4,31

4.31 As a valve is opened, water flows through the diffuser shown in Fig. P4.31 at an increasing flowrate so that the velocity along the centerline is given by $\mathbf{V} = u\hat{\mathbf{i}} = V_0(1 - e^{-ct}) (1 - x/\ell)\hat{\mathbf{i}}$, where u_0 , c, and ℓ are constants. Determine the acceleration as a function of x and ℓ . If $V_0 = 10$ ft/s and $\ell = 5$ ft, what value of c (other than c = 0) is needed to make the acceleration zero for any x at t = 1 s? Explain how the acceleration can be zero if the flowrate is increasing with time.

FIGURE P4.31

$$\vec{a} = \frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V}$$
 With $u = u(x,t)$, $v = 0$, and $w = 0$ this becomes
$$\vec{a} = (\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}) \hat{i} = a_x \hat{i}$$
, where $u = V_0 (1 - e^{-ct}) (1 - \frac{x}{\ell})$ Thus,
$$a_x = V_0 (1 - \frac{x}{\ell}) c e^{-ct} + V_0^2 (1 - e^{-ct})^2 (1 - \frac{x}{\ell}) (-\frac{1}{\ell})$$
 or
$$a_x = V_0 (1 - \frac{x}{\ell}) \left[c e^{-ct} - \frac{V_0}{\ell} (1 - e^{-ct})^2 \right]$$

If
$$a_x = 0$$
 for any x at $t = 1$ s we must have
$$\left[ce^{-ct} - \frac{V_0}{l}(1 - e^{-ct})^2\right] = 0$$
 With $V_0 = 10$ and $l = 5$

$$ce^{-c} - \frac{10}{5}(1 - e^{-c})^2 = 0$$
 The solution (root) of this equation is $c = 0.490 \frac{1}{5}$

For the above conditions the local acceleration $(\frac{\partial u}{\partial t} > 0)$ is precisely balanced by the convective deceleration $(u\frac{\partial u}{\partial x} < 0)$. The flowrate increases with time, but the fluid flows to an area of lower velocity.