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Reynolds Transport Theorem (RTT)

* An analytical tool to shift from describing the
laws governing fluid motion using the system
concept to using the control volume concept



System vs. Control Volume

e System: A collection of matter of fixed identity

— Always the same atoms or fluid particles
— A specific, identifiable quantity of matter

e Control Volume (CV): A volume in space
through which fluid may flow

— A geometric entity
— Independent of mass
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Examples of CV

Fixed CV Moving CV Deforming CV
Control Control
surface S;face
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CV fixed at a nozzle CV moving with ship CV deforming within cylinder



Laws of Mechanics

d
1. Conservation of mass: am =0
dt
. ] dv d
2. Conservation of linear momentum: F=ma=m—=— (mV)
— = dt dt- —
_ dH
3. Conservation of angular momentum: M= d_?
. dE : .
4. Conservation of Energy: I =Q-W

The laws apply to either solid or fluid systems

Ideal for solid mechanics, where we follow the same system

For fluids, the laws need to be rewritten to apply to a specific region in
the neighborhood of our product (i.e., CV)



Extensive vs. Intensive Property

Governing Differential Equations (GDE’s):

d o B b= Bim

— m,mV,E\ =(0,F,Q—-W

at (ML By = (O£ 0 = W) n | 1
mV \Y

e B =The amount of m, mV, or E contained in the
total mass of a system or a CV; Extensive property —

E e
Dependent on mass
e [ (or b) =The amount of B per unit mass; Intensive f
property — Independent on mass Vv

dB _
B (orb) =B/m (= I for nonuniform B) 1
B=pf-m <= j f pdV for nonuniform ,8) &
¥ Zim



Inflow
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Fixed CV

— — — Fixed control surface and system
boundary at time ¢

— — — System boundary at time 7 + 6t

At time t: SYS = CV

Bsys (t) = Bey (1)

At time t + 8t: SYS = (CV —1) + I

Bgys(t + 6t)
+ By (t + 6t)



Time Rate of Change of B,

(SBsys . Bsys (t + 5t) _ Bsys (t)
5t St

_ {Bey(t + 6t) — By(t + 6t) + By (¢t + 6t)} — Bey (b)
B St

 0Bgys _ By (t + 6t) — By (t) N B;;(t + 6t) _ B (t + &t)

St St J St St
1) Change of B 2) Amount of B 3) Amountt of B
within CV over 6t flowing out flowing in
through CS through CS
over 6t over 6t

Now, take limit of 6t — 0 to Eq. (1) term by term

Eqg. (1)



LHS of Eq. (1)

. 5Bsys . Bsys (t + 5t) - Bsys (t) stys

lim = lim =

5t—-0 Ot S5t—0 ot dt
Time rate of
change of B

within the
system

DBsys . . .
or, = Dt : material derivative



First term of RHS of Eq.(1)

Boy(t +6t) — Boy(t) dBeyy d
im = = j BpdV

Time rate of change of
B withich CV
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2" term of RHS of Eq.(1)

Moy = pO¥
and

O¥ = 6A-6¢,, =O6A - ( éf cosH) = §A - (VétcosB)
=V 5t

Thus, the amount of B flowing out of CV through 64 over a short time §t:

s OBoyt = BOmyyr = BpV cos O §tdA

QOutflow
portion of
control
surface

5V = 8¢, 6A

11



2"d term of RHS of Eqg.(1) — Contd.

By integrating 6 B,,,,+ over the entire outflow portion of CS,

B, (t + 6t) = f dB,y: = BpV cos 6 5tdA
CSout CSout

Thus,

B (t + 6t) 1
m = lim —|( 6t BpV cos8 dA
5t—0 ot 5t—0 Ot CSout

= j BpVcosOdA (= Boy)
c

S —
out Vn i.e., Out flux of B through CS
Note that Vcos8 =V - 7,
Bout = IBPK - idA
CSout 5]

- =>

a-b = [alls] cos
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39 term of RHS of Eq.(1)

odm;, = po¥

and

— ~——
=Vét <0

SY =6A-6¢, = 5A - < 5¢ (— cos 6)) = §A - (—V 6t cos 6)

Thus, the amount of B flowing out of CV through 64 over a short time dt:
& 0B, = fém;, = —FpV cos O 6tHA

Inflow
portion of
control surface

A=

(a) (b) (c)

13



34 term of RHS of Eqg.(1) — Contd.

