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Reynolds Transport Theorem (RTT) 

• An analytical tool to shift from describing the 
laws governing fluid motion using the system 
concept to using the control volume concept 
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System vs. Control Volume 

• System: A collection of matter of fixed identity 
– Always the same atoms or fluid particles 
– A specific, identifiable quantity of matter 

 
• Control Volume (CV): A volume in space 

through which fluid may flow 
– A geometric entity 
– Independent of mass 
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Examples of CV 

Fixed CV Moving CV Deforming CV 

CV fixed at a nozzle CV moving with ship CV deforming within cylinder 
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Laws of Mechanics 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 

𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚
𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑 =

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑚𝑚𝑉𝑉  

𝑀𝑀 =
𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑  

1. Conservation of mass: 

2. Conservation of linear momentum: 

3. Conservation of angular momentum: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑄̇𝑄 − 𝑊̇𝑊 4. Conservation of Energy: 

• The laws apply to either solid or fluid systems 
• Ideal for solid mechanics, where we follow the same system 
• For fluids, the laws need to be rewritten to apply to a specific region in 

the neighborhood of our product (i.e., CV) 
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Extensive vs. Intensive Property 
Governing Differential Equations (GDE’s): 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑚𝑚,𝑚𝑚𝑉𝑉,𝐸𝐸
𝐵𝐵

= 0,𝐹𝐹, 𝑄̇𝑄 − 𝑊̇𝑊  

 

𝐸𝐸 𝑒𝑒 

• 𝐵𝐵 = The amount of 𝑚𝑚, 𝑚𝑚𝑉𝑉, or 𝐸𝐸 contained in the 
total mass of a system or a CV; Extensive property – 
Dependent on mass 

 
• 𝛽𝛽 (or 𝑏𝑏) = The amount of 𝐵𝐵 per unit mass; Intensive 

property – Independent on mass 
 

𝛽𝛽 or 𝑏𝑏 = 𝐵𝐵/𝑚𝑚   (=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  for nonuniform 𝐵𝐵) 

 

𝐵𝐵 = 𝛽𝛽 ⋅ 𝑚𝑚    = � 𝛽𝛽 𝜌𝜌𝜌𝜌𝜌𝜌�
=𝑑𝑑𝑑𝑑𝑉𝑉

for nonuniform 𝛽𝛽  
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Fixed CV 

At time 𝑡𝑡: SYS = CV 

At time 𝑡𝑡 + 𝛿𝛿𝛿𝛿: SYS = (CV – I) + II 

𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵𝐶𝐶𝐶𝐶(𝑡𝑡) 

𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 + 𝛿𝛿𝛿𝛿
= 𝐵𝐵𝐶𝐶𝐶𝐶 𝑡𝑡 + 𝛿𝛿𝛿𝛿 − 𝐵𝐵𝐼𝐼 𝑡𝑡 + 𝛿𝛿𝛿𝛿
+ 𝐵𝐵𝐼𝐼𝐼𝐼 𝑡𝑡 + 𝛿𝛿𝛿𝛿  
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Time Rate of Change of 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 

𝛿𝛿𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝛿𝛿𝛿𝛿 =

𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 + 𝛿𝛿𝛿𝛿 − 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)
𝛿𝛿𝛿𝛿  

=
𝐵𝐵𝐶𝐶𝐶𝐶 𝑡𝑡 + 𝛿𝛿𝛿𝛿 − 𝐵𝐵𝐼𝐼 𝑡𝑡 + 𝛿𝛿𝛿𝛿 + 𝐵𝐵𝐼𝐼𝐼𝐼 𝑡𝑡 + 𝛿𝛿𝛿𝛿 − 𝐵𝐵𝐶𝐶𝐶𝐶 𝑡𝑡

𝛿𝛿𝛿𝛿
 

∴
𝛿𝛿𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝛿𝛿𝛿𝛿 =

𝐵𝐵𝐶𝐶𝐶𝐶 𝑡𝑡 + 𝛿𝛿𝛿𝛿 − 𝐵𝐵𝐶𝐶𝐶𝐶 𝑡𝑡
𝛿𝛿𝛿𝛿

1) Change of 𝐵𝐵 
within CV over 𝛿𝛿𝛿𝛿

+
𝐵𝐵𝐼𝐼𝐼𝐼(𝑡𝑡 + 𝛿𝛿𝛿𝛿)

