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Dimensions and Units 

• Dimension: A measure of a physical quantity 
– 𝑀𝑀𝑀𝑀𝑀𝑀 system: Mass (𝑀𝑀), Length (𝐿𝐿), Time (𝑇𝑇) 
– 𝐹𝐹𝐹𝐹𝐹𝐹 system: Force (𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑇𝑇−2), Length (L), Time (T) 

 

• Unit: A way to assign a number to that dimension 
 

Dimension Symbol SI Unit BG Unit 

Mass 𝑀𝑀  kg (kilogram) lb (pound) 

Length 𝐿𝐿  m (meter) ft (feet) 

Time 𝑇𝑇  s (second) s (second) 
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The Principle of Dimensional 
Homogeneity (PDH) 

• Every additive terms in an equation must have the same dimensions 
 
Ex) Displacement of a falling body 
 

𝑧𝑧 = 𝑧𝑧0 + 𝑉𝑉0𝑡𝑡 −
1
2
𝑔𝑔𝑡𝑡2 

 

𝐿𝐿 = 𝐿𝐿 +
𝐿𝐿
𝑇𝑇

𝑇𝑇 −
𝐿𝐿
𝑇𝑇2

𝑇𝑇2  

 
– 𝑧𝑧0: Initial distance at 𝑡𝑡 = 0 
– 𝑉𝑉0: Initial velocity 
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Nondimensionalization 
• Nondimensionalization: Removal of units from physical quantities by a 

suitable substitution of variables 
• Nondimensionalized equation: Each term in an equation is dimensionless 

 
E.g.) Displacement of a falling body 
Let: 

𝑧𝑧∗ =
𝑧𝑧
𝑧𝑧0

=̇
𝐿𝐿
𝐿𝐿

           𝑡𝑡∗ =
𝑉𝑉0𝑡𝑡
𝑧𝑧0

=̇
𝐿𝐿𝑇𝑇−1 𝑇𝑇

𝐿𝐿
 

Substitute into the equation, 

𝑧𝑧∗𝑧𝑧0 = 𝑧𝑧0 + 𝑉𝑉0
𝑡𝑡∗𝑧𝑧0
𝑉𝑉0

−
1
2
𝑔𝑔

𝑡𝑡∗𝑧𝑧0
𝑉𝑉0

2

 

Then, divide by 𝑧𝑧0, 

𝑧𝑧∗ = 1 + 𝑡𝑡∗ +
1
2𝛼𝛼

𝑡𝑡∗2, 𝛼𝛼 =
𝑉𝑉02

𝑔𝑔𝑧𝑧0
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Dimensional vs. Non-dimensional Equation 

• Dimensional equation 
𝑧𝑧 = 𝑧𝑧0 + 𝑉𝑉0𝑡𝑡 −

1
2
𝑔𝑔𝑡𝑡2 

or 
𝐹𝐹 𝑧𝑧, 𝑧𝑧0, 𝑉𝑉0, 𝑔𝑔, 𝑡𝑡 = 0   ⇒  5 variables 

 
 

• Non-dimensional equation 
𝑧𝑧∗ = 1 + 𝑡𝑡∗ −

1
2𝛼𝛼

𝑡𝑡∗2 

or 
𝑓𝑓 𝑧𝑧∗, 𝑡𝑡∗, 𝛼𝛼 = 0      ⇒  3 variables 
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Advantages of Nondimensionalization 
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Dimensional: (a) 𝑉𝑉0 fixed at 4 m/s and 
(b) 𝑧𝑧0 fixed at 10 m 

Non-dimensional: (a) and (b) are 
combined into one plot 

𝛼𝛼 =
𝑉𝑉02

𝑔𝑔𝑧𝑧0
 



Dimensional Analysis 

• A process of formulating fluid mechanics problems in terms of 
non-dimensional variables and parameters 

1. Reduction in variables 
𝐹𝐹 = 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑛𝑛 = 0,         𝐴𝐴𝑖𝑖 = dimensional variables 
𝑓𝑓 = Π1, Π2, … , Π𝑟𝑟<𝑛𝑛 = 0,    Π𝑖𝑖  = non-dimensional parameters 

2. Helps in understanding physics 
3. Useful in data analysis and modeling 
4. Fundamental to concepts of similarity and model 

testing 
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Buckingham Pi Theorem 
• IF a physical process satisfies the PDH and involves 𝒏𝒏 dimensional 

variables, it can be reduced to a relation between only 𝒓𝒓 dimensionless 
variables or Π’s.  
 