By integrating 6 B,,,,+ over the entire outflow portion of CS,

B,(t + ot) = dB;, = j (—BpV cos B)5tdA
CSin CSin
Thus,
~ B;(t+ 6t) 1
L T &%M(‘” J,, cpov o 9>dA>

BpVcosOdA (= By,)
CSin =— . .
Vn i.e., influx of B through CS

Note that V cos8 =V - n,

o Bin = — ﬁpz . ﬁdA
CSin



RTT for Fixed CV

Now the relationship between the time rate of change of B for the system
and that for the CV is given by,

DB d
22 = BpdV + BpV - idA — <—

= BpV - ﬁdA)
Dt dt J oy CSons

Bout Bin

With the fact that CS = CS,,; + CS;y,

DBsys d ~
= BpdV + | BpV -1idA
Dt dt Joy cs
I;mr:r? rjff(g = ILr:s rjff(; + Net flux of B
; - s through CS

within a system within CV
= Bout — Bin
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Example 1

4.72 Water flows through the 2-m-wide rectangular channel
shown in Fig. P4,72 with a uniform velocity of 3 m/s. (a) Di-
rectly integrate Eq. 4.16 with b = | to determine the mass
flowrate (kg/s) across section CD of the control volume.
(b) Repeat part (a) with b = 1/p, where p is the density. Explain
the physical interpretation of the answer to part (b).

A D

5 === T
—» I
[ | o
> | /
e : -

ol - i

V=3m/s B C

=
H

16
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Example 1 - Contd.

Byt = j pBV -fidA  (4.16)
Cc

D
Sout e
J vV
With f=1andV -n =V cos@, P N
/ n
Bout:j chostAszcosHj dA c
cD CD
=Acp
= pV cos8 Acp
where f'—" a5m 0
cosé 0.5m

ACD=’€X(2m)




Example 1 - Contd.

Thus, with p = 1,000 kg/m3 for water and V =3 m/s,

B, = (1,000 ¢ (3E)cose - = 3,000 kg /s
out ’ m3 S cos 0 ’ 5

With  =1/p,

Boutzf VcosOdA=Vcos® | dA =VcoshAqp
cD CD

=Acp
=1/cos 6

m 1
= (3 —) cos 6 < m2> =3m3/s (i.e.,volume flow rate)
S cos 6

Note: These results are the same for all 8 values



Special Case:
V= constant over discrete CS’s

e Bin =J Bp V-n dA= ) (BipiViA)in
bﬁ ag Y CSin constant i
— IW—»L%—Jﬁ:( i
o Bout =f pp V-n dA= Z(,ijjVjAj)out
1 /\v CSout constant j

l

DBSyS d
cv ; o oy
. out m

1 m
m] l



Example 2

Given:

e Water flow (p = constant)
e D;=10cm; D, =15cm
e V,=10cm/s
e Steady flow
Find: V, =7

Mass conservation:

Steady flow
* DBy /Dt=0

* p=1 0 7{[ pdV + (p,V245) — (p1V141)
* P1=p2=p v

or, p1V141 = paV24;

2 2
pP141 p\ [ Dy 10 cm cm
sV, = V, =1 — — | V, =(1 10 — ) =44
2 pr A5 1 <p> <D2> 1= ( )<15 cm ( S ) cm/s
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Example 3

g
( Given:
Q3 =0.01 m3/s !

l D;=5cm; D, =7 cm
74 e V1=3m/s
N Q3 = V343 = 0.01 m3/s
e h=constant (i.e., steady flow)
Bijp=Sicns ! ﬁ * P1= P2 = P3 = Pwater
= Find: V, =7

1‘@

Dy, =7cm

Water

= 0; steady flow

or, VZAZ = V]_Al + V3A3
=0Q3
) = = = 4.13m/s
4, (m)(0.07)2 /4

21
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Moving CV

Vv, — Control volume and system
Particle A at 7, - 4g:|—\-'? 9
—_ -~ At ¢ ‘ ST,
- e Mwete . - coeramenns 7 | ontrol volume
Particle Batr, -~ Ve S P g e
/ /s ko7 L=2tg
~
)I/ ———= System at time #; > 1,
///’
x"'--.\‘(/ //
g
l \\ VB / /\
\\ e~ ,...-// ,// V.y = Control volume velocity
~ S ———
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RTT for Moving CV

Control volume /z" 7
and system at timet  / N W=V-Vg
/ (i.e., relative velocity 1)

———— System at time

1+ Ot y Flow as seen by an
' observer moving with
velocity Ve
Pathlines as

seen from the
moving control
volume

Figure 4.23
@ John Wiley & Sons, Inc. All rights reserved.