𝛿𝛿𝛿𝛿
2) Amount of 𝐵𝐵
flowing out
through CS
over 𝛿𝛿𝛿𝛿

−
𝐵𝐵𝐼𝐼 𝑡𝑡 + 𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
3) Amountt of 𝐵𝐵

flowing in
through CS
over 𝛿𝛿𝛿𝛿

 

Now, take limit of 𝛿𝛿𝛿𝛿 → 0 to Eq. (1) term by term 
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Eq. (1) 



LHS of Eq. (1)  

lim
𝛿𝛿𝛿𝛿→0

𝛿𝛿𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝛿𝛿𝛿𝛿 = lim

𝛿𝛿𝛿𝛿→0

𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 + 𝛿𝛿𝛿𝛿 − 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)
𝛿𝛿𝛿𝛿 =

𝑑𝑑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

Time rate of
change of 𝐵𝐵
within the
system

 

or, =
𝐷𝐷𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝐷𝐷𝐷𝐷 ; material derivative  
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First term of RHS of Eq.(1) 

lim
𝛿𝛿𝛿𝛿→0

𝐵𝐵𝐶𝐶𝐶𝐶 𝑡𝑡 + 𝛿𝛿𝛿𝛿 − 𝐵𝐵𝐶𝐶𝐶𝐶(𝑡𝑡)
𝛿𝛿𝛿𝛿

=
𝑑𝑑𝐵𝐵𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑 =

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝐶𝐶𝑉𝑉

Time rate of change of
𝐵𝐵 withich CV
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2nd term of RHS of Eq.(1) 
𝛿𝛿𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝜌𝜌𝑉𝑉 

and  
𝛿𝛿𝑉𝑉 = 𝛿𝛿𝛿𝛿 ⋅ 𝛿𝛿ℓ𝑛𝑛 = 𝛿𝛿𝛿𝛿 ⋅ 𝛿𝛿𝛿�

=𝑉𝑉𝑉𝑉𝑉𝑉
cos𝜃𝜃 = 𝛿𝛿𝛿𝛿 ⋅ (𝑉𝑉𝑉𝑉𝑉𝑉 cos𝜃𝜃) 

 
Thus, the amount of 𝐵𝐵 flowing out of CV through 𝛿𝛿𝛿𝛿 over a short time 𝛿𝛿𝛿𝛿: 

∴ 𝛿𝛿𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛽𝛽𝛽𝛽𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛽𝛽𝛽𝛽𝛽𝛽 cos𝜃𝜃 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 
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𝑎𝑎 ⋅ 𝑏𝑏 = 𝑎𝑎 𝑏𝑏 cos𝜃𝜃 

2nd term of RHS of Eq.(1) – Contd. 

lim
𝛿𝛿𝛿𝛿→0

𝐵𝐵𝐼𝐼𝐼𝐼(𝑡𝑡 + 𝛿𝛿𝛿𝛿)
𝛿𝛿𝛿𝛿 = lim

𝛿𝛿𝛿𝛿→0

1
𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿� 𝛽𝛽𝛽𝛽𝛽𝛽 cos𝜃𝜃 𝑑𝑑𝑑𝑑

𝐶𝐶𝑆𝑆𝑜𝑜𝑢𝑢𝑢𝑢
  

∴ 𝐵̇𝐵out = � 𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑜𝑜𝑢𝑢𝑢𝑢
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𝐵𝐵𝐼𝐼𝐼𝐼 𝑡𝑡 + 𝛿𝛿𝛿𝛿 = � 𝑑𝑑𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝑆𝑆𝑜𝑜𝑢𝑢𝑢𝑢

