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Abstract

This paper describes a new bidirectional image regis-
tration algorithm that estimates a consistent set of nonlin-
ear forward and reverse transformations between two N-
dimensional images. The registration problem is formulated
in a N+1-dimensional space where the additional dimen-
sion is referred to as the temporal or time dimension. A
periodic-in-time, nonlinear, N+1-dimensional transforma-
tion is estimated that deforms one image into the shape
of the other and back again. The registration problem is
solved numerically by discretizing the temporal dimension
such that there is an incremental image and transformation
at each time point. Nonlinear deformations from one image
to the other are accommodated by concatenating the linear,
small-deformation incremental transformations. An inverse
consistency constraint is placed on the incremental trans-
formations to enforce within a specified tolerance that the
forward and reverse transformations between the two im-
ages are inverses of each other. Results are presented for
2D image registration problems. These results demonstrate
the feasibility of accommodating both linear and nonlinear
deformations.

1. Introduction

The goal in image registration is to find a transforma-
tion that defines the pointwise correspondence between ob-
jects contained within the images being registered. The cor-
respondence between objects that differ slightly in shape
such as the small and large squares in Fig. 1 can be de-
scribed using a small-deformation, linear transformation
model. However, objects that have large shape differences
such as the circle and “C” shown in Fig. 1 require a large-
deformation, nonlinear transformation model. In this paper
we present a new bidirectional image registration algorithm
that estimates a consistent set of nonlinear forward and re-
verse transformations between two images. This method
accommodates large nonlinear deformations by concatenat-

ing a sequence of small incremental transformations from
the domain of one image to that of the other. Inverse con-
sistency between the forward and reverse transformations
is achieved by jointly estimating the incremental transfor-
mations while enforcing inverse consistency constraints on
each incremental transformation. The transformation esti-
mation is regularized using a linear differential operator that
penalizes second order derivatives in both the spatial and
temporal dimensions. This regularization is most similar to
a thin-plate spline or linear elastic regularization with the
difference that it is applied to both the spatial and temporal
dimensions instead of just the spatial dimension.

Figure 1. Simple objects used to test the im-
age registration algorithm.

Registration methods that accommodate large-
deformation, nonlinear transformations are often based on
continuum mechanical models such as hyperelasticity[10]
and viscous fluids [3, 5, 7, 8, 1, 9]. In the case of a hyper-
elasticity model, one image is deformed into the shape of
the other assuming that it is a fully elastic material while
accommodating the nonlinear behavior due to the path
of the deformation. Registration algorithms based on the
viscous fluid transformation model accommodate locally
large nonlinear deformations by modeling the deformation
of one image into the shape of the other as a fluid material.
The method presented in this paper is most similar to the
hyperelastic material model since the regularization is
applied to the displacement field as opposed to the velocity
field which would be the case for a viscous fluid material.

The idea of inverse consistent image registration was first
presented for linear transformations by Woods et al. [12]. In
their approach, inverse consistency was achieved for a pop-
ulation of data sets by iteratively minimizing the pairwise



consistency error. The first nonrigid registration algorithm
to correct for inverse consistency errors was put forth by
Thirion[11]. In Thirion’s work, a set of inverse consistent
transformations are achieved by iteratively minimizing the
residual of the inverse consistency error using a first order
Taylor series approximation. In our previous work, we in-
troduced the idea of inverse consistent image registration
[2, 4, 6] in which forward and reverse transformations are
estimated jointly while enforcing the forward and reverse
transformations to be inverse consistent. In this approach,
the inverse transformations are explicitly calculated without
the need for any small deformation or linearization approx-
imations. The algorithm presented in this paper extends the
previous consistent, small deformation approach to the case
of nonlinear inverse consistent image registration.

2. Methods

2.1. Notation

This section describes the notation and assumptions used
through out the paper to describe N+1D periodic images
and transformations (see Figure 2). For convenience of pre-
sentation, we will assume that there are three spatial dimen-
sions and one temporal dimension. Both continuous and
discrete notation is used because applying a transformation
to an image is an inherently continuous operation while rep-
resenting images and computer processing are inherently
discrete operations.

