6.94 An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as is shown in Fig. P6.94. The two plates move in opposite directions with constant velocities, U_1 and U_2 , as shown. The pressure gradient in the x direction is zero and the only body force is due to the fluid weight. Use the Navier-Stokes equations to derive an expression for the velocity distribution between the plates. Assume laminar flow.

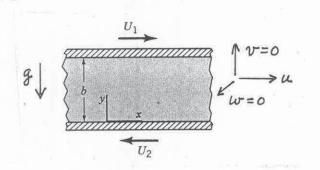


FIGURE P6.94

For the specified conditions, v=0, w=0, $\frac{\partial P}{\partial x}=0$, and $q_x=0$, so that the x-component of the Navier-Stokes equations (Eq. 6.127a) reduces to

$$\frac{d^2u}{dy^2} = 0 \tag{1}$$

Integration of Eq. (1) yields

$$u = C, y + C_2 \tag{2}$$

For y = 0, $u = -U_2$ and therefore from Eq.(2)

$$C_2 = -U_2$$

For y = b, u = U, so that

or

$$C_1 = \frac{\overline{U_1} + \overline{U_2}}{b}$$

Thus,

$$u = \left(\frac{U_1 + U_2}{b}\right) y - U_2$$