= � 𝛽𝛽𝛽𝛽𝛽𝛽 cos𝜃𝜃 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
𝐶𝐶𝑆𝑆𝑜𝑜𝑢𝑢𝑢𝑢

 

Thus, 

By integrating 𝛿𝛿𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 over the entire outflow portion of CS, 

= � 𝛽𝛽𝛽𝛽𝑉𝑉 cos𝜃𝜃
=𝑉𝑉𝑛𝑛

𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑜𝑜𝑢𝑢𝑢𝑢

       ≡ 𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜  

Note that 𝑉𝑉 cos𝜃𝜃 = 𝑉𝑉 ⋅ 𝒏𝒏�, 

i.e., Out flux of 𝐵𝐵 through CS 



3rd term of RHS of Eq.(1) 
𝛿𝛿𝑚𝑚𝑖𝑖𝑖𝑖 = 𝜌𝜌𝜌𝜌𝑉𝑉 

and  

𝛿𝛿𝑉𝑉 = 𝛿𝛿𝛿𝛿 ⋅ 𝛿𝛿ℓ𝑛𝑛 = 𝛿𝛿𝛿𝛿 ⋅ 𝛿𝛿𝛿�
=𝑉𝑉𝑉𝑉𝑉𝑉

− cos𝜃𝜃
< 0

= 𝛿𝛿𝛿𝛿 ⋅ (−𝑉𝑉𝑉𝑉𝑉𝑉 cos𝜃𝜃) 

 
Thus, the amount of 𝐵𝐵 flowing out of CV through 𝛿𝛿𝛿𝛿 over a short time 𝛿𝛿𝛿𝛿: 

∴ 𝛿𝛿𝐵𝐵𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑚𝑚𝑖𝑖𝑖𝑖 = −𝛽𝛽𝛽𝛽𝛽𝛽 cos𝜃𝜃 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 
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3rd term of RHS of Eq.(1) – Contd. 

lim
𝛿𝛿𝛿𝛿→0

𝐵𝐵𝐼𝐼(𝑡𝑡 + 𝛿𝛿𝛿𝛿)
𝛿𝛿𝛿𝛿 = lim

𝛿𝛿𝛿𝛿→0

1
𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿� −𝛽𝛽𝛽𝛽𝛽𝛽 cos𝜃𝜃 𝑑𝑑𝑑𝑑

𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖
  

∴ 𝐵̇𝐵in = −� 𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖
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𝐵𝐵𝐼𝐼 𝑡𝑡 + 𝛿𝛿𝛿𝛿 = � 𝑑𝑑𝐵𝐵𝑖𝑖𝑖𝑖
𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖

= � −𝛽𝛽𝛽𝛽𝛽𝛽 cos𝜃𝜃 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖

 

Thus, 

By integrating 𝛿𝛿𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 over the entire outflow portion of CS, 

= −� 𝛽𝛽𝛽𝛽𝑉𝑉 cos𝜃𝜃
=−𝑉𝑉𝑛𝑛

𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖

       ≡ 𝐵̇𝐵𝑖𝑖𝑖𝑖  

Note that 𝑉𝑉 cos𝜃𝜃 = 𝑉𝑉 ⋅ 𝒏𝒏�, 

i.e., influx of 𝐵𝐵 through CS 



RTT for Fixed CV 

𝐷𝐷𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝐷𝐷𝐷𝐷 =

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝐶𝐶𝑉𝑉

+ � 𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑜𝑜𝑢𝑢𝑢𝑢

𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜

− −� 𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖

𝐵̇𝐵𝑖𝑖𝑖𝑖

 

Now the relationship between the time rate of change of 𝐵𝐵 for the system 
and that for the CV is given by, 
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𝐷𝐷𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝐷𝐷𝐷𝐷 =

𝑑𝑑
𝑑𝑑𝑑𝑑� 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

𝐶𝐶𝑉𝑉
+ � 𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑

𝐶𝐶𝑆𝑆
 

Time rate of 
change of 𝐵𝐵 
within a system 

Time rate of 
change of 𝐵𝐵 
within CV 

Net flux of 𝐵𝐵 
through CS 
= 𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐵̇𝐵𝑖𝑖𝑖𝑖 

= + 

With the fact that 𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖, 



Example 1 
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Example 1 - Contd. 

𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝜌𝜌𝜌𝜌𝑽𝑽 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑜𝑜𝑢𝑢𝑢𝑢

    (4.16) 

With 𝛽𝛽= 1 and 𝑽𝑽 ⋅ 𝒏𝒏� = 𝑉𝑉 cos𝜃𝜃 , 

𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝜌𝜌𝜌𝜌 cos𝜃𝜃 𝑑𝑑𝑑𝑑
𝐶𝐶𝐷𝐷

= 𝜌𝜌𝜌𝜌 cos𝜃𝜃� 𝑑𝑑𝑑𝑑
𝐶𝐶𝐷𝐷
=𝐴𝐴𝐶𝐶𝐶𝐶

 

= 𝜌𝜌𝜌𝜌 cos𝜃𝜃 𝐴𝐴𝐶𝐶𝐶𝐶 

where 

𝐴𝐴𝐶𝐶𝐶𝐶 = ℓ × (2 𝑚𝑚) 

=
0.5 𝑚𝑚
cos𝜃𝜃 2 𝑚𝑚 =

1
cos𝜃𝜃  𝑚𝑚2 
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Example 1 - Contd. 
Thus, with 𝜌𝜌 = 1,000 kg/m3 for water and 𝑉𝑉 = 3 m/s, 

𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 = 1,000 
kg
m3 3

m
s

cos𝜃𝜃
1

cos𝜃𝜃
 m2 = 3,000 kg/s 

With 𝛽𝛽 = 1/𝜌𝜌, 

𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝑉𝑉 cos𝜃𝜃 𝑑𝑑𝑑𝑑
𝐶𝐶𝐷𝐷

= 𝑉𝑉 cos𝜃𝜃 � 𝑑𝑑𝑑𝑑
𝐶𝐶𝐷𝐷
=𝐴𝐴𝐶𝐶𝐶𝐶

=1/ cos 𝜃𝜃

= 𝑉𝑉 cos𝜃𝜃 𝐴𝐴𝐶𝐶𝐶𝐶 

= 3
m
s cos𝜃𝜃

1
cos𝜃𝜃  m2 = 3 m3 s⁄    (𝑖𝑖. 𝑒𝑒. , volume flow rate) 

Note: These results are the same for all 𝜃𝜃 values 
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Special Case: 
𝑉𝑉= constant over discrete CS’s 

∴
𝐷𝐷𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝐷𝐷𝐷𝐷 =

𝑑𝑑
𝑑𝑑𝑑𝑑� 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

𝐶𝐶𝑉𝑉
+ � 𝛽𝛽𝑗𝑗 𝜌𝜌𝑗𝑗𝑉𝑉𝑗𝑗𝐴𝐴𝑗𝑗

𝑚̇𝑚𝑗𝑗 𝑜𝑜𝑜𝑜𝑜𝑜
𝑗𝑗

−� 𝛽𝛽𝑖𝑖 𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖𝐴𝐴𝑖𝑖
𝑚̇𝑚𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖
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𝐵̇𝐵𝑖𝑖𝑖𝑖 = � 𝛽𝛽𝛽𝛽 𝑉𝑉 ⋅ 𝒏𝒏��
constant

𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖

= � 𝛽𝛽𝑖𝑖𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖𝐴𝐴𝑖𝑖 𝑖𝑖𝑖𝑖
𝑖𝑖

 

𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝛽𝛽𝛽𝛽 𝑉𝑉 ⋅ 𝒏𝒏��
constant

𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜

= � 𝛽𝛽𝑗𝑗𝜌𝜌𝑗𝑗𝑉𝑉𝑗𝑗𝐴𝐴𝑗𝑗 𝑜𝑜𝑜𝑜𝑜𝑜
𝑗𝑗

 



Example 2 
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Given: 
• Water flow (𝜌𝜌 = constant) 
• 𝐷𝐷1 = 10 cm; 𝐷𝐷2 = 15 cm 
• 𝑉𝑉1 = 10 cm/s 
• Steady flow 

Find: 𝑉𝑉2 = ? 