Let 
d = f(n1; n2; n3; n4) : 0 � n1 < N1; 0 � n2 <

N2; 0 � n3 < N3; 0 � n4 < N4g be the index set of
image domain lattice and N = [N1; N2; N3; N4]. Without
loss of generality,N4 will be assumed to be an even number
throughout the paper.

Let Tc denote a continuous 4D image defined on the do-
main 
x � 
t where 
x = [0; 1)3 denotes the 3D spatial
domain and 
t = [0; 1) denotes the 1D temporal domain.
Let Td denote the discrete version of Tc produced by sam-
pling Tc using the standard formula Td[n] = Tc
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the continuous image Tc is constructed from the discrete
image Td using trilinear interpolation.

A continuous image Tc is said to be periodic iff Tc(x1 +
k1; x2 + k2; x3 + k3; x4 + k4) = Tc(x1; x2; x3; x4) for all
x 2 
x � 
t and a discrete image Td is said to be periodic
iff Td[n1 + k1N1; n2 + k2N2; n3 + k3N3; n4 + k4N4] =
Td[n1; n2; n3; n4] for all n 2 
d, where k1, k2, k3, and k4

are integers.
Figure 2 shows a 4D image that has been sampled eight

times (i.e., N4 = 8) in the temporal dimension and the
transformations that transform one image into the shape
of the next. A transformation is said to be diffeomorphic

if it is one-to-one, onto, and differentiable. Let H de-
note the set of all periodic diffeomorphic transformations
that maps the domain 
x � 
t to 
x. The transformation
h(x; i) 2 H is defined as the transformation that maps im-
age i into image i + 1, that is defines the correspondence
between coordinate system of image i and that of image
i + 1. Let u(x; i) = h(x; i) � x denote the displacement
field associated with the forward transformation h and let
~u(x; i) = h

�1(x; i)�x denote the displacement field asso-
ciated with the inverse transformation h�1.

2.2. Image Registration

This section describes how two 3D images I0 and I1 are
registered by constructing a 4D image T that is periodic in
both the spatial and temporal dimensions. The 4D image T
is defined as a sequence of 3D images indexed by time that
smoothly changes shape from image I0 at time t = 0 to the
image I1 at time t = 0:5 and back again at time t = 1.

Let I0(x) and I1(x) for x 2 
x denote two 3D images
to be registered. Let the image Tc denote a 4D, continuous-
in-time1, periodic extension of I0 and I1 on 
x � 
t such
that Tc(x; 0) = I0(x) and Tc(x; 0:5) = I1(x). Let T and h
denote the time-sampled versions of Tc and hc, respectively,
with N4 uniformly spaced time samples on 
t, such that

T (x; 0) = I0(x); T (x; 1) = T (h(x; 0); 0);

T (x; 2) = T (h(x; 1); 1); T (x; 3) = T (h(x; 2); 2);

T (x; 4) = I1(x); T (x; 5) = I1(h(x; 4));

T (x; 6) = T (h(x; 5); 5); T (x; 7) = T (h(x; 6); 6)

for the case N4 = 8. The spatial transformations h(x; �)
can be composed together to produce the intermediate time
samples of T from the original images, i.e.,

T (h(x; 3); 3) = I0(h(h(h(h(x; 3); 2); 1); 0)) and

T (h(x; 7); 7) = I1(h(h(h(h(x; 7); 6); 5); 4)): (1)

For notational convenience, let S denote a time shifted ver-
sion of the template image T such that

S(x; i) = T (x; i+ 1) 0 � i < N4 (2)

Image S is assumed to be constant during each iteration of
the transformation parameter estimation (see next section)
and is updated after each estimation iteration.

