by
7 = T-7, where 7 is the outward unit normal from the surface,
iii) the divergence theorem, and iv) the Reynolds transport
theorem, modified to include a mass source (see Appendix
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Fig. 2. The left column shows the template (top) and the study (bottom). The
template was deformed into the study using an elastic-solid regularization (top
right) and a viscous-fluid regularization (bottom right).

A), gives the differential form of conservation of momentum

i . L
pd—’:+1777—V~'|]'—b=0. @

where p is the density of the material. The notation V-T
is defined to be a 3x1 column vector with components
V-T): = Z;’?:l (8T;;/0x;) where the components of T are
[T];; = T;; for 4, j =1, 2, 3.

The momentum equation provides the relationship between
applied body force b, the state of stress, and the resulting
material deformation. In the current approach, the body force
b provides the connection between the sensor data and the
deforming continua. The final form of the momentum equation
(2) and associated generalized Lagrangian depends upon the
constitutive behavior of the material, i.e., elastic, visco-elastic,
Kelvin—Voight, etc.

C. The Fluid Analog

We choose a constitutive law that allows for large, nonlinear
deformations while maintaining a continuous homeomorphic
map with smooth deformations of the template. This is an
alternative constitutive law to Hooke’s law used in linear elas-
ticity, one corresponding to a viscous-fluid with the property
that the stress within the deformed configuration is allowed
to relax with time. This implies that the mechanical energy
(penalty) does not (necessarily) increase with the magnitude
of the pointwise deformation. A Navier-Poisson Newtonian
fluid model is used, for which the Cauchy stress tensor T
is related to the rate of deformation tensor D by T =
[\(tr D) — p]I + 2uD, where p and A are the viscosity
constants, p is the pressure, and the rate of deformation tensor
is D = 1/2[V7 + (V#)7]. Making these substitutions in
(2) gives the modified Navier-Stokes equation V2% + (A +
WV (V -3) +b(@8) = Vp+ p(di/dt) + Un. A simplified model
is obtained for very low Reynold’s number flow where the
pressure gradient Vp and the inertial terms p(dv/dt) + Un are
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neglected, such that (2) becomes
uV25+ A+ w)V(V - 3) + b(@) =0 3)

where V2 = VTV is the Laplacian operator. Without loss of
generality, we assume that (3) is defined on Q = [0, 1] =
{the unit cube} with the boundary conditions #(Z, t) = 0 for
Z € 02 and all . The notation 92 is defined as the boundary
of 2. Notice that when these boundary conditions are inserted
into (1), the displacement on the boundary of 2 is zero, i.e.,
09 is mapped to 952 under the fluid transformation.

The template is deformed by solving (3) subject to a body
force b that drives the template viscously into registration
with the study. Two mechanisms are clearly identified. The
first, represented by uV24, is associated with constant volume
viscous flow of the template. The second, represented by
(A+p)V(V ), is nonzero when regions of the template grow
or dissolve. Using continuity [(14), Appendix A] we note that
V.7= n/p — dp/dt, so the second term in (3) is related to
dilatation caused by the mass injection per unit volume 7 and
the rate of change of density dp/dt. In the present work, we
are specifically interested in allowing growth and shrinkage
of local regions of the template and hence V.7 in general
is nonzero. For the Navier—Poisson fluid employed here, the
dilatational viscous stress resisting the rate of change of local
volume is controlled by [\ + (2/3)u], whereas the shear stress
between adjacent regions is controlled only by pu.

D. The Body Force

A crucial part of the specification of the PDE in (2) is the
force that drives the deformation of the template to match the
configuration of the data. This force is induced by adopting
the Bayesian view of the transformations, in which there exists
a prior distribution on the transformations and the solution
corresponds to a maximization of the posterior distribution
relating the transformation fields to the data as collected by
the sensor. The posterior is taken in Gibbs form with the total
potential associated with the sum of the statistical model of
the sensor and the prior distribution. The PDE formulation
is then the variational maximizer (minimizer) of the Gibbs
potential. The forcing function in the PDE is then none other
than the variation of the sensor statistical likelihood function
with respect to the vector displacement field [2], [6], [11].

This view is based on the existence of a variational principle
from which the field equations can be induced; such principles
are well known for conservative systems [28], [29] and link the
PDE formulation as the minimizer (maximizer) of some poten-
tial (see Section V). Variational formulations have also been
developed for numerous nonconservative systems, including a
fluid model consistent with that addressed herein [30].

