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Dimensions and Units

 Dimension: A measure of a physical quantity
— MLT system: Mass (M), Length (L), Time (T)
— FLT system: Force (F = MLT~?), Length (L), Time (T)

e Unit: A way to assign a number to that dimension

Dimension Symbol SI Unit BG Unit
Mass M kg (kilogram) | Ib (pound)
Length L m (meter) ft (feet)
Time T s (second) s (second)




The Principle of Dimensional
Homogeneity (PDH)

e Every additive terms in an equation must have the same dimensions

Ex) Displacement of a falling body

z =27y + Vot — = gt?

I = component of velocity
in the z-direction

= +(3) @~ (7) T ‘
J ¢ = vertical distance

— VO: Initial Ve|0City g = gravitational

acceleration in the
negative z-direction

— Zp: Initial distance at t =0




Nondimensionalization

* Nondimensionalization: Removal of units from physical quantities by a
suitable substitution of variables

 Nondimensionalized equation: Each term in an equation is dimensionless

E.g.) Displacement of a falling body

Let:
. z {L} . Vot {LT‘l}{T}
Z =—= t" = =

7o {L} 2 {L}
Substitute into the equation,

. n v t*ZO 1 (t*Z0>2
Z Zn = Z — — =9\
0 0 0 V() 2 V()

Then, divide by z,),

1 . 45
zZF=1+4+t"+—t", aQ=—
2a 9Zy



Dimensional vs. Non-dimensional Equation

e Dimensional equation

1
Z=ZO+V0t—Egt2

or
F(z, zy,Vy, g,t) =0 = 5variables

 Non-dimensional equation

*=14t* 1t*2
z" = ——
2a

or
f(z*,t",a) =0 = 3variables



Advantages of Nondimensionalization
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Dimensional Analysis

e A process of formulating fluid mechanics problems in terms of
non-dimensional variables and parameters

1. Reduction in variables
F=(A4,A4,,..,A4,) =0, A; = dimensional variables
f =y, Oy, ..., II.,) =0, II; = non-dimensional parameters

Helps in understanding physics
Useful in data analysis and modeling

Fundamental to concepts of similarity and model
testing



Buckingham Pi Theorem

IF a physical process satisfies the PDH and involves n dimensional
variables, it can be reduced to a relation between only r dimensionless

variables or II’s.

The reduction, m = n — r, equals the maximum number of variables that
do not form a pi among themselves and is always less than or equal to the
number of dimensions describing the variables.

n = Number of dimensional variables
m = Minimum number of dimensions to describe the variables

r =n — m = Number of hon-dimensional variables



Methods for determining I1’s

1. Functional relationship method
a. Inspection (Intuition; Appendix A)
b. Exponent method (Also called as the method of repeating variables)
c. Step-by-step method (Appendix B)

2. Non-dimensionalize governing differential equations (GDE’s)
and initial (IC) and boundary (BC) conditions



Exponent Method
(or Method of Repeating Variables)

Step 1: List all the variables that are involved in the problem.
Step 2: Express each of the variables in terms of basic dimensions.
Step 3: Determine the required number of pi terms.

Step 4: Select a number of repeating variables, where the number
required is equal to the number of reference dimensions.

Step 5: Form a pi term by multiplying one of the nonrepeating variables by
the product of the repeating variables, each raised to an exponent that
will make the combination dimensionless.

Step 6: Repeat Step 5 for each of the remaining nonrepeating variables.

Step 7: Check all the resulting pi terms to make sure they are
dimensionless.

Step 8: Express the final form as a relationship among the pi terms, and
think about what it means.



Example 1

7.22  The pressure drop, Ap, along a straight (1) (2)
pipe of diameter D has been experimentally stud- i u
ied, and it is observed that for laminar flow of a vV

given fluid and pipe, the pressure drop varies di- D

rectly with the distance, [, between pressure taps.
Assume that Ap is a function of D and (, the
velocity, V, and the fluid viscosity, 4. Use di- <
mensional analysis to deduce how the pressure

drop varies with pipe diameter. | Ap = p,—p>

11



Steps 1 through 3

e Step 1: List all the variables that are involved in the problem.
Ap — f(D,f,V,,U)

e Step 2: Express each of the variables in terms of basic dimensions.