• The reduction, 𝒎𝒎 = 𝒏𝒏 − 𝒓𝒓, equals the maximum number of variables that 
do not form a pi among themselves and is always less than or equal to the 
number of dimensions describing the variables. 
 
 

 𝑛𝑛 = Number of dimensional variables 
 𝑚𝑚 = Minimum number of dimensions to describe the variables 
 𝑟𝑟 = 𝑛𝑛 − 𝑚𝑚 = Number of non-dimensional variables 
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Methods for determining Π’s 

1. Functional relationship method 
a. Inspection (Intuition; Appendix A) 
b. Exponent method (Also called as the method of repeating variables) 
c. Step-by-step method (Appendix B) 

 

2. Non-dimensionalize governing differential equations (GDE’s) 
and initial (IC) and boundary (BC) conditions 

9 



Exponent Method 
(or Method of Repeating Variables) 

• Step 1: List all the variables that are involved in the problem. 
• Step 2: Express each of the variables in terms of basic dimensions. 
• Step 3: Determine the required number of pi terms. 
• Step 4: Select a number of repeating variables, where the number 

required is equal to the number of reference dimensions. 
• Step 5: Form a pi term by multiplying one of the nonrepeating variables by 

the product of the repeating variables, each raised to an exponent that 
will make the combination dimensionless. 

• Step 6: Repeat Step 5 for each of the remaining nonrepeating variables. 
• Step 7: Check all the resulting pi terms to make sure they are 

dimensionless. 
• Step 8: Express the final form as a relationship among the pi terms, and 

think about what it means. 
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Example 1 
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Steps 1 through 3 
• Step 1: List all the variables that are involved in the problem. 

 

Δ𝑝𝑝 = 𝑓𝑓 𝐷𝐷, ℓ, 𝑉𝑉, 𝜇𝜇  
 

• Step 2: Express each of the variables in terms of basic dimensions. 
 
 
 
 

• Step 3: Determine the required number of pi terms. 
  𝑛𝑛 = 5 for 𝛥𝛥𝛥𝛥, 𝐷𝐷, ℓ, 𝑉𝑉, and 𝜇𝜇 
  𝑚𝑚 = 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 
  ∴ 𝑟𝑟 = 𝑛𝑛 −𝑚𝑚 = 5 − 3 = 2   (i.e., 2 pi terms) 
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Variable Δ𝑝𝑝 𝐷𝐷 ℓ 𝑉𝑉 𝜇𝜇 
Unit N/m2 m m m/s N⋅s/m2 

Dimension 𝑀𝑀𝐿𝐿−1𝑇𝑇−2  𝐿𝐿  𝐿𝐿  𝐿𝐿𝑇𝑇−1  𝑀𝑀𝐿𝐿−1𝑇𝑇−1  



Step 4  
• Select a number of repeating variables, where the number required is 

equal to the number of reference dimensions (for this example, 𝑚𝑚 = 3). 
 

• All of the required reference dimensions must be included within the 
group of repeating variables, and each repeating variable must be 
dimensionally independent of the others (The repeating variables cannot 
themselves be combined to form a dimensionless product). 
 

• Do NOT choose the dependent variable as one of the repeating variables, 
since the repeating variables will generally appear in more than one pi 
term. 

 
  ⇒ (𝐷𝐷, 𝑉𝑉, 𝜇𝜇) for (𝐿𝐿, 𝑇𝑇, 𝑀𝑀), respectively 
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Step 5 
• Combine 𝐷𝐷, 𝑉𝑉, 𝜇𝜇 with one additional variable (Δ𝑝𝑝 or ℓ), in sequence, to find the two pi 

products 
 

Π1 = 𝐷𝐷𝑎𝑎𝑉𝑉𝑏𝑏𝜇𝜇𝑐𝑐Δ𝑝𝑝 = 𝐿𝐿 𝑎𝑎 𝐿𝐿𝑇𝑇−1 𝑏𝑏 𝑀𝑀𝐿𝐿−1𝑇𝑇−1 𝑐𝑐 𝑀𝑀𝐿𝐿−1𝑇𝑇−2  
 

= 𝑀𝑀 𝑐𝑐+1 𝐿𝐿 𝑎𝑎+𝑏𝑏−𝑐𝑐−1 𝑇𝑇−𝑏𝑏−𝑐𝑐−2 = 𝑀𝑀0𝐿𝐿0𝑇𝑇0 
 
Equate exponents: 
 Mass(𝑀𝑀):      𝑐𝑐 + 1 = 0 
 Length(𝐿𝐿):          𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐 − 1 = 0 
 Time(𝑇𝑇):              −𝑏𝑏 − 𝑐𝑐 − 2 = 0 
 