A necessary condition to insure a biologically realistic
transformation2 between two images is that the forward and

1Continuous-in-time refers to Tc being continuous in the fourth argu-
ment of Tc

2True biological correspondence only makes sense when comparing
images from the same individual. A biologically realistic correspondence
is a biologically meaningful pointwise correspondence between images of
different people and is task dependent.
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Figure 2. N+1D image and associated incremental transformations.

reverse transformations are inverses of one another. This is
accomplished by placing an inverse-consistency constraint
[4] on the transformation h that defines the correspondence
between the temporal subimages of T . Eq. 1 implies that
the forward and reverse transformations that map I0 to I1

and back are given by

hfor(x) = h(h(h(h(x; 3); 2); 1); 0) and

hrev(x) = h(h(h(h(x; 7); 6); 5); 4); (3)

respectively. The inverse-consistency constraint implies
that the composition of the forward and reverse transfor-
mations produce the identity mapping, i.e., hfor(hrev(x)) =
hrev(hfor(x)) = x.

The inverse consistency constraint for the 4D transfor-
mation is imposed by enforcing the constraints

h(x; i) = h
�1(x;N4 � 1� i) (4)

for 0 � i < N4. These constraints imply that each inter-
mediate image T (x; i) has the approximate appearance of
the image T (x;N4 � i) for 0 � i < N4, i.e., T (x; i) �
T (x;N4 � i) for x 2 
x.

The 4D image registration problem is formulated as the
minimization with respect to h of the cost function

C(h) = �
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x
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where L is a symmetric differential operator that is used to
help smooth and help prevent folding of the transformation.
The choice of the operator L is based on the requirements

of the registration problem. In this paper, the Laplacian op-
erator given by
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was used to regularize the transformation. For more real-
istic transformations, a linear-elastic differential operator L
with the form

Lu(x; t) = ��r2
x;tu(x; t)� �rx(rx � u(x; t)) + u(x; t)

(7)

could be used.

2.3. Transformation Parameterization

A 4D Fourier series representation is used to parame-
terize the displacement field u. Let < �; � > represent the
standard inner product. The continuous displacement field
is defined to have the form

uc(x; t) =
X
k

�ke
j<(x;t);!k> (8)

for x 2 
x and t 2 
t. The discrete transformation
hd[n] = n

N
+ u[n] and its inverse h

�1
d [n] = n

N
+ ~u[n]

are defined in terms of the displacement fields

ud[n] =
X
k

�ke
j<n;!k> and ~ud[n] =

X
k

~�ke
j<n;!k>

(9)

for n 2 
d. The continuous and discrete dis-
placement fields are related by the formula ud[n] =
uc(

n1
N1

;
n2
N2

;
n3
N3

;
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N4

). The coefficients�k and ~�k are (3�1),
complex-valued vectors with complex conjugate symmetry
and !k = [ 2�k1

N1
;
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N2
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2�k3
N3

;
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].

2.4. Estimation Procedure

The Fourier series parameterization in Eq. 9 is a multi-
resolution decomposition of the displacement fields. Let




d[r] = 
dn

0

d[r] represent a family of subsets of 
d

where 
0

d[r] = fn 2 
djr1 < n1 < N1 � r1; r2 < n2 <

N2 � r2; r3 < n3 < N3 � r3; r4 < n4 < N4 � r4g and the
set subtraction notation AnB is defined as all elements of
A not in B. In practice, the low frequency basis coefficients
are estimated before the higher ones allowing the global im-
age features to be registered before the local features. This
is accomplished by replacing Eq. 9 by

ud[n; r] =
X

k2
d[r]

�[k]ej<n;�[k]>: (10)

where r 2 
d determines the number of harmonics used
to represent the displacement fields. Define hd[n; r] =
n
N

+ ud[n; r] as a set of multi-resolution transformations.
The components of r are initially set small and are period-
ically increased throughout the iterative minimization pro-
cedure. The set 
d[r] can be replaced by 
d when all of the
components of r are greater than or equal to (N�1)=2 since
the set 
0

d[r] is empty. The constants r1, r2, r3 and r4 rep-
resent the largest x1, x2, x3 and t harmonic components of
the displacement fields. Each displacement field in Eq. 10 is
efficiently computed using three N1�N2�N3�N4 FFTs,
i.e., each component of the 3 � 1 vectors ud is computed
with a FFT after zeroing out the coefficients not present in
the summations.

