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Chapter 8 Flow in Conduits
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Le=f(D, V, p, 1

I[T;theorem = Le/D = f(Re)

Laminar flow: Regi ~ 2000, i.e., for Re < Regi laminar
Re > Regi turbulent

Le/D = .06Re from experiments

Lemax - .06Rec|’itD ~ 138D

\maximum Le for laminar flow
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Shear-Stress Distribution Across a Pipe Section

Continuity: Q; = Q, = constant,i.e., V; =V, since A; = A,

Momentum: Y F =Y pu(V-A)
=pVi(-V1A;)-pV,(V,A,)
=pQ(V, —V;)=0

PA —(p +3—Eds)A —AWsina —t(2nr)ds =0

AW = yAds sinoc:d—Z
ds

9P gea - yAdsd—Z —t(2nr)ds =0
ds ds

-~ Ads

’C:L{_i(p+yz):| Ty =%°[—%(p+yz)}

1 varies linearly from 0.0 atr = 0 (centerline) t0 Tmax (= Tw)
atr = ry (wall), which is valid for laminar and turbulent
flow.
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Laminar Flow in Pipes

dv  av r[ d
t=p == (p+y2z)

dy dr 2
dv _dvdy dv
dr dydr dy

y = wall coordinate=r,— r =

av _ _L[_E(p N Z)}
dr 2u| ds !

V= —ﬁ{—i(p +yz)}+ C

4| ds

2
V(r)=0=C= 2 -+ a)]
0l 4| ds

no slip condition

-2l iV Exact solution to
V(r)=-2 {——(Wﬂ)}:vc 1-1— Navier-Stokes
4u ds I ! i
equations for laminar

flow in circular pipe

here V. :i[_i(m z)}
whnere Vc 4u| ds /4

Q=V-dA

o

V(r)2nrdr

\ dA =rdrd6 = rdr(2r)

O —
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For a horizontal pipe,
2

r’ [ d r’ Ap
V.= |2 o ¥
¢ 4;1{ dS(p & )} du L
where L = length of pipe = ds
2
1} Ap r Ap
V — S —
(r) 4,u L[ (I’Oj} 4,uL(r ' )

Q= Iro Ap (7 -r )rdrzﬁD4Ap

128 L

FIGURE 10.2

Distribution of shear
stress and velocity for
laminar flow in a pipe.

Energy equation:

2

&+—+z _p—2+—+z2 +h,

Y 29 Y 29

Ah= (&-FZ) [p2+22J
/4 /4
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PP,y ape 9y L d L2
h = ’ +(21 Zz)—Ah—L( dS)_]/[ dS(p+7z)]_7/[ [ ]
. - 81 T
Define friction factor f = —7 Cs = 1 W
frEtion coefficient for pipe roVv b\oundary layer ffow
o h _L[ZTW]_L[Z(fsz/8)]_ fLE
) f vy Y Iy D 29

Darcy — Weisbach Equation, which is valid for both
laminar and turbulent flow.

Friction factor definition based on turbulent flow analysis

_ 87y,
where t, =1,(r,V,u p,k)thus n=6, m=3 and r=3 such that ITi=1 2 3= f= 5
pV
re=YP~ _VD "K/D: or f=f(Re, k/D) where k=roughness

u v
height. For turbulent flow f determined from turbulence
modeling since exact solutions not known, as will be

discussed next.

For laminar flow f not affected k and f(Re) determined
from exact analytic solution to Navier-Stokes equations.

Exact solution:
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For laminar flow:, =, (r,V, u)thus n=4, m=3 and r=1 such that

7, :%:constant. The constant depends on duct shape
U

(circular, rectangular, etc.) and is referred to as Poiseuille
number=P,. P,=4 for circular duct.

32n  64p 64
pro\_/ pVD Re
or hy=h_= 32“% ht = head loss due to friction
Y

for Az=0: apvas per Hagen!
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Stabilityand Transition
Stability: can a physical state withstand a
disturbance and still returnto its original state.

In fluid mechanics, there are two problems of
particular interest: change in flow conditions
resulting in (1) transition from one to another laminar
flow; and (2) transition from laminar to turbulent
flow.