Mass conservation: 
• 𝐷𝐷𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠/𝐷𝐷𝐷𝐷 = 0 
• 𝛽𝛽 = 1 
• 𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌 

0 =
𝑑𝑑
𝑑𝑑𝑑𝑑� 𝜌𝜌𝜌𝜌𝜌𝜌

𝐶𝐶𝑉𝑉
+ 𝜌𝜌2𝑉𝑉2𝐴𝐴2 − 𝜌𝜌1𝑉𝑉1𝐴𝐴1  

Steady flow 

or, 𝜌𝜌1𝑉𝑉1𝐴𝐴1 = 𝜌𝜌2𝑉𝑉2𝐴𝐴2 

∴ 𝑉𝑉2 =
𝜌𝜌1𝐴𝐴1
𝜌𝜌2𝐴𝐴2

𝑉𝑉1 =
𝜌𝜌
𝜌𝜌

𝐷𝐷1
𝐷𝐷2

2

𝑉𝑉1 = 1
10 cm
15 cm

2

10 
cm
s = 4.4 cm/s 



Example 3 
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Given: 
• 𝐷𝐷1 = 5 cm; 𝐷𝐷2 = 7 cm 
• 𝑉𝑉1 = 3 m/s 
• 𝑄𝑄3 = 𝑉𝑉3𝐴𝐴3 = 0.01 m3/s 
• ℎ = constant (i.e., steady flow) 
• 𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌3 = 𝜌𝜌water 

Find: 𝑉𝑉2 = ? 

0 =
𝑑𝑑
𝑑𝑑𝑑𝑑� 𝜌𝜌𝜌𝜌𝜌𝜌

𝐶𝐶𝑉𝑉
+ 𝜌𝜌2𝑉𝑉2𝐴𝐴2 − 𝜌𝜌1𝑉𝑉1𝐴𝐴1 − (𝜌𝜌3𝑉𝑉3𝐴𝐴3) 

= 0; steady flow 

or,      𝑉𝑉2𝐴𝐴2 = 𝑉𝑉1𝐴𝐴1 + 𝑉𝑉3𝐴𝐴3�
= 𝑄𝑄3

 

∴ 𝑉𝑉2 =
𝑉𝑉1𝐴𝐴1 + 𝑄𝑄3

𝐴𝐴2
=

3 𝜋𝜋 0.05 2/4 + (0.01)
𝜋𝜋 0.07 2/4 = 4.13 m/s 



Moving CV 
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RTT for Moving CV 

𝐷𝐷𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝐷𝐷𝐷𝐷 =

𝑑𝑑
𝑑𝑑𝑑𝑑� 𝛽𝛽𝜌𝜌𝜌𝜌𝜌𝜌

𝐶𝐶𝑉𝑉
+ � 𝛽𝛽𝜌𝜌𝑉𝑉𝑟𝑟 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑

𝐶𝐶𝑆𝑆
 

(i.e., relative velocity 𝑉𝑉𝑟𝑟) 
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RTT for Moving and Deforming CV 

*Ref) Fluid Mechanics by Frank M. White, McGraw Hill 

𝑑𝑑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑 =

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝐶𝐶𝑉𝑉

+ � 𝛽𝛽𝛽𝛽 𝑽𝑽𝒓𝒓 ⋅ 𝒏𝒏� 𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆

∗

 