Solve for, 

𝑎𝑎 = 1      𝑏𝑏 = −1      𝑐𝑐 = −1 
Therefore, 

Π1 = 𝐷𝐷𝑉𝑉−1𝜇𝜇−1Δ𝑝𝑝 =
Δ𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇
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Step 6 
• Repeat Step 5 for each of the remaining nonrepeating variables. 

 
Π2 = 𝐷𝐷𝑎𝑎𝑉𝑉𝑏𝑏𝜇𝜇𝑐𝑐ℓ = 𝐿𝐿 𝑎𝑎 𝐿𝐿𝑇𝑇−1 𝑏𝑏 𝑀𝑀𝐿𝐿−1𝑇𝑇−1 𝑐𝑐 𝐿𝐿  

 
= 𝑀𝑀𝑐𝑐𝐿𝐿𝑎𝑎+𝑏𝑏−𝑐𝑐+1𝑇𝑇−𝑏𝑏−𝑐𝑐 = 𝑀𝑀0𝐿𝐿0𝑇𝑇0 

 
Equate exponents: 
 Mass(𝑀𝑀):               𝑐𝑐 = 0 
 Length(𝐿𝐿):          𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐 + 1 = 0 
 Time(𝑇𝑇):   −𝑏𝑏 − 𝑐𝑐 = 0 
 
Solve for, 

𝑎𝑎 = −1      𝑏𝑏 = 0      𝑐𝑐 = 0 
Therefore, 

Π2 = 𝐷𝐷−1𝑉𝑉0𝜇𝜇0ℓ =
ℓ
𝐷𝐷
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Step 7 
• Check all the resulting pi terms. 
• One good way to do this is to express the variables in terms of 𝐹𝐹, 𝐿𝐿, 𝑇𝑇 if 

the basic dimensions 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 were used initially, or vice versa. 
 
 
 
 
 

Π1 =
Δ𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇

=̇
𝐹𝐹𝐿𝐿−2 𝐿𝐿

𝐹𝐹𝐹𝐹𝐿𝐿−2 𝐿𝐿𝑇𝑇−1
=̇ 𝐹𝐹0𝐿𝐿0𝑇𝑇0 

 

Π2 =
ℓ
𝐷𝐷

=̇
𝐿𝐿
𝐿𝐿

=̇ 𝐹𝐹0𝐿𝐿0𝑇𝑇0 
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Variable Δ𝑝𝑝 𝐷𝐷 ℓ 𝑉𝑉 𝜇𝜇 
Unit N/m2 m m m/s N⋅s/m2 

Dimension 𝐹𝐹𝐿𝐿−2  𝐿𝐿  𝐿𝐿  𝐿𝐿𝑇𝑇−1  𝐹𝐹𝐹𝐹𝐿𝐿−2  



Step 8 
• Express the final form as a relationship among the pi terms.  

 
Π1 = 𝑓𝑓 Π2  

or 
Δ𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇

= 𝑓𝑓
ℓ
𝐷𝐷

 

 
• Think about what it means.  
 Since Δ𝑝𝑝 ∝ ℓ, 

Δ𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇

= 𝐶𝐶 ⋅
ℓ
𝐷𝐷

 

 where 𝐶𝐶 is a constant. Thus, 
 

Δ𝑝𝑝 ∝
1
𝐷𝐷2
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Problems with One Pi Term 

• The functional relationship that must exist for one pi term is 
 

Π = 𝐶𝐶 
 
where 𝐶𝐶 is a constant.  
 