(1) Example of transition from one to another
laminar flow: Centrifugal instability for Couette flow

between two rotating cylinders when centrifugal
3 Q?—Qz

0

force > viscous force Tasz)>Tacr:1708 (C=r -1 <<r),

which is predicted by small-aisturbance/ linear
stability theory.

—&-—=

400 0 R 3000

Fig. 1011 G, I Taylor's observation and narrow-gep calouiziion of marginal stability in rotating

Couette Aow of walter. The ratio af radii is Ry B, = 1,14, The regioh above the curve is unsiable.

R N The dashed line represents Rayleigh's inviscid criteripn, with the region w the left of the line
o o representing instability. '

Fig. 110 Definition skeveh of imstability in rotating Goueite fow,
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(2) Transition from laminar to turbulent flow

Not all laminar flows have different equilibrium
states, butall laminar flows for sufficiently large Re
become unstable and undergo transition to
turbulence.

Transition: change over space and time and Re range
of laminar flow into a turbulent flow.

Re_ _Yo 1000, 0 = transverseviscous thickness
v

Retrans > Reg with Xirans ~ 10-20 X

Small-disturbance/linear stability theory also predicts
Re. with some success for parallel viscous flow such
as plane Couette flow, plane or pipe Poiseuille flow,
boundary layers without or with pressure gradient,
and free shear flows (jets, wakes, and mixing layers).

No theory for transition, but recent Direct Numerical
Simualtions is helpful.

In general: Rey.s=Reyans(geometry, Re, pressure
gradient/velocity profile shape, free stream
turbulence, roughness, etc.)
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Criterionfor Laminar or Turbulent Flowin a
Pipe

Reqit ~ 2000 flow becomes unstable
Retans ~ 3000 flow becomes turbulent
Re = VD/v

Turbulent Flow in Pipes

Continuity and momentum:
(r=1)=7y =%‘[—%(p+yz)}

Energy: hfzk{—g(pﬂ(z)}
v ds
Combining: n, =12 define 1~ % = friction factor
yo% VA
3 V
h, :L.E.Ep\_/zf
Pg T, 8

LV’
h =f.-—-— Darcy — Weisbach Equation
D 2¢g

f = f(Re, k/D) = still must be determined!

Re = vb k = roughness
A%
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Description of Turbulent Flow

Most flows in engineering are turbulent: flows over
vehicles (airplane, ship, train, car), internal flows
(heating and ventilation, turbo-machinery), and
geophysical flows (atmosphere, ocean).

V (X, t) and p(x, t) are random functions of space and
time, but statistically stationary flaws such as steady
and forced or dominant frequency unsteady flows
display coherent features and are amendable to
statistical analysis, i.e. time and space (conditional)
averaging. RMS and other low-order statistical
quantities can be modeled and used in conjunction
with averaged equations for solving practical
engineering problems.

Turbulent motions range in size from the width in the
flow 0 to much smaller scales, which come
progressively smaller as the Re = Ud/v increases.
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Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5,000 and
{b) Re = 20,000. From Dahm and Dimotakis (1990) .

1(s)

Fig. 1.3, The time history of the axial component of velocity U/ (t) on the centerline
of a turbulent jet. From the experiment of Tong and Warhaft (1995).

wy
{Tpo /

0~0 i 1 1
-0.2 0.0 0.2

x/x)

Fig. 1.4. The mean axial velocity profile in a turbulent jet. The mean velocity {U;)
is normalized by its value on the centerline, {Uy}y; and the cross-stream {radial)
coordinate x; is normalized by the distance from the nozzle x;. The Reynolds number
is 95,500. Adapted from Hussein, Capp, and George (1994).
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Physical description:

(1) Randomnessand fluctuations:

Turbulenceis irregular, chaotic, and
unpredictable. However, for statistically stationary
flows, such as steady flows, can be analyzed using
Reynoldsdecomposition.