In this work, we use a Gaussian sensor model (likelihood)

C(T (@), Su(z,t)) = % /Q Tz - a(z,t) - $(&)° di (4)

where « is a constant. For magnetic resonance imaging (MRI)
this appears to be reasonably appropriate [31]; for positron
emission tomography (PET) and charge coupled device (CCD)
data image reconstruction, Poisson models would be more
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Fig. 3. Vector map of the viscous fluid transformation for the wedge-shaped
patch to “C” experiment. The vectors shown here are only a subset of the full
128 x 128 vector field estimated in this experiment.

appropriate [32], [33]. Others have investigated using the
correlation [23]. Taking the variation of this cost function with
respect to the displacement field yields the body force

BE, @(7,1)] = —a(T[E — @(Z, t)] — S()) VT |z—aez, o). )

The_‘body force in (5) is comgosed of two terms. The
term V7T|z_gz, 1), interpreted as V¢T'(£) evaluated at { =
Z — @(Z, t), is the gradient of the template and has largest
values at the edges of the structures in the template. This
term determines the directions of the local deformation forces
applied to the template. The second term T(Z—4(Z, t))—S(Z)
is the difference in intensity between the deformed template
and the study. This term locally weights the first term. It
is large when there is a large intensity mismatch and small
otherwise. Notice that this second term causes the body force
to be locally zero in areas where the deformed template is
locally aligned with the study. The body force is globally zero
when the deformed template and study are globally aligned.

The nonlinear deformation force given in (5) is evaluated
directly and is not approximated. In contrast, others assume
small deformations [23], [36] and linearize the body force
using a Taylor series approximation. But since the motivation
of the work presented herein is to allow large distance,
nonlinear deformations, the small deformation assumption is
not valid and linearization is not applicable.

Although the body force in (5) is a local operator, it
generates the long distance forces required for deforming the
template because the deforming continuum is coupled together
by (3). The nonlinear dependence of the body force on # is
required so that the body force remains consistent with the
deformed template.
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III. NUMERICAL SOLUTION

The solution of the viscous-fluid PDE given by (1), (3), and
(5) includes nonlinearities associated with the body force and
kinematic nonlinearities associated with the material deriva-
tive. In order to solve these nonlinear equations, the algorithm
employs Euler integration in time combined with successive
overrelaxation in the spatial domain. The nonlinear PDE is
decomposed into a set of linear equations on the velocity field
v(x, t) for each instant of time ¢, and then integrated using
the material derivative nonlinear relationship between the
and v fields.

Algorithm 1:

1) Initialize ¢ = 0 and @(Z, 0) = 0.

2) Using (5), calculate the body force b(Z, @(Z, t)) given

ﬂ’(::q’, t).

3) If b(Z, u(Z, t)) is below a threshold for all Z € {2 or the

maximum number of iterations is reached, then STOP.

4) Solve the linear PDE (3) for the instantaneous velocity

¥(Z, t) at time ¢ assuming that ¥(F, t) = 0, & € 9.
This is done using successive overrelaxation (SOR) [8].
5) Perform explicit Euler integration by calculating
©(Z,t + A) from the discretized version of the
material derivative (1) given by @(&, ¢ + A) =
U(Z, t) + AT(Z, t) — A Z?:1 v (Z, 8)[0U(Z, t)/0x;].

6) Let ¢ = ¢+ A and go to Step 2.

Notice in Step 4 that the nonlinearity introduced by the
body force term in (3) is handled by fixing E(i:’, W(Z, t)) at
time ¢. Since b(Z, (&, t)) is fixed for time #, solving for the
instantaneous velocity is a linear problem. Also note in Step 4
that the assumption the velocity is zero on the boundary of
implies that the displacement field is also zero on the boundary
of ). This assumption ensures that boundary of the deformed
domain maps back onto the boundary of the original domain
() through the identity mapping.

A. Solution on a Finite Spatial Grid

The viscous fluid PDE is solved on a discrete lattice
associated with (2. For large curved deformations, the transfor-
mation evaluated at these spatial grid points becomes singular
over time even though the transformation evaluated on the
continuum would not. To circumvent this problem, a method
of regridding the template is used by generating a new, or
propagated template, whenever the discretized transformation
approaches local singularity. This is accomplished as follows.

