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Abstract

For each patient receiving definitive treatment for cervix
cancer, several CT/MR imaging studies need to be regis-
tered in order to specify the total physical or biological dose
to each fixed tissue voxel in an organ system. This turns out
to be a difficult problem due to large localized deformations
and displacements of bladder, rectum, vagina, uterus and
paracervical tissues due to tumor regression, bladder and
rectal filling variations, and especially insertion of the ap-
plicator itself. This paper explores the utility of using the
fluid landmark image registration method to register images
before and after insertion of the brachytherapy applicator
in order to track radiation dose from one treatment to the
next.

1 Introduction

Cervical cancer is the second most common malignancy
found in women after breast cancer and affects approxi-
mately 500,000 women annually worldwide. Every year
in the United States, approximately 15,000 women are di-
agnosed with cervical cancer and 5,000 women die of the
disease. One common treatment for cervical cancer is in-
tracavitary brachytherapy radiation therapy in which a high
dose of radiation is delivered to the site of the tumor by
inserting an applicator into the vagina/uteral canal. Most
brachytherapy treatment plans are made from 2D bilateral
x-rays and ignore the soft-tissue deformation of the pelvic
anatomy from one examination to the next due to insertion
of brachytherapy applicators, tumor regression, and soft-
tissue movement. Imaging the pelvis with CT before and
after each applicator insertion, it is possible to visualize the
3D deformation of the soft-tissue structures. We are study-
ing methods for registering these image volumes together

in order to specify the total physical or biological dose to
each fixed tissue voxel in an organ system. Common im-
age registration techniques based on thin-plate splines and
linear-elastic models [10, 1, 2, 8] have a small deformation
assumption and can not be used due to the large localized
deformations associated with this problem. This paper ex-
plores the utility of using the fluid landmark image registra-
tion method [7, 9, 6] for this problem. The fluid model [4]
has no small deformation assumption and is therefore able
to track large localized nonlinear deformations.

The images to be registered are 3D CT volumes of the
same patient imaged at different times before and during
intracavitary brachytherapy radiation therapy. We seek to
find an invertible transformation that maps corresponding
voxels in an image with the applicator to their correspond-
ing locations in a target image without the applicator. These
transformations must accommodate the large localized soft-
tissue deformation of the pelvic anatomy from one exami-
nation to the next due to insertion of brachytherapy appli-
cators, tumor regression, and soft-tissue movement. The
transformation found from the image registration provides
a dense correspondence map between images that is used
to track the cumulative radiation dose that each volume el-
ement of tissue receives over the course of treatment. We
have shown [5] that a volumetric fluid image registration
method [4] is able to accommodate the large localized soft-
tissue deformation of the pelvic anatomy. In this approach,
the 3D fluid transformation from one image to another was
found by matching the 3D CT data and manually generated
segmentations of the vagina, uterus, bladder, and rectum.

A drawback of the volumetric fluid image registration
method for registering segmentations is that it is computa-
tionally inefficient. This inefficiency is due to the fact that
the volumetric algorithm estimates a volumetric transforma-
tion at each iteration. However, the segmentations only add
information at their surfaces. Therefore, it is more efficient
to only estimate the transformation at the surfaces of the



segmentations at each iteration and then extend the trans-
formation to the full volume after the surfaces are matched.
It is for this reason that we are investigating using the fluid
landmark image registration algorithm.

In this current work we restrict our problem to that of
matching 2D images and therefore the surface matching
problem becomes a contour matching problem. A contour
can be discretized into an ordered set of points that when
connected by straight lines forms the original curve. We
discretized each corresponding curve in the template image
and the target image into an equal number of points. The
correspondence between two curves can then be reduced to
matching the corresponding discretized node points of each
contour. The fluid landmark image registration algorithm is
then used to deform one image into the other by matching
the corresponding node points of the discretized contours.

Matching contours is computationally more efficient
than matching segmented subvolumes because there are
fewer parameters to estimate. However, defining exact
landmark correspondences between structures is not always
possible on smooth structures and therefore matching seg-
mented subvolumes—which avoids this problem—should
be used. In the future, we plan to combine the landmark and
intensity-based fluid registrations algorithms as we have
done for linear-elastic image registration [3].

2. Fluid landmark registration

We follow the fluid landmark image registration ap-
proach of Joshi et al. [7, 9, 6]. In the next three sections,
we will discuss the general formulation of the fluid land-
mark problem, how this problem can be solved efficiently
by reducing the dimensionality of the problem, and how this
solution is converted back to the full dimensional solution.