‘fudT w=0 G'Z:%“’fu'z dT etc.

u = mean motion
u' = superimposed random fluctuation

u= Reynoldsstresses; RMS = u”

Triple decomposition is used for forced or dominant
frequency flows

U=uU-+Uu"+U'
Where u" = organized component

(2) Nonlinearity

Reynoldsstresses and 3D vortex stretching are
direct result of nonlinear nature of turbulence. In
fact, Reynolds stresses arise from nonlinear
convection term after substitution of Reynolds
decomposition into NS equationsand time averaging.
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(3) Diffusion
Large scale mixing of fluid particles greatly
enhancesdiffusion of momentum (and heat), i.e.,

viscous stress
- f_J\ﬁ

Reynolds Stresses: —pu' U’ >> 1, = us,
Isotropic eddy VISCOSItY:  —uiu, =ug, —%&k

j

(4) Vorticity/eddies/energy cascade

Turbulenceis characterized by flow visualization
as eddies, which vary in size from the largest L;
(width of flow) to the smallest. The largest eddies
have velocity scale U and time scale Ls/U. The orders
of magnitude of the smallest eddies (Kolmogorov
scale or inner scale) are:

L« = Kolmogorov micro-scale = {”;Lﬁ } W)

I—K - O(mm) >> I—mean free path — 6 X 10 m
Velocity scale = (V8)1 = O(lO “m/s)
Time scale = (v/g)"?= O(107%s)

Largest eddies contain most of energy, which break
up into successively smaller eddies with energy
transfer to yet smaller eddies until Lk is reached and

energy Is dissipated at rate € by molecular viscosity.
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Richardson (1922):
Ls Big whorls have little whorls
Which feed on their velocity;
And little whorls have lesser whorls,
L« And so on to viscosity (in the molecular sense).

(5) Dissipation

ly=1L —
° 0 5 5 5 Energy comes from
Ug =k K=u"+Vv“+w largest scales and
~0(U) fed by mean motion

Re5=U0f0/U=big E—

¢ = rate of dissipation = energy/time S

2 Dissipation
_Ug T, = gy occurs at
To U —  smallest
scales
1
3 37,
u . U
=79 independentv Ly :{} —
0 g

The mathematical complexity of turbulence entirely
precludes any exact analysis. A statistical theory is well
developed; however, it is both beyond the scope of this
course and not generally useful as a predictive tool. Since
the time of Reynolds (1883) turbulent flows have been
analyzed by considering the mean (time averaged) motion
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and the influence of turbulence on it; that is, we separate
the velocity and pressure fields into mean and fluctuating
components.

It is generally assumed (following Reynolds) that the

motion can be separated into a mean (u, v, w, p) and
superimposed turbulent fluctuating (u’, v', w’, p")
components, where the mean values of the latter are 0.

u=u+u’ p=p+p’
V=V+V' and for compressible flow
W=W+Ww p=p+p and T=T+T
where (for example)
1ttt and tysufficiently large
u="" fudt that the average is
1 G independent of time

Thus by definition u’=0, etc. Also, note the following
rules which apply to two dependent variables f and g

f=f f+g=Ff+g

f.g=f-g
5_f 51—: L _ f=(u, v,w,p)
gzg [fds = [fds s=(x, Y, z1)

The most important influence of turbulence on the mean
motion is an increase in the fluid stress due to what are
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called the apparent stresses. Also known as Reynolds
stresses:

4

! /
Tij — —pUIUJ
12 ",/ Ion,! .
—pu —puv —puw Symmetric
= _pu’v’ _pv’2 —pV'W, 2nd order
uw N W,2 tensor
—pP —pP —pP

The mean-flow equations for turbulent flow are derived by

substituting V=V +V' into the Navier-Stokes equations
and averaging. The resulting equations, which are called
the Reynolds-averaged Navier-Stokes (RANS) equations
are:

Continuity V-V=0 ie.V-V=0and V-V'=0

DV o

Momentum =Y o= (ulu")=—pogk =VDp+ vV
P o paxj(' )= —pgk —Vp +uV2V
DV "
or th:—pgk—ijLV-rij
ou. ou - L u; =u X1 =X
T =Ml 8—I+8—J —pUu;U; U=V  Xo =Y
Xj OXi] v U3=W X3=2Z
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Comments:

1) equations are for the mean flow
2) differ from laminar equations by Reynolds stress

terms = —puu;

3) influence of turbulence is to transport momentum
from one point to another in a similar manner as

viscosity

4) since u;u’ are unknown, the problem is
indeterminate: the central problem of turbulent flow

analysis is closure!