Variable Ap D 4 |74 U
Unit N/m?2 m m m/s N-s/m?
Dimension | {ML~1T~2} {L} {L} {Lt~ 1} | {ML7IT1}

Step 3: Determine the required number of pi terms.

n=5fordp,D,¥,V,and u

m=3forM,L, T
sr=n—-m=5—-3=2 (i.e. 2 piterms)



Step 4

e Select a number of repeating variables, where the number required is
equal to the number of reference dimensions (for this example, m = 3).

e All of the required reference dimensions must be included within the
group of repeating variables, and each repeating variable must be
dimensionally independent of the others (The repeating variables cannot
themselves be combined to form a dimensionless product).

e Do NOT choose the dependent variable as one of the repeating variables,
since the repeating variables will generally appear in more than one pi
term.

= (D, V, u) for (L, T, M), respectively



Step 5

e Combine D, V, u with one additional variable (Ap or ¥), in sequence, to find the two pi
products

M, = DVPuAp = (L)*(LT " HP(ML T H)(ML™IT?)

— M(C+1)L(a+b—c—1)T—b—C—2 — M910T0

Equate exponents:

Mass(M): c+1=0
Length(L): a+b—-—c—1=0
Time(T): —b—c—2=0
Solve for,
a=1 b=-1 c¢c=-1
Therefore,



Step 6

e Repeat Step 5 for each of the remaining nonrepeating variables.
M, = DVPuce = (L)*(LT " HP(MLIT-1H)e(L)
— MCLa+b—C+1T—b—C — MOLOTO

Equate exponents:

Mass(M): c=0
Length(L): a+b—c+1=0
Time(T): —b—c=0
Solve for,
a=—-1 b=0 c¢c=0
Therefore,



Step /

e Check all the resulting pi terms.

e One good way to do this is to express the variables in terms of F, L, T if
the basic dimensions M, L, T were used initially, or vice versa.

Variable Ap D '4 |74 U

Unit N/m?2 m m m/s N-s/m?
Dimension | {FL™?} {L} {L} {LT™'} | {FTL™?}

—2

i ApD . (FL=2)(L) = FOOT0
Lo uv T (FTL2)(LT-Y)
£ (L)
M, =—=—=FOo1070
‘D (L)



Step 8

* Express the final form as a relationship among the pi terms.

I, = f(II)

ApD (¥
w ! (5>

or

e Think about what it means.

Since Ap « ¥,
ApD L
— = —
uVv D
where C is a constant. Thus,
1
Ap <« —



Problems with One Pi Term

e The functional relationship that must exist for one pi term is
[1=C
where C is a constant.

* |n other words, if only one pi term is involved in a problem, it
must be equal to a constant.



Example 2

7.23 Acylinder with a diameter, D, floats upright in a liquid
as shown in Fig. P7.2 3. When the cylinder is displaced slightly
along its vertical axis it will oscillate about its equilibrium po-
sition with a frequency, w. Assume that this frequency is a func-
tion of the diameter, D, the mass of the cylinder, m, and the
specific weight, v, of the liquid. Determine, with the aid of
dimensional analysis, how the frequency is related to these var-
iables. If the mass of the cylinder were increased, would the
frequency increase or decrease? -

w=f(D,my)

Cylinder
/diameter =p

Liquid

19



Steps 1 through 4

Variable W D m y
Unit 1/s m ke N/m3
Dimension (T4 {L} {M} {ML™2T 2}

n=4forw,D, m,andy
m=3forM,L, T

~r=n—-m=4-3=1 (ie,1piterm)

m repeating variables=D, m, y



Step 5 (and 6)

M= D*mPy‘w = (L)* (M)’ (ML™2T~2)¢(T1)
— M(b+C)L(a—2C)T—ZC—1 — MO910T0

Equate exponents:

Mass(M): b+c=0
Length(L): a—2c=0
Time(T): —2c—1=0

or,

s = D_lm%y_%a) = 8 m
D |y



Steps 7 through 8
M= QF = ) FL_iTZ = FOL°T®
D. |y (L) FL3
e The dimensionless function is
e

a)=C-D\/Z
m

Therefore, if m is increased w will decrease.

where C is a constant. Thus,



Example 3

7.9 The excess pressure inside a bubble (discussed in Chapter 1)
is known to be dependent on bubble radius and surface tension. Af-
ter finding the pi terms, determine the variation in excess pressure
if we (a) double the radius and (b) double the surface tension.