The image registration problem can be stated mathemat-
ically as the minimization of the cost function

C(�; r) = �

X
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with respect to f�̂[k]g where

�hd[n; r] =
h
N1h

(1)

d [n; r]; N2h
(2)

d [n; r]; N3h
(3)

d [n; r]
i
(12)

is the normalized discrete transformation. The constants �,
, � and � are used to enforce/balance the constraints.

The steps involved in estimating the basis coefficients �
are summarized in the following algorithm.

Algorithm

1. Set �[k] = 0 for k 2 
d and set r = [1; 1; 1; 1]T .

2. Compute the displacement field ud[n; r] using Eq. 10.

3. Compute T from u, I0, and I1; set S equal to
a time shifted version of T such that Sd[n] =
Td[n1; n2; n3; n4 + 1].

4. Compute h�1
d [n; r] and set ~ud[n; r] = h

�1
d [n; r] � n

N

for 0 � n4 < N4.

5. Update the basis coefficients �[k] using gradient de-
scent.

6. If the criteria is met to increase the number of basis
functions then set r = r + 1, and set the new coeffi-
cients in Eq. 10 to zero.

7. If the algorithm has not converged or reached the max-
imum number of iterations goto step 2.

8. Use the displacement field ud[n] to transform I0 and
I1.

3. Results

The proposed algorithm was tested on the synthetic 2D
images shown in Fig. 1. The first experiment was to de-
form the small square(I0) into the big square(I1) and vice
versa. The dimension of the images were 64�64 pixels and
the size of the squares were 12 by 12 and 32 by 32. Both
squares were located at the center of the images. The time
axis of the images was discretized into 8 equally spaced
samples for this experiment. The parameter sets used for
this experiment and the second experiment described below
are shown in Table 1, where �t was the gradient descent
step size.

�t �  � � �

0.00001 1.0 1.0 1.0 0.0001 1000.0

Table 1. Parameter set for experiments.

The results of transforming the small square into the
large square and back again are presented in Figure 3. Each
row of Figure 3 corresponds to a time index starting at time
n4 = 0 for the top row and progressing to time n4 = 7 for
the bottom row. The first column shows how the template
image T was initialized for the gradient descent procedure;
the first four time samples T (x; 0) – T (x; 3) were set equal
to image I0 and the second four times samples T (x; 4) –
T (x; 7) were set equal to image I1. The second column
shows the intermediate deformed images T (h(x; 0); 0) –
T (h(x; 7); 7) after 2000 iterations of gradient descent. The
top four images in the third column show the absolute dif-
ference between the images T (h(x; 0); 0) – T (h(x; 3); 3)
and image I1 and the bottom four images show the absolute
difference between the images T (h(x; 4); 4) – T (h(x; 7); 7)



and image I0. The nearly black difference image in the
fourth and eighth images of column three show that the
small square was transformed into the shape of the large
square and the large square was transformed into the shape
of the small square, respectively. The images in columns 2
and 3 also demonstrate the periodic nature of the template T
in time and show that the shape of the intermediate images
are equally spaced in time. The images of the fourth and
fifth columns show the accumulated displacement fields3 in
the x and y dimensions, respectively, where black denotes
a negative displacement and white denotes a positive dis-
placement. Columns six and seven show the Jacobian of
the accumulated transformations and the result of apply-
ing the accumulated transformations to a rectangular grid.
The values of the Jacobian4 ranged from 0.51 to 2.0 for the
intermediate transformations and from 0.10 to 2.4 for the
concatenated transformations from the small square to the
large square and from 0.38 to 9.7 for the transformation of
the large square to the small square. The maximum inverse
consistency error for this experiment was 0.64 pixels. The
results were computed on a 500MHz, 21264 alpha proces-
sor and took about 560 seconds for the 2000 iterations.