2.1. The landmark matching problem

The landmark mapping problem is based on a finite num-
ber of N landmark points, where template landmark set
I0 _=fyngNn=1 � 
 and target landmark set I1 _=fxngNn=1 �

, 
 = R3 for three dimensional problem. It is assumed
that the manual identification of landmarks is a random
process with some mean and variance. The spatial vari-
ance of placing the landmarks corresponds to the accuracy
with which landmarks can be repeatably identified. For ex-
ample, placing a landmark at the intersection of two lines
would have a low variance while placing a landmark at a
high curvature point of an anatomic structure would have
a high variance. This spatial placement variance may be
isotropic or anisotropic. An example of an isotropic land-
mark placement error would be identifying the center of a
spherical fiducial marker. An anisotropic placement error

occurs when placing a landmark on a 3D contour; the land-
mark is easy to place in the two orthogonal directions to the
contour, but is more variable alone the contour. The spa-
tial landmark identification error covariance between the x,
y, and z coordinates for each landmark is denoted by P

n
,

n = 1; � � � ; N .
This landmark matching algorithm works directly on the

Lagrangian trajectory �(x; t) of the landmarks. �(x; t) is
defined as the position of a landmark at time t which was at
x at time 0. The trajectories can be parameterized via rate
of change associated with their velocity fields

�(x; T ) = x+

Z T

0

v(�(x; t); t)dt (1)

Diffeomorphic transformations are constructed by forc-
ing the velocity fields to be associated with quadratic ener-
getics on 
 � [0; T ] 2 R4 defined via the form E(v) =R

�[0;T ]

kLv(x; t)k2dxdt, where L is a constant coeffi-
cient, 3� 3 matrix differential operator.

Define 3N � 1 vector for time paths of the N landmarks

�(t) = [�(y1; t); �(y1; t); � � � ; �(yN ; t)]t (2)

To match end point conditions of the landmarks, landmark
distance function D(�) of following form is used

D(�(T )) _=

NX
n=1

[xn � �(yn; T )]
tP�1

n
[xn � �(yn; T )] (3)

Therefore, the optimal landmark matching problem can
be stated as

v̂(x; t) = argminv(x;t)

Z T

0

Z



kLv(x; t)k2dxdt +D(�(T ))

(4)

and

�̂(x; T ) = x+

Z
T

0

v̂(�̂(x; t))dt (5)

2.2. Solving the optimum time paths of the land-
marks

It is proven by Joshi in [7] that by reformulating the min-
imization problem in Eq.(4), the optimal path of N land-
marks �̂(t) would satisfy following minimization problem

�̂(t) = argmin�(t)

Z
T

0

_�(t)K�1(�(t)) _�(t)dt

+

NX
n=1

[xn � �(yn; T )]
tP�1

n
[xn � �(yn; T )]

(6)
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subject to �(0) = [y1; y2; � � � ; yN ]t.
K(�(t)) in Eq.(6) is a 3N � 3N matrix. The ij � 3� 3

block of K(�(t)) is

(K(�(t)))ij = k(�(yi; t); �(yj ; t)) (7)

k(x; x
0
) is the 3�3 covariance matrix function correspond-

ing to the Green’s function squared of the differential op-
erator L in Eq.(4). In this implementation, L is set to a
diagonal 3 � 3 Laplacian operator differentiating in space.
That is, L = diag(�r2 + c) and

k(x; x
0
) = 2

p
c(2�)5=2e

�1p
c

kx�x
0
k
I (8)

where I is the 3� 3 identity matrix. The power of working
with �(t) is that the optimization has been reduced from
velocity fields on 
 � [0; T ] to N time path fields �(t) on
[0; T ].

To solve the minimization problem in Eq.(6), the prob-
lem is reduced to finite dimensional by defining the trans-
formation on finite grid of fixed size time intervals. Divide
the time [0; T ] into M intervals fti = Ti

M
gM
i=0, and define

�i = �(ti). Assume the velocities are piecewise constant
within quantized time intervals, so that for t 2 [ti; ti+1),

_�(t) =
�i+1 ��i

T

M

(9)

Rewrite Eq.(6) as

�̂(t) = argmin�(t)(P (�(t)) +D(�(t))) (10)

and

P (�(t)) =

Z
T

0

_�(t)K�1(�(t)) _�(t)dt (11)

D(�(t)) =

NX
n=1

[xn � �(yn; T )]
tP�1

n
[xn � �(yn; T )]

(12)

Also make the assumption thatK(�(t)) does not change
over t 2 [ti; ti+1), then

P (�(t)) =
T

M

M�1X
i=0

(�i+1 ��i)
t

T

M

K�1(�i)
(�i+1 ��i)

T

M

(13)