• In other words, if only one pi term is involved in a problem, it 

must be equal to a constant. 
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Example 2 
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𝜔𝜔 = 𝑓𝑓 𝐷𝐷,𝑚𝑚, 𝛾𝛾  



Steps 1 through 4 
 
 
 
 

   
 
  𝑛𝑛 = 4 for 𝜔𝜔, 𝐷𝐷, 𝑚𝑚, and 𝛾𝛾 
  𝑚𝑚 = 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 
 
  ∴ 𝑟𝑟 = 𝑛𝑛 −𝑚𝑚 = 4 − 3 = 1   (i.e., 1 pi term) 
 
  𝑚𝑚 repeating variables = 𝐷𝐷, 𝑚𝑚, 𝛾𝛾 
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Variable 𝜔𝜔 𝐷𝐷 𝑚𝑚 𝛾𝛾 

Unit 1/s m kg N/m3 

Dimension 𝑇𝑇−1  𝐿𝐿  𝑀𝑀  𝑀𝑀𝐿𝐿−2𝑇𝑇−2  



Step 5 (and 6) 
Π = 𝐷𝐷𝑎𝑎𝑚𝑚𝑏𝑏𝛾𝛾𝑐𝑐𝜔𝜔 = 𝐿𝐿 𝑎𝑎 𝑀𝑀 𝑏𝑏 𝑀𝑀𝐿𝐿−2𝑇𝑇−2 𝑐𝑐 𝑇𝑇−1  

 
= 𝑀𝑀 𝑏𝑏+𝑐𝑐 𝐿𝐿 𝑎𝑎−2𝑐𝑐 𝑇𝑇−2𝑐𝑐−1 = 𝑀𝑀0𝐿𝐿0𝑇𝑇0 

 
Equate exponents: 
 Mass(𝑀𝑀):      𝑏𝑏 + 𝑐𝑐 = 0 
 Length(𝐿𝐿):                      𝑎𝑎 − 2𝑐𝑐 = 0 
 Time(𝑇𝑇):                   −2𝑐𝑐 − 1 = 0 
 
or, 

𝑎𝑎 = −1      𝑏𝑏 =
1
2

      𝑐𝑐 = −
1
2

 

 

∴ Π = 𝐷𝐷−1𝑚𝑚
1
2𝛾𝛾−

1
2𝜔𝜔 =

𝜔𝜔
𝐷𝐷

𝑚𝑚
𝛾𝛾
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Steps 7 through 8 

Π =
𝜔𝜔
𝐷𝐷

𝑚𝑚
𝛾𝛾

=̇
𝑇𝑇−1

𝐿𝐿
𝐹𝐹𝐿𝐿−1𝑇𝑇2

𝐹𝐹𝐿𝐿−3
=̇ 𝐹𝐹0𝐿𝐿0𝑇𝑇0 

 
• The dimensionless function is  

 
𝜔𝜔
𝐷𝐷

𝑚𝑚
𝛾𝛾

= 𝐶𝐶 

 
where 𝐶𝐶 is a constant. Thus, 

𝜔𝜔 = 𝐶𝐶 ⋅ 𝐷𝐷
𝛾𝛾
𝑚𝑚

 

 
Therefore, if 𝑚𝑚 is increased 𝜔𝜔 will decrease. 
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Example 3 
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Δ𝑝𝑝 = 𝑓𝑓 𝑅𝑅, 𝜎𝜎  



Example 3 –Contd. 
 
 
 
 

 
 

𝑚𝑚 = 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 
 

∴ 𝑟𝑟 = 𝑛𝑛 −𝑚𝑚 = 3 − 3 = 0     ⇒  No pi term? 
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Variable Δ𝑝𝑝 𝑅𝑅 𝜎𝜎 

Unit N/m2 m N/m 

Dimension 𝑀𝑀𝐿𝐿−1𝑇𝑇−2  𝐿𝐿  𝑀𝑀𝑇𝑇−2  



Example 3 –Contd. 
• Since the repeating variables form a pi among them: 
 

Δ𝑝𝑝𝑝𝑝
𝜎𝜎

=̇
𝑀𝑀𝐿𝐿−1𝑇𝑇−2 𝐿𝐿

𝑀𝑀𝑇𝑇−2
=̇ 𝑀𝑀0𝐿𝐿0𝑇𝑇0 

 
 𝑚𝑚 should be reduced to 2 for 𝑀𝑀𝑇𝑇−2 and 𝐿𝐿.  
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Example 3 –Contd. 
Select 𝑅𝑅 and 𝜎𝜎 as the repeating variables: 
 