4 equations and 4 + 6 = 10 unknowns

Spead, cm/s

Time, s

(a)

10
8§ s
ST o
0 e
58 _
“ E ® - ] .
—1% 0.1 0.2 0.3 0.4 05 0.6
Time, s
)
FIGURE 3-35

Hot-wire measurements showing turbulent veiocity fluctuations: (a) ty'pi.ca.l
trace of a single velocity component in a turbulent flow; (b) trace showing
intermittent turbulence at the edge of a jet. :
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FIGURE 5-36

Flat-plate measurements of the fluctuating velocities u’ Sstreamwlse):_
(normal), and w’ (lateral) and the turbulent shear uv'. [After Klebanoff (1953).]
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FIGURE 537

The phenomenon of intermittency in a turbulent boundary layver: (a) measured
intermittency factors [after Klebanoff (1955)]; (b) the superlayer interface be-
tween turbulent and nonturbulent fluid. .
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Fig. 18.3. Measurement of fluctuating tur- Fig. 18.4. Measurement of fluctuating com-
bulent components in a wind tunnel, ponents in a channel, after Reichardt [41]
at maximum velocity U = 100 cm/sec The product @ 7, the shearing stress /¢, and the cor-
after Reichardt [41] relation coefficient y

Root q! of il i }/F »

transverse fluctuation Vﬁy mean velocity
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Turbulence Modeling
Closure of the turbulent RANS equations require the

determination of —pu'v’, etc. Historically, two approaches
were developed: (a) eddy viscosity theories in which the
Reynolds stresses are modeled directly as a function of
local geometry and flow conditions; and (b) mean-flow
velocity profile correlations, which model the mean-flow
profile itself. The modern approaches, which are beyond
the scope of this class, involve the solution for transport
PDE’s for the Reynolds stresses, which are solved in
conjunction with the momentum equations.

(a) eddy-viscosity: theories

UV = ou In analogy with the laminar viscous
Loy stress, i.e., 1, oc mean-flow rate of strain

The problem is reduced to modeling p, i.e.,
Lt = Mt(Xv flow at hand)

Various levels of sophistication presently exist in

modeling
a thLt\ turbulent where Vi and L, are
turbulent length scale based on large scale

: turbulent motion
velocity scale

The total stress is

(n+py)

8
Ttota/:'
molecular \ eddy viscosity
viscosity (for high Re flow p;>>p)
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Mixing-length theory (Prandtl, 1920)
based on kinetic
: —2 [—=2
—pu'v' =cpyvu' V' theory of gases
|—2 _ 8U
u =/ 1 @ ¢4 and ¢ ,are mixing lengths

which are analogous to
molecular mean free path,

[—2 86 but much larger
V - f 2
oy
ou|du
. N — 2 el el
N puv =p/l
H/_J
i

Known as a zero

equation model since
no additional PDE’s /= f(
are solved, only an =ty

algebraic relation

distance across shear layer

= f(boundary layer, jet, wake, etc.)
Although mixing-length theory has provided a very useful
tool for engineering analysis, it lacks generality. Therefore,
more general methods have been developed.

One and two equation models

_ Cpk
g

H;
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C = constant

k = turbulent kinetic energy

_ ur2+V12+Wr2
& = turbulent dissipation rate

Governing PDE’s are derived for k and € which contain
terms that require additional modeling. Although more
general than the zero-equation models, the k-&¢ model also
has definite limitation; therefore, relatively recent work
involves the solution of PDE’s for the Reynolds stresses
themselves. Difficulty is that these contain triple
correlations that are very difficult to model. Most recent
work involves direct and large eddy simulation of
turbulence.