DBsys _ @ av + V. - fidA

23



RTT for Moving and Deforming CV

*

Bsys _ BpdV + | Bp(V, - R)dA
dt dt ).y p cs PVr

Both CV and CS change their shape and location
with time

V,=V(x,t)—Vs(x,t)

-V, e Vs(x,t): Velocity of CS

* V(x,t): Fluid velocity in the coordinate
system in which the VI is observed

* [/.: Relative velocity of fluid seen by an
observer riding on the CV

*Ref) Fluid Mechanics by Frank M. White, McGraw Hill



RTT Summary (1)

General RTT (for moving and deforming CV):

Boys _ d dv | + V. - fidA

Special Cases:

1) Non-deforming (but moving) CV

= — ¥+ - fidA
Tt jcv m (Bp)d . BpV, - nd

2) Fixed CV

styS—f a( Ya¥ + V - fidA

3) Steady flow:
9,

E =
4) Flux terms for uniform flow across discrete CS’s (steady or unsteady)

oL RdA= ) Bidoue = ) (B

0
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RTT Summary (2)

For fixed CV’s:

Parameter (B) | = B/m RTT Remark

Mass (m) 1 0 d v v - fdA Continuity eq.
=—1 p +j pv-n
dt J -, cs (Ch.5.1)
Momentum v ZF _d j v dV"‘f VoV - dA Linear momentum eq.
(mV) = T e (Ch. 5.2)
: : d Energy eq.
Energy (E) e —W =— d¥+j V- ndA
Q at )., ° IR (Ch. 5.3)




Continuity Equation (Ch. 5.1)

RTT with B =massand f =1,

DMy d R
0= j pd¥ + j pV -ndA

mass conservatoin

or
R d
pV -ndAd = ——| pd¥
CS dt cv
Net rate of outflow Rate of decrease of
of mass across CS mass within CV

Note: Incompressible fluid (p = constant)

j V- ndd = _Ef av (Conservation of volume)
cS cv



Simplifications

1. Steady flow
j pV -ndA =0
cs

2. If V = constant over discrete CS’s (i.e., one-dimensional flow)

j pz°ﬁdA=szA—ZpVA
cS .

out mn

3. Steady one-dimensional flow in a conduit

(PVA) oyt — (pVA)in = 0
or
p2V2A; —p1V141 =0

For p = constant
Vid, =V,4; (or Q; = Q3)




Some useful definitions

Mass flux m = j pV -dA (Note: V - dA = V - fidA)
A
Volume flux Q = j V-dA
L, - =
. - 0 1j
Average velocity A=—=—| V-dA
A A), — —
_ 1
Average density p = —J pdA
A,

Note: m # p(Q unless p = constant
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Example 4

Estimate the time required to fill with
water a cone-shaped container 5 ft hight

’<75ft—>

X and 5 ft across at the top if the filling rate
“— is 20 gal/min.

Apply the conservation of mass (f§ = 1)

d
0= pd¥+j pV - ndA
de cs

For incompressible fluid (i.e., p = constant) and one inlet,

d
o= ar—way,
dt cv =Q;
= o



Example 4 — Contd.

Volume of the cone at time t,

2

D
V() = ”1—2h(t)

Flow rate at the inlet,

=120 al 23lin3 / 1728in3 = 2.674 ft3 /mi
Q= min gal R3O T /min

The continuity eq. becomes

nD? dh dh 120
——=0 or =
12 dt dt mD?




Example 4 — Contd.

Solve for h(t),

t .
h(t) = j 120 gt — 120 -t
0

nD2 "~ mD?2

Thus, the time for h =5 ftis

_mD*h  w(5f)*(5ft)

_ — = 12.2 mi
"=120 T (2)(2.674 3 /min) i
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