Π = 𝑅𝑅𝑎𝑎𝜎𝜎𝑏𝑏Δ𝑝𝑝 = 𝐿𝐿 𝑎𝑎 𝑀𝑀𝑇𝑇−2 𝑏𝑏 𝑀𝑀𝐿𝐿−1𝑇𝑇−2 = 𝑀𝑀0𝐿𝐿0𝑇𝑇0 
Thus, 
  𝑀𝑀:            𝑏𝑏 + 1 = 0 
  𝐿𝐿:            𝑎𝑎 − 1 = 0 
  𝑇𝑇:      −2𝑏𝑏 − 2 = 0  
or, 

𝑎𝑎 = 1 and 𝑏𝑏 = −1 
Hence, 

Π =
Δ𝑝𝑝𝑝𝑝
𝜎𝜎
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Example 3 –Contd. 
• Alternatively, by using the 𝐹𝐹𝐹𝐹𝐹𝐹 system 

 
 
 
 

 
 

   𝑛𝑛 = 3 for Δ𝑝𝑝, 𝑅𝑅, and 𝜎𝜎 
   𝑚𝑚 = 2 for 𝐹𝐹 and 𝐿𝐿 

 
∴ 𝑟𝑟 = 3 − 2 = 1   ⇒  1 pi term 
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Variable Δ𝑝𝑝 𝑅𝑅 𝜎𝜎 

Unit N/m2 m N/m 

Dimension 𝐹𝐹𝐿𝐿−2  𝐿𝐿  𝐹𝐹𝐿𝐿−1  



Example 3 –Contd. 
With the 𝐹𝐹𝐹𝐹𝐹𝐹 system: 
 

Π1 = 𝑅𝑅𝑎𝑎𝜎𝜎𝑏𝑏Δ𝑝𝑝 = 𝐿𝐿 𝑎𝑎 𝐹𝐹𝐿𝐿−1 𝑏𝑏 𝐹𝐹𝐿𝐿−2 = 𝐹𝐹0𝐿𝐿0𝑇𝑇0 
Thus, 
  𝐹𝐹:            1 + 𝑏𝑏 = 0 
  𝐿𝐿: −2 + 𝑎𝑎 − 𝑏𝑏 = 0 
or, 

𝑎𝑎 = 1 and 𝑏𝑏 = −1 
Hence, 

Π =
Δ𝑝𝑝𝑝𝑝
𝜎𝜎
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Common Dimensionless Parameters 
for Fluid Flow Problems 

• Most common physical quantities of importance in fluid flow 
problems are (without heat transfer): 
 
 
 
 
 
 

  𝑛𝑛 = 8 variables 
  𝑚𝑚 = 3 dimension 
  ∴ 𝑟𝑟 = 𝑛𝑛 - 𝑚𝑚 = 5 pi terms (𝑅𝑅𝑅𝑅, 𝐹𝐹𝐹𝐹, 𝑊𝑊𝑊𝑊, 𝑀𝑀𝑀𝑀, 𝐶𝐶𝑝𝑝) 
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Length Velocity Density Viscosity Gravity Surface 
tension 

Compre
ssibility 

Pressure 
change 

𝐿𝐿 𝑉𝑉 𝜌𝜌 𝜇𝜇 𝑔𝑔 𝜎𝜎 𝐾𝐾 Δ𝑝𝑝 
𝐿𝐿  𝐿𝐿𝑇𝑇−1  𝑀𝑀𝐿𝐿−3  𝑀𝑀𝐿𝐿−1𝑇𝑇−1  𝐿𝐿𝑇𝑇−2  𝑀𝑀𝑇𝑇−2  𝑀𝑀𝐿𝐿−1𝑇𝑇−2  𝑀𝑀𝐿𝐿−2𝑇𝑇−2  



1) Reynolds number 

𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

 

• Generally of importance in all types of fluid dynamics problems 
• A measure of the ratio of the inertia force to the viscous force 

 

Inertia force
Viscous force

=
𝑚𝑚𝑚𝑚
𝜏𝜏𝜏𝜏

=
𝜌𝜌𝐿𝐿3 𝑉𝑉 ⋅ 𝑉𝑉𝐿𝐿
𝜇𝜇 𝑉𝑉𝐿𝐿 𝐿𝐿2

=
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

 