(b) mean-flow velocity profile correlations

As an alternative to modeling the Reynolds stresses one can
model mean flow profile directly for wall bounded flows
such as pipes/channels and boundary layers. For simple 2-
D flows this approach is quite good and will be used in this
course. For complex and 3-D flows generally not
successful. Consider the shape of a turbulent velocity
profile for wall bounded flow.
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- +

Outer
turbulent
layer

Overlap layer
¥ Viscous

«—wall layer
g 0 74

(@ (®)

Fig. 6.8 Typical velocity and shear distributions in turbulent flow near a wall: (a) shear;
(b) velocity. (

FIGURE 10.4 1.0 >
Apparent shear stress in f\\o
; 0.8 "f\.""? Re
a pipe. [After Laufer : S 0 500,000
23] i A~ * 50,000
__ 06k S
- le'V' i L
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Y04
’ Y
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0.2 ‘\
o
0 1 ! 1 1 1 1 I i L™
01 02 03 04 05 06 07 08 09 10
1--
-

0

Note that very near the wall tiaminer Must dominate since
—pu;u;=0atthe wall (y = 0) and in the outer part

turbulent stress will dominate. This leads to the three-layer
concept:

Inner layer:  viscous stress dominates

Outer layer:  turbulent stress dominates
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Overlap layer: both types of stress important

1. laminar sub-layer (viscous shear dominates)

u = (i, T, p, Y) note: not f(5)
and 6=D and
y = ro - r
for pipe flow

From dimensional
Ayt ut =fly*) law-of-the-wall
where: U=
u

u” = friction velocity = /t,, /p

*

very near the wall:

du
T ~ Ty ~ CONstant = ﬂ@ — UuU=cy

l.e.,

ut=y" 0<y"'<5
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2. outer layer (turbulent shear dominates)

(Ge —G)outer =9(3,7,0Y)

note: independent of n and actually also depends on dp

dx

From dimensional ~ Ue —U _ g y
analysis . o) velocity defect law

3. overlap layer (viscous and turbulent shear important)

It is not that difficult to show that for both laws to
overlap, f and g are logarithmic functions:
Inner region:

du u” df
dy v dy'
Outer region:
du u’ dg
dy & dp

2
yu df yu'd
ut* v dyt u* o dpy

-

: valid at large y" and small #.

- /)

fy+) o)
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Therefore, both sides must equal universal constant,

K—l

f(y") :;In y' +B=U/U" (inner variables)

—u
g(17) __In’7+A_ (outer variables)
K, A, and B are pure dimensionless constants
k= 0.41 Von Karman constant
Values vary
somewha
depending; on | B = 55 (or 50)
different exp.
wreneemers A = 235 BLflow Thedifferenceisdueto
= 0.65 pipeflow lossofintermittencyin

duct flow. A = 0 means
small outer layer
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FIGURE 10.5

Velocity distribution for
mooth pipes. [After 10,000 |-
Schlichting (36)]

1,000
Range of
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7, =575l0g0 5~ +5.5

[Eq. (10-19)]
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FIGURE 9.9
Velocity distribution in a
turbulent boundary
layer. Velocity
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FIGURBO.11 700
Velocity distribution in a
turbulent boundary
layer—linear scales. e
500 —
400
Vil o
.
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300 Uy Logarithmic
velocity
distribution
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FIGURE 9.12 1.0
Velocity-defect law for
boundary layers. [After
Rouse (10)]. 0.8
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Note that the y* scale is logarithmic and thus the inner
law only extends over a very small portion of 6

Inner law region < .28

And the log law encompasses most of the pipe/boundary-
layer. Thus as an approximation one can simply assume

a 1 Ut = /TW/p
—*:—In y++B
u

1%

Is valid all across the shear layer. This is the approach used
in this course for turbulent flow analysis. The approachis a
good approximation for simple and 2-D flows (pipe and flat
plate), but does not work for complex and 3-D flows.