The discretized displacement field is propagated through
time using the procedure in the previous section until the Jaco-
bian of the transformation indicates that the transformation is
approaching singularity. When the magnitude of the Jacobian
drops below a certain value, the computation is stopped and a
new propagated template is generated equal to the deformed
template at the previous instant. In the current implemen-
tation, a new template was propagated if the magnitude of
the Jacobian dropped below a value of 0.5. A larger value
causes more templates to be propagated, which will increase
numerical precision errors of the transformation due to the
increased number of concatenated transformations that need to
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be interpolated to obtain the total transformation. Conversely,
a smaller propagation threshold causes less templates to be
propagated. This may increase the numerical precision errors
due to interpolating transformations that are nearly singular
in places. The algorithm is restarted using the new template.
When mapped back to the original template, this is equivalent
to defining a new nonhomogeneous computation grid on the
undeformed continua. Initial conditions for the propagated
template are set to match the final state of the previous
template, i.e., the instantaneous velocity remains the same and
the displacement field corresponding to the new template is set
to zero. The total transformation is continuously tracked via
the concatenation of the displacement fields associated with
all of the propagated templates.

We note that the above procedure assures that the concate-
nated transformation of the template into the study preserves
the topology of the template. This is because each of the prop-
agated template transformations preserve topology (due to the
fact that the Jacobian of the transformation is positive globally)
and the concatenation of topology-preserving transformations
produces a topology-preserving transformation.

The method of propagating templates (i.e., regridding) is
formalized in the following way. Let 70, j = 0,1, 2 ---
denote the sequence of propagated templates with associated
displacement field U@, so that T (# — UG (z, t;)) is the
deformation of the jth template. Next, define ¢, as the time
that template TU~1) is propagated to template 7C) such that
ty, =t =0<1t, <---<tp,. Bach propagated template
TG —except T(®), which is equal to the original template
T—is defined as the deformation of the previous template
TU-1) at time t,,, as follows:

DNezy A T(f)’
T(J)(:ﬂ) = {T(j_l)(a—c»_ U'(j”l)(x“, tn)),

Jj=0,
0<j< M.
(6)

The time progression of displacement field U() becomes

RACEE
0, 1= pj,
UO(E, tiy) + (i —tio1)
(@, tir) —TicaUYN(E, tica)], py <i<pjn
)

for 0 < i < N where po and T; 2 Y2, (7, £:)(8/0z;).
This definition ensures that each propagated displacement field
satisfies the discrete approximation of the material derivative
(1) and that TG)(Z — U0)(z, tp,)) = TY)(Z) at propagation
time £, . The displacement field 4 associated with the original
template 7" is defined in terms of the propagated displacement
fields U@ by

(7, ) 2
UO(Z, t,),
+UGD(F - U9, ), tp,), pj <i < pjg1
(®)

0<i<p,



1440

Equation (8) is a consistency condition ensuring T<0)(f —
0@, 1) = T(@ - UO(@, ;) = T(& - (& t:)), 0 <
i < py and that TO(Z — TO(Z, t;)) = T(Z — UD(Z, t;) —
TO-0(F — TO(Z, t;), tp,)) = T(T — 4(&, t:)), pj < @ <
p;+1. Incorporating (6)—(8) into Algorithm 1 gives the follow-
ing algorithm.

Algorithm 2:

1) Lett =0, i =0, TO(2) = T(Z), and TUO)(Z, 0) = 0.

2) Calculate the body force bz, UO(Z, 1) = —(TO[7 -
U(E, 6] = S@)VTP|; oz, 0

3) If b(&, U (&, t)) is below a threshold for all ¥ €
or the maximum number of iterations is reached, then
STOP.

4) Solve the linear PDE (3) for the instantaneous velocity
¥(&, t) at time ¢ assuming that ¥(Z, t) = 0, & € 60
using SOR [8].

5) Calculate the perturbation of the displacement field
R(Z) = 9(&, t) = Vi, wil@ 6) [0U(&, t)/0wi].

6) Choose a real-time step size A which is a function of
7 = maxzeq |[B(Z)[|. _ .

7) If the Jacobian of # — U)(Z, t) — AR(%) is less than
0.5, then propagate to template 7 + 1 using 70+ () =
TO(Z — TO(Z, ), UEHD(E, 1) = 0, set 4 = i + 1,
and go to Step 5. Otherwise, update the 7th displacement
field using UD(Z, t + A) = UD(Z, t) + AR(Z), set
t =t+ A, and go to Step 2.