Ap = f(R,0)

23



Example 3 —Contd.

Variable Ap R o
Unit N/m? m N/m
Dimension {ML™1T~?} {L} {MT 2}

m=3forM,L, T

~r=n—-—-m=3—3=0 = Nopiterm?



Example 3 —Contd.

e Since the repeating variables form a pi among them:

ApR . (ML™'T~*)(L)

- - MOLOTO
o (MT—2)

m should be reduced to 2 for MT~% and L.



Example 3 —Contd.

Select R and o as the repeating variables:

1 =R%*PAp = (L)*(MT?)P(ML™1T~2) = MOLOT?

Thus,
M: b+1=0
L: a—1=0
T: —2b—2=0
or,
a=1landb =-1
Hence,

ApR
L
o)



Example 3 —Contd.

Alternatively, by using the FLT system

Variable Ap R o
Unit N/m? m N/m
Dimension {FL™%} {L} {FL™1}

n = 3 for Ap, R, and ¢

m = 2for FandL

~r=3—-—2=1 = 1piterm



Example 3 —Contd.

With the FLT system:

I, = R%PAp = (L*(FL V)P (FL™?) = FOLOT?

Thus,
F: 1+b=0
L: —24+a—-b=0
or,
a=1landb =-1
Hence,

ApR
L
o)



Common Dimensionless Parameters
for Fluid Flow Problems

e Most common physical quantities of importance in fluid flow

problems are (without heat transfer):

Length | Velocity | Density | Viscosity | Gravity | Surface | Compre | Pressure
tension | ssibility | change
L |4 P U g o K Ap
{L} {LT™Y {ML73} | {ML7'T-1}| {LT7?} {MT=2} | {ML'T~2}| {(ML™2T~?%}

n = 8 variables
m = 3 dimension

~r=n-m=5piterms (Re, Fr, We, Ma, C),)



1) Reynolds number

_pVL

U
e Generally of importance in all types of fluid dynamics problems

Re

e A measure of the ratio of the inertia force to the viscous force

|74
[nertia force ~ma (pL?) (V ‘ Z) _pVL
. - - V -
Viscous force 1A ( u f) (12) U

— If Re K 1 (referred to as “creeping flow”), fluid density is less important
— If Re is large, may neglect the effect of viscosity
e Re_, i+ distinguishes among flow regions: laminar or turbulent value varies
depending upon flow situation



2) Froude number

V
Fr =—

JoL

e Important in problems involving flows with free surfaces

A measure of the ratio of the inertia force to the gravity force (i.e., the
weight of fluid)

|74
Inertia force ma (pL?) (V ' f) V2
Gravity force y¥  (pg)(I3) gL




3) Weber number

_pV2L
0

We

Problems in which there is an interface between two fluids where surface
tension is important

An index of the inertial force to the surface tension force

V
[nertia force ma (pL?) (V ‘ f) _pV2L

Surface tension force oL ol o

Important parameter at gas-liquid or liquid-liquid interfaces and when
these surfaces are in contact with a boundary



4) Mach number

a: speed of sound in a fluid (a symbol c is also used)
Problems in which the compressibility of the fluid is important
An index of the ratio of inertial forces to compressibility forces

|74
Inertia force ma (pL?) (V ' f) VP

Compressibility force  pc2l2  pc2L2 2

(Note: Cauchy number, Ca = V?/c? = Ma?)
Paramount importance in high speed flow (V' = ¢)
If Ma < 0.3, flow can be considered as incompressible



5) Pressure Coefficient

_Ar

Problems in which pressure differences, or pressure, are of interest
A measure of the ratio of pressure forces to inertial forces

Pressure force ApL*>  AplL? Ap

Inertia force ma. - (,13) (V . ) pV

Euler number:

Cavitation number:




Appendix A: Inspection Method

e Steps 1 through 3 of the exponent method are the same:

Ap, = f(D,p,u,V)

N
(FL3} |} | {FLUTZ | {FL7PTY} | LT




Appendix A: Inspection Method — Contd.

e LetII; contain the dependent variable (Ap, in this example)
e Then, combine it with other variables so that a non-dimensional product will result:

To cancel F,

Ape . (FL73) | L
p  (FL™*T?) T?