Eq.(6) can be solved by iterative gradient descent,

�k+1
i

= �k

i
� �(

@P (�(t))

@�i

+
@D(�(t))

@�i

) (14)

where �k

i
is the estimate of �i at iteration k, and � is step

size. Also, we have

@P (�(t))

@�i

=
T

M
(
(�i+1 ��i)

t

T

M

K�1(�i)
dK(�i)

d�i

K�1(�i)
(�i+1 � �i)

T

M

� 2K�1(�i)
(�i+1 � �i)

T 2

M2

+ 2K�1(�i�1)
(�i ��i�1)

T 2

M2

)

(15)

Define target landmark set X = [x1; x2; � � � ; xN ],

@D(�(t))

@�i

=

�
2
P�1

i
[�(T )�X ] i =M

0 i < M
(16)

2.3. Finding the transformation for the full image
space

The optimum landmark time paths estimated from last
section can be used to calculate transformation associated
with the whole image space. Assume ITR is the total num-
ber of iterations and final iteration �̂ = �(ITR), then for
t 2 [ti�1; ti),

_̂
�(yn; t) =

�̂(yn; ti)� �̂(yn; ti�1)
T

M

(17)

Velocity vectors associated the whole image space x 2 


can be obtained by following equation,

v̂(x; t) =

NX
n=1

k(�̂(yn; t); x)

NX
j=1

(K�1(�̂(t)))nj
_̂
�(yj ; t)

(18)

and final trajectories associated the whole image space can
be estimated by

�̂(x; T ) =

Z T

0

v̂(�̂(x; t); t)dt+ x (19)

3. Results

In this paper we use contours to define the correspon-
dences between two images (see Fig. 1) instead of the seg-
mented subvolumes as in [5]. The contours in each image
are discretized by defining a set of N, ordered landmarks
sampled along the contours. The correspondence between
the landmarks on the contours defines the correspondence
between the contours. The fluid landmark algorithm is used
to register the two images by matching the images at these
landmarks. The landmarks in the template image were se-
lected at uniform spacing around the contour. The land-
marks in the target image were found by identifying the
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landmark locations in the target contour that corresponded
to the five landmarks in the template with the highest cur-
vature. The rest of the target landmarks were uniformly
spaced between these five identified points.

Figure 1 shows a experiment where the landmarks are
selected to be along the contour of uterus/vagina to track
the shape change of the uterus/vagina during the radiation
treatment. The results shown in Fig. 1 suggests that this
landmark registration algorithm can correct for large shape
deformation of the uterus/vagina. Notice that the transfor-
mation is local to the area of the landmarks, and the bony
anatomy does not move much after the registration. The
transformations are constrained to diffeomorphic, and when
the same transformation is applied to square grid, the de-
formed grid is smooth and never cross over.

4. Discussion

The result shown in Fig. 1 is based on the assumption
that there is point to point correspondence between the tem-
plate and target landmarks. However, defining exact land-
mark correspondences between structures is not always pos-
sible on smooth structures. Fig. 2 shows an example when
there is poor correspondence of the landmark points. In this
experiment, the same template and target images were used
as in the first experiment. However, the landmarks in both
the template and the target contours were selected to be uni-
formly spaced around the contour. The problem in this case
was that the template landmark points located at points of
high curvature did not correspond to the points of high cur-
vature on the target contour.

Therefore, the implementation of the landmark regis-
tration algorithm would be improved if there was a bet-
ter approach for selecting the landmark points. This prob-
lem can also be avoided by matching segmented subvol-
umes. Therefore, in the future, we plan to combine the
landmark and intensity-based fluid registrations algorithms
as we have done for linear-elastic image registration [3].

5 Summary

We have shown that the fluid landmark image regis-
tration technique is able to accommodate the large local-
ized nonlinear transformations commonly found when reg-
istering CT image volumes of before and after insertion of
brachytherapy applicators. The major limitation of the cur-
rent method is the need to accurately identify correspond-
ing landmarks in the template and target image volumes. In
future work, we will seek to automatically identify corre-
sponding landmarks and extend this work to 3D.
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Figure 1. CT and uterus/vagina segmenta-
tion of the midsagittal slice from a 3D data
set before (top row) and after (middle row)
fluid landmark transformation. The bottom-
left panel shows the landmarks used to trans-
form the original data set and the bottom-
right panel shows the transform applied to
a square grid.

Figure 2. Effect of poor landmark correspon-
dence: CT and uterus/vagina segmentation of
the midsagittal slice from a 3D data set before
(top row) and after (middle row) fluid land-
mark transformation. The bottom-left panel
shows the landmarks used to transform the
original data set and the bottom-right panel
shows the transform applied to a square grid.
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