The next theorem states that under sufficiently smooth con-
ditions on the transformation and velocity fields, the solution
generated by Algorithm 2 solves the fluid PDE given by (1),
(3), and (5) as t;41 — t; goes to zero for all 0 < ¢ < N.
This, of course, proves that the regridding method allows
large curved deformations to be calculated on a discrete grid
while maintaining a diffeomorphism (i.e., avoiding a singular
transformation).

Theorem 3.1: Let UW) € C*(Q) and 7 € CY(Q) where
Q C R3. Then Algorithm 2 satisfies the fluid PDE given
by (1), (3), and (5) in the sense that for times ¢; with
to = 0 < &1 < -+ <ty < Tpax, the following system
of equations are satisfied:

pVEE(E, ) + A+ ) VIV -0(E, 8)] +B(Z, 4(F, t:)) = 0 ©)

0, 1 =20
'f[(:ﬁ ti—l) -+ (ti — tiﬁl)
[H(F, tio1) ~ Tima@(Z, t;_1)]
+O(ti — tiﬁl), 0<1

10)

where T'; 2 Z?zl vi(@, t:)(8/0z;) for 0 < ¢ < N.

Proof: Equation (9) is satisfied by Algorithm 2 if the
real-time integration (10) is satisfied. Thus, it is only necessary
to show that the real-time integration of Algorithm 2 given by
(7) and (8) implies (10). We now show by induction that (7)
and (8) satisfy (10).

Basis: Substituting (7) into (8) gives (10) for times g =
tpy < b < 1y,
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Induction: Assume that Algorithm 2 satisfies (10) for time
t; and show that (10) is satisfied for ;. Substituting (7) into
(8) gives

W&, tip1) =UD(F, ;) + (tigr — )
O, ) — TOYN(E, 1)
+ 00 D@ - 09, ;) — (i — ta)
3(@&, 1) — T OO(E, )], t, )
Using the fact that =1 e C(€2), we can write the Taylor
series expansion of UU~1) about the point Z — UU) (&, t;) as

UZ, tiy1) =[j<j)(f, ti) + (g1 — ts)

0@, ) ~ T U9, )]
+UUD[E - TO(E, t,), t,,]

— (tig1 — ti)ﬁﬁ(]—_l)“f_ﬁ(i)(i‘, .
T = VT g 0(F, 1)
+ol(tip1 — 1) |[5(F, t:) — TiUD(E, t)|]]

)7tpj]

where the (3x3) matrix Vi is defined to have elements
[Vil]i; = Bu;/8z;. Rearranging terms and using the fact that
7 and VU@ are bounded because they are continuous on the
compact set  gives

(T, tigr) = (tig1 — 6)(B(F, t:) — T(O9N(Z, t;)
+U9(E - TO(Z, t:), 1))
+UO(@, )+ TOD(@E - TO(E, 1), t,,)
+o(tiy1 —ts).

Substituting (8) into this last expression gives (10) for time
Tig1. ]

IV. RESULTS

Three experiments are presented in this section to
demonstrate how the viscous fluid model accommodates large-
distance, nonlinear deformations of small subregions of the
template. The first two experiments are 2-D and the last 3-D.
The fluid model was restricted from 3-D to 2-D by setting the
velocity of the transforznation in the third dimension to zero.
In the resulting field, V - ¥ # 0 such that n/p + dp/dt # 0.
If we interpret individual elements of mass as maintaining
constant density, then dp/dt = 0 and V - & # 0 implies action
of a mass source such that 7 # 0. In this sense, the template
“grows” into the configuration of the data.

We assume in all of the experiments that the template
and the study agree topologically—i.e., both the template and
study contain the same constituent structures with the same
neighborhood structure—and that each constituent structure
has roughly the same gray-level values. To guarantee a mean-
ingful transformation, the template and the target must contain
homologous topologies. It is important to note that 2-D data
sets collected from 3-D volumes may not reflect the homology
of the original 3-D space. To illustrate the influence of this, we
have included results based on both 2-D and 3-D image data.

We also assume that the object of interest in the template
and study object are padded in all directions by background.
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The background in all of the experiments was assumed to be
black (intensity zero). This requirement is due to the fact that
the velocity of the displacement field along the boundary of
the domain is zero in (3). Thus, the displacement along the
boundary of the domain is zero.