0.8 —

0.6 Pressure gradients:

Strong favorable: .
Herring (1967)

Flate plate:

0.4 Wieghardt (1944)

Mild adverse:
Bradshaw (1966)

Strong adverse:

0.2 Ludwieg (1949)

Very strong adverse:

..Qlcu

Schubauer (1960)
Separating flow:
Moses {1964)
)

02 v,
5o =—24(1)
0 1 | |
0 0.2 0.4 0.6 08 1.0

cn|~<

FIGURE 6-4

Expgrimental turbulent-boundary-layer velocity profiles for various pressure
gradients.
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tou* =221 aty* = 156

40 -

20

-Separating flow
(no discernible overlap layer)

Very strong adverse: —2
A

|

[}

!

!

[}

!

|

? : )

'Il Strong adverse: *\AM
A

[}

]

|

I

e Strong favorable

v Flat plate
(zero gradient)

1
Y In(y*)+55
e |nner law

# 1n(y*) +5.0
, .
L]

10,000

0
10

1 3
100 1,000

Loy
4 v

FIGURE 6-5
Replot of the velocity profiles of Fig. 6-4 using inner-law variables y+ and u*.

Slight “‘wake’ 1' .

25
Linear /
| H
20 |- sublayer:
ut =y /
/
/
/
15 ~ //
3] % Logarithmic overlap: / P o
) Eq. (6-52a) - )
3 Spalding’s law of the wall:
10 Eq. (6-62) (k=0.4,8=5.5)
Data of Lindgren (1965):
5 ¥ Upe 226,100
v = 10,000
Y)\' o =27,000
s =49,000
0 4 1 1
1 ( 10 100 1,000
4 R L

FIGURE 6-6
Comparison of Spalding’s inner-law expression with the pipe-flow data of

Lindgren (1965).
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Velocity Distribution and Resistance in Smooth Pipes

Assume log-law is valid across entire pipe

* T friction
U =" \elocity
u(r r—rju
O L
u
" g B=5.0
fﬁ(r)andr L (s ) ;
O T A P TIO
A Tr; 2 |k v K

vV ‘u V2 1/2 q 1/2
dropover bar:  — = 2.44In-2 +1.34:[p—j :(_j

u \Y% T, f
12
i
2 8
1 _1.9910g(Re F2)-1.02
JE
constants 1
adjusted = =2 Iog(Re f1/2 )—.8 Re > 3000

using data \/?

Since f equation is implicit, it is not easy to see
dependencyon p, i, V, and D

o\ -1/4 4000 < Rep < 10°
f (pipe) =0.316 Rep Blasius (1311) power law

curve fit to data
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for Az=0 (horizontal)

2
hf_Ap LV

—f=_—
/4 D 29

Ap — 0.158Lp3/4ﬂ1/4D_5/4\/ 714

‘ L\ Near quadratic (as expected)

. Drops weakly with
Only slightly pipe size
with p

_ 0-241|—,03/4,U1/4 D—4.75Q1.75

Nearlv linear

laminar flow: Ap =8.LQ/R*
Ap (turbulent) increases more sharply than

Ap (laminar) for same Q; therefore, increase D for
smaller Ap. 2D decreases Ap by 27 for same Q.

u’ u g

Combine with v/ =k In—+B— 3

Vi ~(12.37)"

3
2K\/§

13=
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TABLE 10.1 EXPONENTS FOR POWER-LAW EQUATION AND
RATIO OF MEAN TO MAXIMUM VELOCITY
Re — 4 x 10° 2.3 x 10° 1.1 x 10° 1.1 x 10¢ 3.2 x 10°
1 1 1 1 1

m— — e — — —
_ 6.0 6.6 7.0 8.8 10.0
V/Viax —> 0.791 0.807 0.817 0.850 0.865

source: Schlichting (36). Used with permission of the McGraw-Hill Companies.

Power law fit to velocity profile:

— 1
u 1 s
o r m = m(Re)

Joasl |

.o; ‘

4
~ |

10° 10° 10° J

Re = 22

u

B FIGURE 8.17
(Adapted from Ref. 1.)

Exponent, n, for power-law velocity profiles.

1.0 =i

Laminar —

Turbulent -

BFIGURE 8.18
Typical laminar flow and

) turbulent flow velocity

i profiles.
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Viscous Distribution and Resistance — Rough Pipes

For laminar flow, effect of roughness is small; however, for
turbulent flow the effect is large. Both laminar sublayer

and overlap layer are affected.

