Control Volume and Reynolds Transport Theorem

10. 11. 2013

Hyunse Yoon, Ph.D.

Assistant Research Scientist
IIHR-Hydroscience & Engineering
University of Iowa

Reynolds Transport Theorem (RTT)

 An analytical tool to shift from describing the laws governing fluid motion using the system concept to using the control volume concept

System vs. Control Volume

- System: A collection of matter of fixed identity
 - Always the same atoms or fluid particles
 - A specific, identifiable quantity of matter

- Control Volume (CV): A volume in space through which fluid may flow
 - A geometric entity
 - Independent of mass

Examples of CV

CV fixed at a nozzle

CV moving with ship

CV deforming within cylinder

Laws of Mechanics

1. Conservation of mass:

$$\frac{dm}{dt} = 0$$

2. Conservation of linear momentum:

$$\underline{F} = m\underline{a} = m\frac{d\underline{V}}{dt} = \frac{d}{dt}(m\underline{V})$$

3. Conservation of angular momentum:

$$\underline{M} = \frac{d\underline{H}}{dt}$$

4. Conservation of Energy:

$$\frac{dE}{dt} = \dot{Q} - \dot{W}$$

- The laws apply to either solid or fluid systems
- Ideal for solid mechanics, where we follow the same system
- For fluids, the laws need to be rewritten to apply to a specific region in the neighborhood of our product (i.e., CV)

Extensive vs. Intensive Property

Governing Differential Equations (GDE's):

$$\frac{d}{dt}\left(\underbrace{m, m\underline{V}, E}_{B}\right) = \left(0, \underline{F}, \dot{Q} - \dot{W}\right)$$

- B = The amount of m, mV, or E contained in the total mass of a system or a CV; Extensive property – Dependent on mass
- β (or b) = The amount of B per unit mass; Intensive property Independent on mass

$$\beta$$
 (or b) = B/m (= $\frac{dB}{dm}$ for nonuniform B)

$$B = \beta \cdot m \quad \left(= \int_{V} \beta \underbrace{\rho dV}_{=dm} \text{ for nonuniform } \beta \right)$$

В	b = B/m		
m	1		
mV	V		
E	e		

Fixed CV

- Fixed control surface and system boundary at time t
- --- System boundary at time $t + \delta t$

At time t: SYS = CV

$$B_{sys}(t) = B_{CV}(t)$$

At time $t + \delta t$: SYS = (CV – I) + II

$$B_{SyS}(t + \delta t)$$

$$= B_{CV}(t + \delta t) - B_I(t + \delta t)$$

$$+ B_{II}(t + \delta t)$$

Time Rate of Change of B_{sys}

$$\frac{\delta B_{sys}}{\delta t} = \frac{B_{sys}(t + \delta t) - B_{sys}(t)}{\delta t}$$

$$= \frac{\{B_{CV}(t + \delta t) - B_{I}(t + \delta t) + B_{II}(t + \delta t)\} - B_{CV}(t)}{\delta t}$$

$$\therefore \frac{\delta B_{sys}}{\delta t} = \underbrace{\frac{B_{CV}(t + \delta t) - B_{CV}(t)}{\delta t}}_{1) \text{ Change of } B} + \underbrace{\frac{B_{II}(t + \delta t)}{\delta t}}_{2) \text{ Amount of } B} - \underbrace{\frac{B_{I}(t + \delta t)}{\delta t}}_{3) \text{ Amountt of } B}$$
within CV over δt flowing out through CS over δt over δt over δt over δt