Appropriate values of the viscosity coefficients A and p
depend upon the particular imaging modality. Combining (3)
and (5), we find the parameters A/« and p/a have units of
“seconds” where we have assumed that the image data is
normalized and nondimensional. For the present numerical
results we take A/a = 0.0 and u/a = 0.01 s. No attempt
has been made to optimize these parameters or to study the
influence of inhomogeneous properties on the results. These
studies are left for future work.

A. The Patch to “C” Experiment

The first experiment shows how a small patch of material
can deform into a longer curved patch of the same material.
Fig. 2 shows a wedge-shaped template (top left) and a “C”-
shaped study (bottom left) used in this experiment. The
dimension of these images is 128 x128 pixels. The template
was initially aligned with the study so that they overlap. If
this initial alignment was not performed, the algorithm would
“stick” in a local minimum with the patch shrinking into a
small point in order to minimize the cost (4).

Shown in the top right panel is the result of deforming the
template into the study using the linear-elastic regularization
(see Section V for details). Notice that the linear-elastic
regularization method prevented the template from deforming
into the study. The bottom right panel shows the result of
the viscous-fluid regularization, which allows the template
to more completely match the study. The difference in area
of these objects is accommodated by the algorithm because
conservation of mass is not enforced. The dilation of the
material can be measured by evaluating the mass source term
in (3).

A vector representation of the displacement field for the
fluid transformation is shown in Fig. 3. Each displacement
vector points from the original location of a material particle
to its final location. Notice that the displacement vectors
terminate on a regular grid but point to the very irregular set
of corresponding locations in the textbook. This illustrates that
the Eulerian framework for the displacement field provides the
mapping from the study back to the original textbook.

The method of propagating templates used for solving the
fluid PDE on a discrete grid is illustrated in Fig. 4 (cf., Section
II). The top row shows propagated templates 74, T(12),
T8 and TGO (from left to right) that were used to deform
the wedge=shaped patch into the “C.” The second row of this
figure illustrates the transformation applied to a rectangular
grid for each propagated template. Notice that because the fluid
transformation is continuous and globally one-to-one that the
grid lines are continuous and do not cross over one another.
The nonuniformity in the thickness of the deformed grid lines
results from the fact that the original grid is expanded and
compressed during the transformation. Notice the extent of
the curved grid lines. This solution emphasizes the nature
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of the kinematics as manifest via the material derivative for
accommodating nonlinear kinematic trajectories.

The third row of Fig. 4 shows the Jacobians of the trans-
formations & — U/ (=1)(z, tp, ) that were used to determine the
propagation times £, for ¢ = 4, 12, 18, and 30. Because the
Jacobian of each propagated transformation #— U ¢~1(Z, £,,)
is greater than 0.5 for all z € €, the concatenation of the
propagated transformations is continuous and globally one-
to-one. The bottom row of Fig. 4 shows the Jacobian of the
transformation h (%, t,,) = & — i(Z, tp,) evaluated at the
propagation times ¢ = 4, 12, 18, and 30. Notice that the
Jacobian of h(Z, t,,) is the Jacobian of the composition of
the first 2 — 1 propagated transformations, corresponding to
the product of the Jacobians of the first ¢ — 1 propagated
transformations.

B. 2-D Macaque Monkey Cryosection Data Experiment

The fluid transformation accommodates variation of struc-
tures with length scales on the order of the image resolution.
This is precisely the kind of detail and accommodation of
variability that we require for the cryosection brain data shown
in Fig. 5. The top-left and top-middle panels of Fig. 5 show
optical cryosection images of the visual cortex of two different
macaque monkey brain slices. This cryosection data is at
approximately 10x the resolution of MRI data and it allows
us to see the exquisite detail of the cortical mantle. This is
illustrated via the dark gray folds interfacing to the white
matter.

The result of using the fluid model to deform the template
into the study is shown in the top-right panel. The template
was first globally deformed into the study using the elastic-
ity basis from [6]. Subsequent to the basis transformation,
the fluid transformation was applied. Notice the similarity
of the target (middle panel) and the transformed template
(right panel). The left panel in the middle row shows the
result of smoothly deforming a rectangular grid using this
deformation. The z- and y-components of the displacement
field are shown in the middle-middle and right-middle panels,
respectively. Intensities that are close to white correspond to
positive displacements; dark intensities correspond to negative
displacements. The low spatial frequency intensity changes in
displacements cause global shape changes and resulted from
the elastic-solid transformation. The high spatial frequency
intensity changes correspond to local shape changes resulting
from the fluid transformation.