Ap\ 1 . (L 1 1
(T)ﬁ - (TZ) (LT-H)2 "~ L

AP{J N 1 .
(e (oes

ApgD
Hl - 2
pV

To cancel T,

Then, to cancel L,




Appendix A: Inspection Method — Contd.

Select the variable that was not used in I1;, which in this case u, and repeat the
process:

To cancel F,
u. (FL™2T) . L?

p (FL™4T2) T

u\1 . (L7 1
()7 (7)ars =

Then, to cancel L,

To cancel T,




Appendix B: Step-by-step Method*

The pi theorem method, just explained and illustrated, is often called the repeating
variable method of dimensional analysis. Select the repeating variables, add one more,
and you get a pi group. The writer likes it. This method is straightforward and sys-
tematically reveals all the desired pi groups. However, there are drawbacks: (1) All
pi groups contain the same repeating variables and might lack variety or effective-
ness, and (2) one must (sometimes laboriously) check that the selected repeating vari-
ables do nof form a pi group among themselves (see Prob. P3.21).

Ipsen [5] suggests an entirely different procedure. a step-by-step method that
obtains all of the pi groups at once, without any counting or checking. One simply
successively eliminates each dimension in the desired function by division or multi-
plication. Let us illustrate with the same classical drag function proposed in Eqg. (3.1).
Underneath the variables, write out the dimensions of each quantity.

F =fenll, V, p. 1) (5.1)
(MLT %) [y Ly ML MLy

There are three dimensions, {MLT}. Eliminate them successively by division or mul-
tiplication by a variable. Start with mass {M}. Pick a variable that contains mass and
divide it into all the other variables with mass dimensions. We select p, divide, and
rewrite the function (5.1):

g =f|:n(L V., i E) (5.1a)

p
(T2 Ly (Lrly ML AT

*by Ipsen (1960). The pi theorem and Ipsen method are quite different. Both are useful and interesting. 33



We did not divide into L or V, which do not contain {M}. Equation (5.1a) at first looks
strange, but it contains five distinct variables and the same information as Eq. (5.1).

We see that p is no longer important because no other variable contains {M}. Thus
discard p, and now there are only four variables. Next, eliminate time {T} by divid-
ing the time-containing variables by suitable powers of, say, V. The result is

ppﬂ=f{:n(L B i) (5.1b)
15! Ly Lr-hy L)

Now we see that V is no longer relevant since only V contains time |{T}. Finally, elim-
inate {L} through division by, say, appropriate powers of L itself:

F__ . e
p'If:LE = an(ai‘f' pVL) (5.1c)
} {Ly {1}

Now L by itself is no longer relevant and so discard it also. The result is equivalent
to Eq. (5.2):

_F__ (L) 52
oV~ M v <)

In Ipsen's step-by-step method, we find the force coefficient is a function solely of
the Reynolds number. We did no counting and did not find j. We just successively
eliminated each primary dimension by division with the appropriate variables.

Appendix B: Step-by-step Method — Contd.

39



Recall Example 5.5, where we discovered, awkwardly, that the number of repeal-
ing variables was fess than the number of primary dimensions. Ipsen’s method avoids
this preliminary check. Recall the beam-deflection problem proposed in Example 5.5
and the various dimensions:

5 = fiP, L. I L)
L} MLT?} (L) (£ (MLT'T)

For the first step, let us eliminate {M} by dividing by E. We only have to divide into F:

P
8 = f(E LI
Ly (L oy MLy

We see that we may discard E as no longer relevant, and the dimension {T} has van-
ished along with {M}. We need only eliminate {L} by dividing by, say, powers of L

itself:
& P I
— = I' — . N
3 CH(EL' P od LJ)
1

{1} i} 4 {h

Discard L itself as now irrelevant, and we obtain Answer (1) to Example 5.5:

5_, (i L)
L~ NED I
Ipsen’s approach is again successful. The fact that {M} and | T} vanished in the same

division is proof that there are only ftwo repeating variables this time, not the three
that would be inferred by the presence of {M}, {L}. and {T}.

Appendix B: Step-by-step Method — Contd.

40
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