𝑽𝑽𝑟𝑟 = 𝑽𝑽(𝒙𝒙, 𝑡𝑡) − 𝑽𝑽𝑆𝑆(𝒙𝒙, 𝑡𝑡)  
• 𝑉𝑉𝑆𝑆(𝑥𝑥, 𝑡𝑡): Velocity of CS 
• 𝑉𝑉(𝑥𝑥, 𝑡𝑡): Fluid velocity in the coordinate 

system in which the 𝑉𝑉𝑠𝑠 is observed 
• 𝑉𝑉𝑟𝑟: Relative velocity of fluid seen by an 

observer riding on the CV 

Both CV and CS change their shape and location 
with time 
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RTT Summary (1) 
𝑑𝑑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑 =

𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝐶𝐶𝑉𝑉

+ � 𝛽𝛽𝛽𝛽𝑉𝑉𝑟𝑟 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆
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General RTT (for moving and deforming CV): 

𝑑𝑑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑 = �

𝜕𝜕
𝜕𝜕𝜕𝜕 𝛽𝛽𝛽𝛽 𝑑𝑑𝑉𝑉

𝐶𝐶𝑉𝑉
+ � 𝛽𝛽𝛽𝛽𝑉𝑉𝑟𝑟 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑

𝐶𝐶𝑆𝑆
 

1) Non-deforming (but moving) CV 

𝑑𝑑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑 = �

𝜕𝜕
𝜕𝜕𝜕𝜕 𝛽𝛽𝛽𝛽 𝑑𝑑𝑉𝑉

𝐶𝐶𝑉𝑉
+ � 𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑

𝐶𝐶𝑆𝑆
 

2) Fixed CV 

𝜕𝜕
𝜕𝜕𝜕𝜕 = 0 

3) Steady flow: 

Special Cases: 

� 𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆

= � 𝛽𝛽𝑚̇𝑚 𝑜𝑜𝑜𝑜𝑜𝑜 −� 𝛽𝛽𝑚̇𝑚 𝑖𝑖𝑖𝑖 

4) Flux terms for uniform flow across discrete CS’s (steady or unsteady) 



RTT Summary (2) 

Parameter (𝐵𝐵) 𝛽𝛽 = 𝐵𝐵/𝑚𝑚 RTT Remark 

Mass (𝑚𝑚) 1 0 =
𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝜌𝜌𝜌𝜌𝑉𝑉
𝐶𝐶𝐶𝐶

+ � 𝜌𝜌𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 
Continuity eq. 

(Ch. 5.1) 

Momentum 
(𝑚𝑚𝑉𝑉) 

𝑉𝑉 �𝐹𝐹 =
𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝑉𝑉𝜌𝜌𝜌𝜌𝑉𝑉
𝐶𝐶𝐶𝐶

+ � 𝑉𝑉𝜌𝜌𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 
Linear momentum eq. 

(Ch. 5.2) 

Energy (𝐸𝐸) 𝑒𝑒 𝑄̇𝑄 − 𝑊̇𝑊 =
𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑉𝑉
𝐶𝐶𝐶𝐶

+ � 𝑒𝑒𝑒𝑒𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 
Energy eq. 
(Ch. 5.3) 

For fixed CV’s: 
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Continuity Equation (Ch. 5.1) 
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RTT with 𝐵𝐵 = mass and 𝛽𝛽 = 1, 

0 =
𝐷𝐷𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠

𝐷𝐷𝐷𝐷
mass conservatoin

=
𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝜌𝜌𝜌𝜌𝑉𝑉
𝐶𝐶𝐶𝐶

+ � 𝜌𝜌𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 

or 

� 𝜌𝜌𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

Net rate of outflow
of mass across CS

= −
𝑑𝑑
𝑑𝑑𝑡𝑡� 𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
Rate of decrease of 
mass within CV

 

Note: Incompressible fluid (𝜌𝜌 = constant) 

� 𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

= −
𝑑𝑑
𝑑𝑑𝑡𝑡� 𝑑𝑑𝑉𝑉

𝐶𝐶𝐶𝐶
 (Conservation of volume) 



Simplifications 
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1. Steady flow 