The fact that the transformation is smooth allows for the
mapping of the anatomical information—known a priori for
the template—to the target. The bottom row, left panel shows a
gray/white matter segmentation of the template. The transfor-
mation of the template segmentation is shown in the bottom-
right panel. This automatic segmentation of the study shows
excellent agreement with a hand segmentation of the study
shown in the bottom-middle panel. Discrepancies between the
hand and automatic segmentation of the study are due, in part,
to errors in the hand segmentation. Since the “accuracy” of the
hand segmentation is not known, no attempt was made in this
preliminary study to quantify differences between anatomic
segmentations and hand segmentations.
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Fig. 4. The columns correspond to propagated templates: 4, 12, 18, and 30. The top row shows the propagated templates, the top middle row shows the time
progression of the fluid transformation applied to a rectangular grid, the bottom middle row shows the Jacobians of the previous propagated transformations,
and the bottom row shows the Jacobians of the transformations back to the original template.

C. 3-D Human MRI Experiment

As a final experiment, we demonstrate the fluid model ap-
plied to high-resolution 3-D MRI data of the human head. This
experiment demonstrates that 3-D transformations are required
to accommodate complex 3-D anatomical shape variation. The
MRI data used was collected using an MPRAGE sequence. It
was downsampled from 256 X 256 x 128 voxels at 1x 1x
1.25 mm® and symmetrically padded by zeros to produce 128
x 128 x 100 voxels at 2 mm3. The range of intensities in
the study image was preprocessed by histogram-matching it
to the template.

The template was deformed into the shape of the study by
first using the 3-D elastic basis method described in [8] to ac-
commodate the global shape differences. This transformation
was then refined using the 3-D fluid model to accommodate
the local shape differences. The result of this experiment is
shown in Fig. 6. The rows from top to bottom correspond
to axial slices 48, 55, and 60, respectively, and the columns

correspond to the template (left), the deformed template after
the 3-D elastic basis method (middle left), the deformed
template after the 3-D fluid method (middle right), and the
study (right). Notice that, in both the global and local stages
of the deformation, variation is accommodated in 3-D and is
independent of the slice orientation. This is evident by the fact
that structures appear and disappear from a fixed observation
slice. The change of shape of the ventricles in the top row is
a good illustration of this.

V. DISCUSSION

A. Linear Elasticity

For purpose of comparison to previous work (see [2], [6],
for example), it is interesting to examine Gaussian priors
corresponding to such penalties as linearized elasticity. For
a linear elastic solid the Cauchy stress tensor T relates to
the strain tensor £ by Hooke’s law, T = A (tr )] + 2p,FE
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Fig. 5. Top-left panel shows the monkey visual cortex cryosection template and the top-middle panel shows the second monkey slice. The top-right panel
shows the result of fluidly deforming the top-left into the top-middle anatomy. The middle row, left panel, shows the fluid transformation applied to the
rectangular grid. The z- and y-components of the estimated transformation are shown in the middle row, middle and right panels, respectively. The bottom
row shows a gray/white matter hand segmentation of the template (left) and study (middle). Shown in the bottom-right panel is an automatic segmentation
of the study that was generated by applying the fluid transformation to the template segmentation.

where A, and u, are Lamé elastic material constants and I
is the identity tensor. For small deformations the linear strain
becomes E = [Vi + (Va)T]. Substituting this into Hooke’s
law and the momentum equation (2) gives

UV + (Mo + po)V(V - &)+ B(@) =0  (11)

where we have neglected the inertial term, p(d/dt) + ¥n.

It is straightforward to directly connect the PDE to the
Bayesian posterior. For example, the momentum (3) and (17)
arise via minimization of a Lagrangian according to

= argmin / [/ L*(4, , t)dF
voJt LJQ
+a/ CII(z - @), S(f)]da‘:’] dt
Q

where L* is the generalized Lagrangian energy density asso-
ciated with constraints imposed by the linearized mechanics.
For conservative systems, such as linear elasticity, L* equals
the total kinetic energy minus the potential energy [29], [34],
and for nonconservative systems, such as viscous fluids, L* is
more complex [30]. Choosing

ﬁl)

12)

=1 j=1
po [Oui(®) | Bu,(%)]°
+ 4 oz, + ox; a3

substituting this energy density into (12), and setting the first
variation equal to zero reproduces the momentum (11) for
linear elasticity. Consider, for example the case of 3-D linear-
elastic solid [27] where C'is the energy of the Gibbs potential
associated with the Gaussian cost between the study and
the deformed template. Computing the first variation of the
functional (12) shows that the forcing term b in the PDE [cf.,
(2), (3), (11)] is none other than the variation of the likelihood
with respect to the transformation (5).