Inner layer:
u=u(y,k,p, )
u” =u'(y/k)

Outer layer: unaffected

Overlap layer:

1
Ug — ~InY +constant
Kk K
+ 1 +
ug=—Iny" +B
K

1
Us —Ugp =—Ink™ +constant
K

— g

AB(K")

not function of p as was case
for smooth pipe (or wall)

rough

smooth

v

k+

i.e., rough-wall velocity profile shifts downward by AB(K"),

which increases with k.

Three regions of flow depending on k”

1. k<5
2. 5<ki<70
3. k">70

hydraulically smooth (no effect of roughness)
transitional roughness (Re dependence)
fully rough (independent Re)
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For 3, AB:EIn k™ -3.5

K

u’ =1Inx+8.5¢f(Re)
Kk Kk

X* = 2.44In9+3.2
u k

1 k/D
flT:—Zlog—

Composite Log-Law
Smooth wall log law

u* :Elny+ +B—AB(k+

K -

*

B

from data

B :5—1In(1+.3k+) from data

K

1, [kiD 251
PR 3.7 JrRefl’2

ky  9.35

=1.14-2lo
o

Refl/Zj

fully
rough
flow

} Moody Diagram
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20

\y Commercial
- . / ’/ pipes
0 L | |
2 3 4
yu 1 10 10 10 10
log m .
E+ = e"u
(@
()
Fig. 6.12 Effect of wall roughness on turbulent pipe-flow velocity profiles: (a) logarithm-
law downshift; (b) correlation with roughness RS
_ . Colebrook-White / ‘
Y.575 |°gu +55 20 |- © 48% smooth, 47% fine grains, 5% large grains
v* \ O 95% uniform sand, 5% large grains L
40 ® 97.5% uniform sand, 2.5% large grains ‘
4 95% smooth, 5% large grains
70 W & Uniform sand
30 * )
| — —=~ Prandtl-Schiichting
1,000 S xli sand-grain roughness -
- hd a e
=S 20 10,000 | > A
+ |
2 AB 10 —
10 ‘
1
0 i f
1 10 100 10% 10* 10% 108
* 5y ]
v VY ® W, L. Moare »/A7hn~ & Rand (flume)
v o F.R. Hafna M_'D Sarpkaya {(flume)
0 {
FIGURE 6-11 . 1 10 102 10° 104
Experimental rough-pipe velocity profiles by Scholz (1955), showing” the ok
‘nward shift AB of the logarithmic overlap layer. kT ==

FIGURE 6-12

Compos?te plot of the profile-shift parameter AB(k*) for various roughness
geometries, as compiled by Clauser (1956).