In the second experiment, the image containing the “C”
shown in Fig. 1 was deformed into the shape of the circle
and vice versa. Unlike the first experiment, the transforma-
tion of the “C” to the circle requires a nonlinear transfor-
mation. The dimensions of the images were 64� 64 pixels.
The height and width of the outer contour of the “C” object
was 18 and 16 pixels, respectively. The distance from the
outer to inner contour was 8 pixels and the two ends were
separated by 13 background pixels. The radius of the circle
object was 14 pixels. The results of running the algorithm
for 3000 iterations of gradient descent are shown in Figure
4. The description of the panels in this figure are equivalent
to those in Fig. 3 except that the time axis was discretized
into 12 time samples instead of 8. Twelve time samples
were required for this deformation due to the locally large
nonlinear deformations required for this registration. The
Jacobian and grid images show that the “C” was deformed
into shape of the circle by expanding the “C” along the in-
terior contour to fill the void. The outside contour of the
“C” remained relatively fixed in space during the deforma-
tion. Likewise, the circle was transformed into the shape of
the “C” by indenting the circle at the opening of the “C”.
This indentation increased until it formed the inner contour
of the “C”. The values of the Jacobian ranged from 0.38
to 2.5 for the intermediate transformations and from 0.42

3The i
th row corresponds to the accumulation of time points t = 0 to

t = i for the first four rows and of times t = 4 to t = i for the last four
rows.

4The Jacobian values were calculated with respect to a Eulerian coor-
dinate system. In a Eulerian coordinate system, an expansion corresponds
to a Jacobian value less than 1 and a shrinking corresponds to a Jacobian
value greater than 1.

Figure 3. Registration between small and big
squares. Each row corresponds to a point
on the time axis. Column 1 shows the ini-
tialization of the template before gradient de-
scent. Column 2 shows the incrementally
deformed template images after gradient de-
scent. Column 3 shows absolute difference
images between the incrementally deformed
template images and their corresponding tar-
get images. Column 4 and 5 shows the ac-
cumulated x- and y-displacement fields, re-
spectively. Column 6 shows the accumulated
Jacobian images. Column 7 shows the accu-
mulated deformed grid image.

to 8.1 for the concatenated transformations from the “C” to
the circle and from 0.10 to 2.1 for the transformation of the
circle to the “C”. The maximum inverse consistency error
for this experiment was 3.0 pixels.

4. Discussion

4.1. Temporal Sampling Rate

The number of intermediate template images or trans-
formations between the original images is referred to as the
temporal sampling rate. The number of temporal samples
required to match two images is a function of the degree
of deformation between the two images. A large number



of samples is required if there is a large deformation be-
tween the pair of images being registered. A small num-
ber or no samples are required in the case of a small de-
formation between image pairs. Minimizing the number of
temporal samples has the advantage of reducing computer
computation and storage requirements.

The number of temporal samples can be determined em-
pirically by picking an initial sampling rate and register-
ing the images. The number of samples should be re-
duced if there is relatively little deformation as measured
by the Jacobian of the intermediate transformations. As
a rule of thumb, the number of temporal samples may
be reduced until the minimum of Jacobian(h(x; i)) and
1=Jacobian(h(x; i)) for x 2 
x and 0 � i < N4 of the fi-
nal transformation is greater than 0.5. Likewise, the number
of temporal samples should be increased until the minimum
of Jacobian(h(x; i)) and 1=Jacobian(h(x; i)) is greater than
0.5.

5. Summary and Conclusions

We presented a new elastic image registration approach
that accommodates large, non-linear deformations while
constraining the forward and reverse transformations to be
inverses of one another. The feasibility of the algorithm for
accommodating nonlinear deformations was demonstrated
in 2D by deforming an image containing a C-shaped object
into the shape of a circle and vice versa. In future work, we
plan to study the sensitivity of the algorithm to the parame-
ters and generate registrations of 3D images.
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Figure 4. Registration between a C and a circle. Each row corresponds to a point on the time
axis. Column 1 shows the initialization of the template before gradient descent. Column 2 shows the
incrementally deformed template images after gradient descent. Column 3 shows absolute difference
images between the incrementally deformed template images and their corresponding target images.
Column 4 and 5 shows the accumulated x- and y-displacement fields, respectively. Column 6 shows
the accumulated Jacobian images. Column 7 shows the accumulated deformed grid image.