� 𝜌𝜌𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

= 0 

2. If 𝑉𝑉 = constant over discrete CS’s (i.e., one-dimensional flow) 

� 𝜌𝜌𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆

= �𝜌𝜌𝜌𝜌𝜌𝜌
𝑜𝑜𝑢𝑢𝑢𝑢

−�𝜌𝜌𝑉𝑉𝐴𝐴
𝑖𝑖𝑖𝑖

 

3. Steady one-dimensional flow in a conduit 

𝜌𝜌𝜌𝜌𝜌𝜌 𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜌𝜌𝜌𝜌𝜌𝜌 𝑖𝑖𝑖𝑖 = 0 

or 

𝜌𝜌2𝑉𝑉2𝐴𝐴2 − 𝜌𝜌1𝑉𝑉1𝐴𝐴1 = 0 

For 𝜌𝜌 = constant 

𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2    (or 𝑄𝑄1 = 𝑄𝑄2) 



Some useful definitions 
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Mass flux 𝑚̇𝑚 = � 𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝑑𝑑
𝐴𝐴

 

Volume flux 𝑄𝑄 = � 𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴
𝐴𝐴

 

Average velocity 𝐴̅𝐴 =
𝑄𝑄
𝐴𝐴 =

1
𝐴𝐴� 𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴

𝐴𝐴
 

Average density 𝜌̅𝜌 =
1
𝐴𝐴� 𝜌𝜌𝜌𝜌𝜌𝜌

𝐴𝐴
 

Note: 𝑚̇𝑚 ≠ 𝜌̅𝜌𝑄𝑄 unless 𝜌𝜌 = constant 

(Note: 𝑉𝑉 ⋅ 𝑑𝑑𝑑𝑑 = 𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝑑𝑑) 



Example 4 
57:020 Fluids Mechanics Fall2013 30 

Estimate the time required to fill with 
water a cone-shaped container 5 ft hight 
and 5 ft across at the top if the filling rate 
is 20 gal/min. 

0 =
𝑑𝑑
𝑑𝑑𝑡𝑡� 𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
+ � 𝜌𝜌𝑉𝑉 ⋅ 𝒏𝒏�𝑑𝑑𝐴𝐴

𝐶𝐶𝐶𝐶
 

Apply the conservation of mass (𝛽𝛽 = 1) 

For incompressible fluid (i.e., 𝜌𝜌 = constant) and one inlet, 

0 =
𝑑𝑑
𝑑𝑑𝑡𝑡� 𝑑𝑑𝑉𝑉

𝐶𝐶𝐶𝐶
=𝑉𝑉

− 𝑉𝑉𝑉𝑉 𝑖𝑖𝑖𝑖
=𝑄𝑄𝑖𝑖𝑖𝑖

 



Example 4 – Contd. 
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Volume of the cone at time t, 

𝑉𝑉 𝑡𝑡 =
𝜋𝜋𝐷𝐷2

12 ℎ 𝑡𝑡  

Flow rate at the inlet, 

𝑄𝑄 = 20
gal
min 231

in3

gal 1,728
in3

ft3� = 2.674 ft3/min 

The continuity eq. becomes 

𝜋𝜋𝐷𝐷2

12 ⋅
𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑄𝑄 or 

𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

12𝑄𝑄
𝜋𝜋𝐷𝐷2 



Example 4 – Contd. 
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ℎ 𝑡𝑡 = �
12𝑄𝑄
𝜋𝜋𝐷𝐷2

𝑡𝑡

0
𝑑𝑑𝑑𝑑 =

12𝑄𝑄 ⋅ 𝑡𝑡
𝜋𝜋𝐷𝐷2

 

Solve for ℎ(𝑡𝑡), 

Thus, the time for ℎ = 5 ft is 

𝑡𝑡 =
𝜋𝜋𝐷𝐷2ℎ
12𝑄𝑄 =

𝜋𝜋 5 ft 2(5 ft)
(12)(2.674 ft3/min) = 12.2 min 
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