Now, take limit of $\delta t \rightarrow 0$ to Eq. (1) term by term

LHS of Eq. (1)

$$\lim_{\delta t \to 0} \frac{\delta B_{sys}}{\delta t} = \lim_{\delta t \to 0} \frac{B_{sys}(t + \delta t) - B_{sys}(t)}{\delta t} = \underbrace{\frac{dB_{sys}}{dt}}_{\begin{subarray}{c} \text{Time rate of change of } B\\ \end{subarray}}_{\begin{subarray}{c} \text{within the system} \end{subarray}}$$

$$\left(\text{or,} = \frac{DB_{sys}}{Dt}; \text{ material derivative}\right)$$

First term of RHS of Eq.(1)

$$\lim_{\delta t \to 0} \frac{B_{CV}(t+\delta t) - B_{CV}(t)}{\delta t} = \underbrace{\frac{dB_{CV}}{dt} = \frac{d}{dt} \int_{CV} \beta \rho dV}_{\text{Time rate of change of}}$$

$$\underbrace{B \text{ withich CV}}$$

2nd term of RHS of Eq.(1)

$$\delta m_{out} = \rho \delta \Psi$$

and

$$\delta \Psi = \delta A \cdot \delta \ell_n = \delta A \cdot \left(\underbrace{\delta \ell}_{=V\delta t} \cos \theta\right) = \delta A \cdot (V\delta t \cos \theta)$$

Thus, the amount of B flowing out of CV through δA over a short time δt :

$$\therefore \delta B_{out} = \beta \delta m_{out} = \beta \rho V \cos \theta \, \delta t \delta A$$

2nd term of RHS of Eq.(1) – Contd.

By integrating δB_{out} over the entire outflow portion of CS,

$$B_{II}(t + \delta t) = \int_{CS_{out}} dB_{out} = \int_{CS_{out}} \beta \rho V \cos \theta \, \delta t dA$$

Thus,

$$\lim_{\delta t \to 0} \frac{B_{II}(t + \delta t)}{\delta t} = \lim_{\delta t \to 0} \frac{1}{\delta t} \left(\delta t \int_{CS_{out}} \beta \rho V \cos \theta \, dA \right)$$

$$= \int_{CS_{out}} \beta \rho \underbrace{V \cos \theta}_{=V_{out}} dA \qquad (\equiv \dot{B}_{out})$$

i.e., Out flux of \boldsymbol{B} through CS

Note that $V \cos \theta = \underline{V} \cdot \widehat{\boldsymbol{n}}$,

$$\therefore \dot{B}_{\text{out}} = \int_{CS_{out}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$$

3rd term of RHS of Eq.(1)

$$\delta m_{in} = \rho \delta \Psi$$

and

$$\delta \Psi = \delta A \cdot \delta \ell_n = \delta A \cdot \left(\underbrace{\delta \ell}_{=V\delta t} \left(-\underbrace{\cos \theta}_{<0} \right) \right) = \delta A \cdot \left(-V\delta t \cos \theta \right)$$

Thus, the amount of B flowing out of CV through δA over a short time δt :

$$\therefore \delta B_{in} = \beta \delta m_{in} = -\beta \rho V \cos \theta \, \delta t \delta A$$

(b)

(c)

3rd term of RHS of Eq.(1) – Contd.

By integrating δB_{out} over the entire outflow portion of CS,

$$B_{I}(t + \delta t) = \int_{CS_{in}} dB_{in} = \int_{CS_{in}} (-\beta \rho V \cos \theta) \delta t dA$$

Thus,

$$\lim_{\delta t \to 0} \frac{B_I(t + \delta t)}{\delta t} = \lim_{\delta t \to 0} \frac{1}{\delta t} \left(\delta t \int_{CS_{in}} (-\beta \rho V \cos \theta) dA \right)$$

$$= -\int_{CS_{in}} \beta \rho \underbrace{V \cos \theta}_{=-V_n} dA \quad (\equiv \dot{B}_{in})$$
i.e., influx of B through CS

Note that $V \cos \theta = \underline{V} \cdot \widehat{\boldsymbol{n}}$,

$$\therefore \dot{B}_{\rm in} = -\int_{CS_{in}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$$

RTT for Fixed CV

Now the relationship between the time rate of change of B for the system and that for the CV is given by,

$$\frac{DB_{sys}}{Dt} = \frac{d}{dt} \int_{CV} \beta \rho dV + \underbrace{\int_{CS_{out}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA}_{\dot{B}_{out}} - \underbrace{\left(-\int_{CS_{in}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA\right)}_{\dot{B}_{in}}$$