Since the PDE associated with linear elasticity has stress
that depends only on the instantaneous strain independent of
the path or history of the deformation, a conservative system
results that can be represented as a variational problem that
involves no real time. The path dependent stress-strain rela-
tionships such as required for the large-deformation viscous-
fluid model presented here requires a formulation in space X
time.

B. Viscous Fluid Versus Linear Elasticity

In previous work [6], linear-elasticity regularization was
effectively used to enforce smoothness of the spatially sam-
pled transformation. However, linear-elasticity penalizes large
distance deformations thereby preventing the textbook from
completely deforming into the study. As Fig. 2 demonstrates,
the viscous fluid regularization does not have this property.
This shortcoming in the elastic map is due to the quadratic
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Fig. 6.

3-D deformation of a 128 x 128 x 100 MRI data set at 2 mm resolution. The rows (top to bottom) correspond to transverse slices 48, 55, and

60, respectively. The left column shows the undeformed template, the left-center column shows the 3-D elastic basis transformed template, the right-center
column shows the 3-D fluid transformation that refined the elastic basis transformation, and the right column shows the target data set. Notice that the elastic
basis transformation accommodated the global shape variation while the fluid transformation accommodated the local variation.

growth of the elasticity penalty and the inability of the linear
elastic theory to address large magnitude deformations. The
viscous-fluid regularization suffers from no such difficulties
because the restoring forces relax over time, while at the same
time accounting for the large distance kinematic nonlinearities.

The advantage of the fluid model for deforming one
anatomy into another is demonstrated in Fig. 7. The rows
from top to bottom correspond to a fluid, a strong elastic, and
a weak elastic transformation of the monkey visual cortex.
The left column shows the deformed template, the middle
column shows the difference image between the deformed
template and the study, and the right column shows the points
in white where the Jacobian of the transformation is singular.
Notice that the fluid model (top row) allowed the template to
deform into the study as shown by the near-black difference
image while maintaining a positive Jacobian. Conversely, the
difference image for the transformation with the large elastic
penalty (middle row) shows that the template was prevented
from fully deforming into the study. The all-black Jacobian
image for this transformation confirms that the large elastic
transformation also has a positive Jacobian. The difference

image for the weak elastic penalty (bottom row) shows that
while the template was not held back as much as in the strong
elastic case, it was still held back more than in the fluid
case. In addition, the white points in its Jacobian image show
that the transformation went singular and does not reflect a
one-to-one mapping of volumes, areas, or lines [39].

The linear elasticity prior was derived assuming small
angles of rotation and small linear deformations. Because
it is assumed that the angles of rotation are small and the
deformations are small and linear, large deformations cannot
be accommodated with the linear PDE. This shortcoming
of the linear elastic theory could be removed by using a
hyperelastic energy form [35]. Accounting for the nonlinear
kinematics would enforce a diffeomorphism, but would con-
tinue to penalize large magnitude deformations due to the
elastic strain energy.

C. Parallel Computer Implementation

The elastic-solid basis and the fluid transformation algo-
rithms were implemented on the massively parallel DECmpp
12 000Sx/Model 200 (MasPar). This computer is a 128x64
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Fig. 7. The left column shows a fluid (top), a strong elastic (middle), and a weak elastic (bottom) transformation. The middle column shows the difference
images between the deformed template and the study. The right column shows the negative Jacobian points of the deformation (right), respectively (cf. Fig. 5).