 
– If 𝑅𝑅𝑅𝑅 ≪ 1 (referred to as “creeping flow”), fluid density is less important 
– If 𝑅𝑅𝑅𝑅 is large, may neglect the effect of viscosity 

• 𝑅𝑅𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 distinguishes among flow regions: laminar or turbulent value varies 
depending upon flow situation 
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2) Froude number 

𝐹𝐹𝐹𝐹 =
𝑉𝑉
𝑔𝑔𝑔𝑔

 

 
• Important in problems involving flows with free surfaces 
• A measure of the ratio of the inertia force to the gravity force (i.e., the 

weight of fluid) 
 

Inertia force
Gravity force

=
𝑚𝑚𝑚𝑚
𝛾𝛾𝑉𝑉

=
𝜌𝜌𝐿𝐿3 𝑉𝑉 ⋅ 𝑉𝑉𝐿𝐿
𝜌𝜌𝜌𝜌 𝐿𝐿3

=
𝑉𝑉2

𝑔𝑔𝑔𝑔
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3) Weber number 

𝑊𝑊𝑊𝑊 =
𝜌𝜌𝑉𝑉2𝐿𝐿
𝜎𝜎

 

 
• Problems in which there is an interface between two fluids where surface 

tension is important 
• An index of the inertial force to the surface tension force 

 

Inertia force
Surface tension force

=
𝑚𝑚𝑚𝑚
𝜎𝜎𝜎𝜎

=
𝜌𝜌𝐿𝐿3 𝑉𝑉 ⋅ 𝑉𝑉𝐿𝐿

𝜎𝜎𝜎𝜎
=
𝜌𝜌𝑉𝑉2𝐿𝐿
𝜎𝜎

 

 
• Important parameter at gas-liquid or liquid-liquid interfaces and when 

these surfaces are in contact with a boundary 
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4) Mach number 

𝑀𝑀𝑀𝑀 =
𝑉𝑉
𝑘𝑘 𝜌𝜌⁄

=
𝑉𝑉
𝑎𝑎

 

 
• 𝑎𝑎: speed of sound in a fluid (a symbol 𝑐𝑐 is also used) 
• Problems in which the compressibility of the fluid is important 
• An index of the ratio of inertial forces to compressibility forces 

 

Inertia force
Compressibility force

=
𝑚𝑚𝑚𝑚
𝜌𝜌𝑐𝑐2𝐿𝐿2

=
𝜌𝜌𝐿𝐿3 𝑉𝑉 ⋅ 𝑉𝑉𝐿𝐿
𝜌𝜌𝑐𝑐2𝐿𝐿2

=
𝑉𝑉2

𝑐𝑐2
 

 
 (Note: Cauchy number, 𝐶𝐶𝐶𝐶 = 𝑉𝑉2 𝑐𝑐2⁄ = 𝑀𝑀𝑎𝑎2) 
• Paramount importance in high speed flow (𝑉𝑉 ≥ 𝑐𝑐) 
• If 𝑀𝑀𝑀𝑀 < 0.3, flow can be considered as incompressible 
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5) Pressure Coefficient 

𝐶𝐶𝑝𝑝 =
Δ𝑝𝑝
𝜌𝜌𝑉𝑉2

 

 
• Problems in which pressure differences, or pressure, are of interest 
• A measure of the ratio of pressure forces to inertial forces 

 
Pressure force

Inertia force
=
Δ𝑝𝑝𝐿𝐿2

𝑚𝑚𝑚𝑚
=

Δ𝑝𝑝𝐿𝐿2

𝜌𝜌𝐿𝐿3 𝑉𝑉 ⋅ 𝑉𝑉𝐿𝐿
=

Δ𝑝𝑝
𝜌𝜌𝑉𝑉2

 

• Euler number: 

𝐸𝐸𝐸𝐸 =
𝑝𝑝
𝜌𝜌𝑉𝑉2

 

• Cavitation number: 

𝐶𝐶𝐶𝐶 =
𝑝𝑝 − 𝑝𝑝𝑣𝑣
1
2𝜌𝜌𝑉𝑉2
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Appendix A: Inspection Method 
• Steps 1 through 3 of the exponent method are the same: 

 
Δ𝑝𝑝ℓ = 𝑓𝑓 𝐷𝐷, 𝜌𝜌, 𝜇𝜇, 𝑉𝑉  
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Δ𝑝𝑝ℓ 𝐷𝐷 𝜌𝜌 𝜇𝜇 𝑉𝑉 

𝐹𝐹𝐿𝐿−3  𝐿𝐿  𝐹𝐹𝐿𝐿−4𝑇𝑇2  𝐹𝐹𝐿𝐿−2𝑇𝑇  𝐿𝐿𝑇𝑇−1 

𝑟𝑟 = 𝑛𝑛 −𝑚𝑚 = 5 − 3 = 2 



Appendix A: Inspection Method – Contd. 