With the fact that $CS = CS_{out} + CS_{in}$,

$$\frac{DB_{sys}}{Dt} = \frac{d}{dt} \int_{CV} \beta \rho dV + \int_{CS} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$$

Time rate of thange of
$$B$$
 = change of B + Net flux of B through CS = $\dot{B}_{out} - \dot{B}_{in}$

Example 1

4.72 Water flows through the 2-m-wide rectangular channel shown in Fig. P4.72 with a uniform velocity of 3 m/s. (a) Directly integrate Eq. 4.16 with b = 1 to determine the mass flowrate (kg/s) across section CD of the control volume. (b) Repeat part (a) with $b = 1/\rho$, where ρ is the density. Explain the physical interpretation of the answer to part (b).

Figure P4.72 © John Wiley & Sons, Inc. All rights reserved.

Example 1 - Contd.

$$\dot{B}_{out} = \int_{CS_{out}} \rho \beta \mathbf{V} \cdot \hat{\mathbf{n}} dA \quad (4.16)$$

With β = 1 and ${m V}\cdot {m {\widehat n}} = V\cos heta$,

$$\dot{B}_{out} = \int_{CD} \rho V \cos \theta \, dA = \rho V \cos \theta \underbrace{\int_{CD} dA}_{=A_{CD}}$$
$$= \rho V \cos \theta \, A_{CD}$$

where

$$A_{CD} = \ell \times (2 m)$$

$$= \left(\frac{0.5 m}{\cos \theta}\right) (2 m) = \left(\frac{1}{\cos \theta}\right) m^2$$

Example 1 - Contd.

Thus, with ρ = 1,000 kg/m³ for water and V = 3 m/s,

$$\dot{B}_{out} = \left(1,000 \, \frac{\text{kg}}{\text{m}^3}\right) \left(3 \, \frac{\text{m}}{\text{s}}\right) \cos \theta \left(\frac{1}{\cos \theta} \, \text{m}^2\right) = 3,000 \, \text{kg/s}$$

With $\beta = 1/\rho$,

$$\dot{B}_{out} = \int_{CD} V \cos \theta \, dA = V \cos \theta \int_{\underbrace{CD}} dA = V \cos \theta \, A_{CD}$$

$$= \left(3 \frac{m}{s}\right) \cos \theta \left(\frac{1}{\cos \theta} \, m^2\right) = 3 \, m^3/s \quad (i.e., \text{volume flow rate})$$

Note: These results are the same for all θ values

Special Case: V = constant over discrete CS's

$$\dot{B}_{in} = \int_{CS_{in}} \beta \rho \underbrace{V \cdot \hat{n}}_{\text{constant}} dA = \sum_{i} (\beta_{i} \rho_{i} V_{i} A_{i})_{in}$$

$$\dot{B}_{out} = \int_{CS_{out}} \beta \rho \underbrace{V \cdot \hat{n}}_{constant} dA = \sum_{j} (\beta_{j} \rho_{j} V_{j} A_{j})_{out}$$

$$\therefore \frac{DB_{sys}}{Dt} = \frac{d}{dt} \int_{CV} \beta \rho dV + \sum_{j} \left(\beta_{j} \underbrace{\rho_{j} V_{j} A_{j}}_{\dot{m}_{j}} \right)_{out} - \sum_{i} \left(\beta_{i} \underbrace{\rho_{i} V_{i} A_{i}}_{\dot{m}_{i}} \right)_{in}$$

Example 2

Given:

- Water flow (ρ = constant)
- $D_1 = 10$ cm; $D_2 = 15$ cm
- $V_1 = 10 \text{ cm/s}$
- Steady flow

Find: $V_2 = ?$

Mass conservation:

- $DB_{SYS}/Dt = 0$
- $\beta = 1$
- $\bullet \quad \rho_1 = \rho_2 = \rho$

Steady flow

$$0 = \frac{d}{dt} \int_{CV} \rho dV + (\rho_2 V_2 A_2) - (\rho_1 V_1 A_1)$$

or,
$$\rho_1 V_1 A_1 = \rho_2 V_2 A_2$$

$$\therefore V_2 = \frac{\rho_1 A_1}{\rho_2 A_2} V_1 = \left(\frac{\rho}{\rho}\right) \left(\frac{D_1}{D_2}\right)^2 V_1 = (1) \left(\frac{10 \text{ cm}}{15 \text{ cm}}\right)^2 \left(10 \frac{\text{cm}}{\text{s}}\right) = 4.4 \text{ cm/s}$$

Example 3

Given:

- $D_1 = 5$ cm; $D_2 = 7$ cm
- $V_1 = 3 \text{ m/s}$
- $Q_3 = V_3 A_3 = 0.01 \text{ m}^3/\text{s}$
- *h* = constant (i.e., steady flow)
- $\rho_1 = \rho_2 = \rho_3 = \rho_{water}$

Find: $V_2 = ?$

= 0; steady flow

$$0 = \frac{d}{dt} \int_{CV} \rho dV + (\rho_2 V_2 A_2) - (\rho_1 V_1 A_1) - (\rho_3 V_3 A_3)$$

or,
$$V_2 A_2 = V_1 A_1 + \underbrace{V_3 A_3}_{=Q_3}$$

$$\therefore V_2 = \frac{V_1 A_1 + Q_3}{A_2} = \frac{(3)(\pi)(0.05)^2 / 4 + (0.01)}{(\pi)(0.07)^2 / 4} = 4.13 \text{ m/s}$$

Moving CV

RTT for Moving CV

Figure 4.23

Sons, Inc. All rights reserved.

$$\frac{DB_{sys}}{Dt} = \frac{d}{dt} \int_{CV} \beta \rho dV + \int_{CS} \beta \rho \underline{V}_r \cdot \widehat{\boldsymbol{n}} dA$$

RTT for Moving and Deforming CV

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{CV} \beta \rho dV + \int_{CS} \beta \rho (\mathbf{V_r} \cdot \widehat{\mathbf{n}}) dA$$

Both CV and CS change their shape and location with time

$$V_r = V(x,t) - V_S(x,t)$$

- $V_S(x,t)$: Velocity of CS
- V(x, t): Fluid velocity in the coordinate system in which the V_s is observed
- V_r: Relative velocity of fluid seen by an observer riding on the CV

*Ref) Fluid Mechanics by Frank M. White, McGraw Hill

RTT Summary (1)

General RTT (for moving and deforming CV):

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \left(\int_{CV} \beta \rho dV \right) + \int_{CS} \beta \rho \underline{V_r} \cdot \widehat{\boldsymbol{n}} dA$$

Special Cases:

1) Non-deforming (but moving) CV

$$\frac{dB_{sys}}{dt} = \int_{CV} \frac{\partial}{\partial t} (\beta \rho) dV + \int_{CS} \beta \rho \underline{V_r} \cdot \hat{\boldsymbol{n}} dA$$

2) Fixed CV

$$\frac{dB_{sys}}{dt} = \int_{CV} \frac{\partial}{\partial t} (\beta \rho) d\Psi + \int_{CS} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$$

3) Steady flow:

$$\frac{\partial}{\partial t} = 0$$

4) Flux terms for uniform flow across discrete CS's (steady or unsteady)

$$\int_{CS} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA = \sum (\beta \dot{\boldsymbol{m}})_{out} - \sum (\beta \dot{\boldsymbol{m}})_{in}$$

RTT Summary (2)

For fixed CV's:

Parameter (B)	$\beta = B/m$	RTT	Remark
Mass (m)	1	$0 = \frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$	Continuity eq. (Ch. 5.1)
Momentum (m <u>V</u>)	<u>V</u>	$\sum \underline{F} = \frac{d}{dt} \int_{CV} \underline{V} \rho d\underline{V} + \int_{CS} \underline{V} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$	Linear momentum eq. (Ch. 5.2)
Energy (E)	е	$\dot{Q} - \dot{W} = \frac{d}{dt} \int_{CV} e\rho d\Psi + \int_{CS} e\rho \underline{V} \cdot \hat{\boldsymbol{n}} dA$	Energy eq. (Ch. 5.3)

Continuity Equation (Ch. 5.1)

RTT with B = mass and $\beta = 1$,

$$\underbrace{0 = \frac{DM_{Sys}}{Dt}}_{\text{mass conservation}} = \frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$$

or

$$\underbrace{\int_{CS} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA}_{\text{Net rate of outflow of mass across CS}} = \underbrace{-\frac{d}{dt} \int_{CV} \rho d\underline{V}}_{\text{Rate of decrease of mass within CV}}$$

Note: Incompressible fluid (ρ = constant)

$$\int_{CS} \underline{V} \cdot \widehat{\boldsymbol{n}} dA = -\frac{d}{dt} \int_{CV} dV \qquad \text{(Conservation of volume)}$$

Simplifications

1. Steady flow

$$\int_{CS} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA = 0$$

2. If \underline{V} = constant over discrete CS's (i.e., one-dimensional flow)

$$\int_{CS} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA = \sum_{out} \rho VA - \sum_{in} \rho VA$$

3. Steady one-dimensional flow in a conduit

$$(\rho VA)_{out} - (\rho VA)_{in} = 0$$

or

$$\rho_2 V_2 A_2 - \rho_1 V_1 A_1 = 0$$

For ρ = constant

$$V_1 A_1 = V_2 A_2$$
 (or $Q_1 = Q_2$)

Some useful definitions

Mass flux

$$\dot{m} = \int_{A} \rho \underline{V} \cdot \underline{dA}$$

(Note: $\underline{V} \cdot \underline{dA} = \underline{V} \cdot \widehat{\boldsymbol{n}} dA$)

Volume flux

$$Q = \int_A \ \underline{V} \cdot \underline{dA}$$

Average velocity

$$\bar{A} = \frac{Q}{A} = \frac{1}{A} \int_{A} \underline{V} \cdot \underline{dA}$$

Average density

$$\bar{\rho} = \frac{1}{A} \int_{A} \rho dA$$

Note: $\dot{m} \neq \bar{\rho}Q$ unless ρ = constant

Example 4

Estimate the time required to fill with water a cone-shaped container 5 ft hight and 5 ft across at the top if the filling rate is 20 gal/min.

Apply the conservation of mass ($\beta = 1$)

$$0 = \frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} dA$$

For incompressible fluid (i.e., ρ = constant) and one inlet,

$$0 = \frac{d}{dt} \underbrace{\int_{CV} dV - \underbrace{(VA)_{in}}_{=Q_{in}}}$$

Example 4 – Contd.

Volume of the cone at time t,

$$V(t) = \frac{\pi D^2}{12} h(t)$$

Flow rate at the inlet,

$$Q = \left(20 \frac{\text{gal}}{\text{min}}\right) \left(231 \frac{\text{in}^3}{\text{gal}}\right) / \left(1,728 \frac{\text{in}^3}{\text{ft}^3}\right) = 2.674 \text{ ft}^3/\text{min}$$

The continuity eq. becomes

$$\frac{\pi D^2}{12} \cdot \frac{dh}{dt} = Q \qquad \text{or} \qquad \frac{dh}{dt} = \frac{12Q}{\pi D^2}$$

Example 4 – Contd.

Solve for h(t),

$$h(t) = \int_0^t \frac{12Q}{\pi D^2} dt = \frac{12Q \cdot t}{\pi D^2}$$

Thus, the time for h = 5 ft is

$$t = \frac{\pi D^2 h}{12Q} = \frac{\pi (5 \text{ ft})^2 (5 \text{ ft})}{(12)(2.674 \text{ ft}^3/\text{min})} = 12.2 \text{ min}$$