TABLE 1 TABLE II
ELasTIC Basis PrRoGraM Exgcution TiMEs oN DECwmpp 12 000Sx FLum Procram Exicution Tives oN DECwmpp 12 000Sx
Experiment data # of param.|# of|# of itrs before| total Experiment data # of param|# of|# PDE| # of | total
size estimated | itrs |increasing basis| time size estimated |iters| itrs |regrids| time
2D monkey | 128 x 128 2492 200 20 33 sec patch to C 128 x 128 6.6 x 10* {600 | 250 33 | 7.1 min
3D human |64 x 64 x 50| 192 100 40 7.9 min 2D monkey| 320 x 256 | 3.3x10% {200 250 | 12 |12.6 min
3D human 128 x 128 x 100{ 9.8 x 108 [ 500 | 200 118 [9.4 hours

mesh-connected single-instruction-multiple-data (SIMD) ar-
chitecture, and is well suited for solving the elastic and fluid
partial differential equations. Tables I and II show the timing
results for the previous experiments. The second column of
Table II shows the image sizes of the template and study im-
ages for each experiment. The number of parameters that were
estimated for each experiment is shown in the third column.
The number of relaxation iterations required to numerically
satisfy (11) at each time step is shown in column five. These
same algorithms would take over 10x longer to compute on a
Silicon Graphics Power Challenge with one R8000 processor
than on the 128 x 64 MasPar [40].

VI. SUMMARY

In this paper, we have presented a general approach for
accommodating local shape variations by transforming the co-
ordinate system of a template image into that of a target image.

Specific computations were carried out for neuroanatomies of
individual subjects with corresponding data appearing in an
anatomical atlas. Global and local registration of the template
and target images was achieved by first globally registering
the template to the target image and then refining the trans-
formation with the approach described in this paper. Results
presented here are the first to accommodate the kinematic
nonlinearities that are indeed necessary in order to maintain
continuity of anatomical structures during the large-magnitude,
local deformations. Formulation of the optimization problem
is over a space-time continuum that takes into account not
only the initial and final configurations of the template but
also the path of the deformation. This allows relaxation of
stress with time such that large magnitude deformations do not
necessarily induce large penalties. Rather, large penalties tesult
from rapid distortions of the undetlying continuum and an
infinite penalty results for any discontinuous deformations (i.e.,
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% fields that cross and break up any region of the template).
We have studied the constrained registration problem via
solutions of associated PDE’s. For the results presented here,
the PDE’s have been solved through direct numerical means
on a massively parallel SIMD machine. We also note that
due to the complexity of transformations that accommodate
large-magnitude, nonlinear kinematics, further analysis and
characterization of this new algorithm is required. We are
currently working on ways to do this.

APPENDIX
FUNDAMENTAL CONSERVATION LAWS OF MECHANICS

In the field of continuum mechanics it is generally assumed
that a control volume can be selected such that mass within
the volume is conserved. For deformation of image templates,
however, it is often desirable to allow the addition of mass
(growth) or the subtraction of mass (shrinkage) on a local level.
In order to allow for this we have reformulated the basic laws
to account for a mass “creation” term. Derivation of the basic
laws follows the classic method (reviewed by [37]) modified
to include a spatially dependent mass source.

A. Conservation of Mass with a Mass Source

Consider a fixed volume 2 bounded by surface 0. A
source of mass supplies or extracts mass from the volume
at a rate of n per unit volume. By conservation of mass the
rate of mass change within the volume is equal to the rate of
mass source minus the flux of mass through the surface. Using
the divergence theorem, we obtain
% +pV-U=7
where d/dt is the material derivative, and the above equation
is simply the differential form of the continuity equation with
a mass source term.

(14

B. Reynolds Transport Theorem with a Mass Source

In determining the equations describing conservation of
momentum, it is necessary to determine the rate of change of a
field variable associated with the material. The rate of change
of the product 1)p associated with the material instantaneously
in a fixed volume (2 is equal to the rate of increase of 1p inside
) plus the rate outward flux of 1)p carried by mass transport
through the volume surface 0f2. Using the divergence theorem
and applying the continuity equation with a mass source term
(14) we find

& JJf e [ Ll o o

as)

Equation (15) is a generalized version of the Reynolds trans-
port theorem including a mass source term 7.

C. Conservation of Momentum

Consider a fixed control volume {2 with boundary Of).
Traction stress 7 acts on the surface and a distributed body
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force b per unit volume acts on all material elements within
the body. Applying Newton’s Second Law in the form of
congervation of linear momentum yields

%/é/p@'dV:Jn/?dA—{-/é/ Fdv (16)

The traction force 7 is related to the stress tensor T by ¥ = T-7%
where 7 is the outward unit normal from the surface. Using
this, the divergence theorem, and the generalized Reynolds
transport theorem gives the equation for conservation of mo-
mentum with a mass source

—

dv -

— 4+ -V -T-5=0 17
Py TN 7
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