• Let Π1 contain the dependent variable (Δ𝑝𝑝ℓ in this example) 
• Then, combine it with other variables so that a non-dimensional product will result: 
 
 To cancel 𝐹𝐹, 

Δ𝑝𝑝ℓ
𝜌𝜌

=̇
𝐹𝐹𝐿𝐿−3

𝐹𝐹𝐿𝐿−4𝑇𝑇2
=̇

𝐿𝐿
𝑇𝑇2

 

 To cancel 𝑇𝑇, 
Δ𝑝𝑝ℓ
𝜌𝜌

1
𝑉𝑉2

=̇
𝐿𝐿
𝑇𝑇2

1
𝐿𝐿𝑇𝑇−1 2 =̇

1
𝐿𝐿

 

 Then, to cancel 𝐿𝐿, 
Δ𝑝𝑝ℓ
𝜌𝜌𝑉𝑉2

𝐷𝐷 =̇
1
𝐿𝐿

𝐿𝐿 =̇ 𝐿𝐿0 

 

∴ Π1 =
Δ𝑝𝑝ℓ𝐷𝐷
𝜌𝜌𝑉𝑉2
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Appendix A: Inspection Method – Contd. 

• Select the variable that was not used in Π1, which in this case 𝜇𝜇, and repeat the 
process: 

 
 To cancel 𝐹𝐹, 

𝜇𝜇
𝜌𝜌

=̇
𝐹𝐹𝐿𝐿−2𝑇𝑇
𝐹𝐹𝐿𝐿−4𝑇𝑇2

=̇
𝐿𝐿2

𝑇𝑇
 

 To cancel 𝑇𝑇, 
𝜇𝜇
𝜌𝜌

1
𝑉𝑉

=̇
𝐿𝐿2

𝑇𝑇
1

𝐿𝐿𝑇𝑇−1
=̇ 𝐿𝐿 

 Then, to cancel 𝐿𝐿, 
𝜇𝜇
𝜌𝜌𝑉𝑉

1
𝐷𝐷

=̇ 𝐿𝐿
1
𝐿𝐿

=̇ 𝐿𝐿0 

 

∴ Π2 =
𝜇𝜇

𝜌𝜌𝜌𝜌𝜌𝜌
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Appendix B: Step-by-step Method* 

38 *by Ipsen (1960). The pi theorem and Ipsen method are quite different. Both are useful and interesting. 



Appendix B: Step-by-step Method – Contd. 
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Appendix B: Step-by-step Method – Contd. 

40 


	Dimensional Analysis
	Dimensions and Units
	The Principle of Dimensional Homogeneity (PDH)
	Nondimensionalization
	Dimensional vs. Non-dimensional Equation
	Advantages of Nondimensionalization
	Dimensional Analysis
	Buckingham Pi Theorem
	Methods for determining ’s
	Exponent Method�(or Method of Repeating Variables)
	Example 1
	Steps 1 through 3
	Step 4 
	Step 5
	Step 6
	Step 7
	Step 8
	Problems with One Pi Term
	Example 2
	Steps 1 through 4
	Step 5 (and 6)
	Steps 7 through 8
	Example 3
	Example 3 –Contd.
	Example 3 –Contd.
	Example 3 –Contd.
	Example 3 –Contd.
	Example 3 –Contd.
	Common Dimensionless Parameters for Fluid Flow Problems
	1) Reynolds number
	2) Froude number
	3) Weber number
	4) Mach number
	5) Pressure Coefficient
	Appendix A: Inspection Method
	Appendix A: Inspection Method – Contd.
	Appendix A: Inspection Method – Contd.
	Appendix B: Step-by-step Method*
	Appendix B: Step-by-step Method – Contd.
	Appendix B: Step-by-step Method – Contd.