Values of (VD) for water at 60°F (velocity, ft/s x diameter, in)
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13y 03
= 2\
oosk2\® =\ ]
SOV -} - 02
FHE T
015
004
‘l‘,‘*,’ \' *10.01
= L AL 0.008
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Fig. 6.13 The Moody chart for pipe friction with smooth and rough walls. (From Ref. 8, by permission of the ASME.)
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FIGURE 10.7 L/D
Resistance coefficient o 0.033
0105 " 0.016
f versus Re for sand- 0 0.008
roughened pipe. [After 0osL® © 0.004
; AR 50.002
Nikuradse (30)] . s 0.001
S 00 Bty qrERP B opoe
s 3 e
£ 005}
L7 Ssun
e e A
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103 2 4 6 818 2 4 68105 2 4 6 816 2 4 6 8
0.100
- VL TVIRT R T T [l
0.090
0.080 - \ \ \ “ Complete tubulence, rough pipes \ \\ \ \ \
EERELIEERE RS AR auma
070 IR NIREN IR IR 008
oos0 LS, \ | VL L) Ll
X = ,% ‘\ \ \ ‘\ \ 1 I\l 1 1 \\,I Thi 0.03
e T A T T T T \\ \\\\'\ \ \\ \\\\ \\ /\\\\\\ o0z
- P\
- [ [ . 0.015
2 oosof Ve UV \
£ 0.040 |- 4 \ T Al L 1 t t 1 0.01
2 F R VLA L 111 AL o0l ia
§ : f_.s_é Y \'\\ \ \ \‘ ‘ \ \h\‘ 7 \ - ‘_“\‘"‘ 0.006 3
8 .00 Re n | T T A W W 006§
g ¥ E Ty M T iy T i 0004 §
5 ooz e U VA L :
@ - N ‘.‘ \ 1R 1 LR IR 1 1V 0.002 ¢
o O VU VYW VL
0.020 o e o s G v, B M i 1 T 900l &
i s ! 0.0008
B Equivalent sand B :.“;_f— Ty ‘\ ‘\ !‘ }“ “‘ !I “| 0.0006
r roughness, &, '__"é\t_‘__t 1 H | A 1 It 0.0004
0.015 |- | Boundary material In millimeters (In feet) g 13 \_ J;I‘n \‘ \‘ \‘ \‘ \
~T°| Glass, plastic Smooth (Smooth) TF‘ 3 l‘ \ ‘\"‘\'\ \ TR 0.0002
I | Cooper or brass tubing 1.5 x 103 (5 x 10°9) L \ TN 1 LU YA
| wrought iron, steel 4.6 x 102 (1.5x 107%) Smooth pipes — +1—— \ { .0001
|- | Asphaited castiron ~ 0.12 (4 x 10 4\\ ‘ 0.00005
0.010 |- | Galvanized iron 0.15 (5x10%) _ . e
’ [| cast iron 0.26 (8.5 % 10%) \
0.009 }-| concrete 031030 (10°%t0109) i i W
o008 bl b e B b L A e 0.000,01
108 2 4 681t 2 4 6 805 2 4 68196 2 4 6897 2 4 6 808
Re:Kl-)
FIGURE 10.8

Resistance coefficient £
versus Re. Reprinted
with minor variations.
[After Moody (29).
Reprinted with
permission from the
ASME]
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FIGURE 10.9

Relative roughness for
various kinds of pipe.
[After Moody (29).
Reprinted with
permission from the

ASME]
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There are basically three types of problems involved with
uniform flow in a single pipe:

1. Determine the head loss, given the kind and size of
pipe along with the flow rate, Q = A*V

2. Determine the flow rate, given the head, kind, and
size of pipe

3. Determine the pipe diameter, given the type of pipe,
head, and flow rate

1. Determine the head loss
The first problem of head loss is solved readily by
obtaining f from the Moody diagram, using values of Re
and k¢/D computed from the given data. The head loss
h¢ is then computed from the Darcy-Weisbach equation.

f = f(Rep, k/D)
=LY an Ahz(&+zl]—(&+zzj

D 2¢ 4 4
= —A(E+zj
Y

Rep = ReD(V, D)

2. Determine the flow rate
The second problem of flow rate is solved by trial, using
a successive approximation procedure. This is because
both Re and f(Re) depend on the unknown velocity, V.
The solution is as follows:
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1) solve for V using an assumed value for f and the
Darcy-Weisbach equation

V= |:29hf }1/2 L2

L/D
H—J

known from note sign
given data

2) using V compute Re
3) obtain a new value for f = f(Re, ki/D) and reapeat as
above until convergence

D3/2 29hf 1/2
A
scale on Moody Diagram

Orcanuse Re=fY2 =

1) compute Ref/? and k¢/D

2)read f
2
3) solve V from h, =f Lv®
D 2g
4)Q=VA

3. Determine the size of the pipe
The third problem of pipe size is solved by trial, using a
successive approximation procedure. This is because h,
f, and Q all depend on the unknown diameter D. The

solution procedure is as follows:
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1) solve for D using an assumed value for f and the
Darcy-Weisbach equation along with the definition

of Q
8L 0> 1/5
D:|: 2Q :| -f1/5
n“gh;

H_/
known from
given data

2) using D compute Re and ky/D

3) obtain a new value of f = f(Re, ki/D) and reapeat as
above until convergence

Flows at Pipe Inlets and Losses From Fittings

For real pipe systems in addition to friction head loss these
are additional so called minor losses due to

entrance and exit effects

1. . : can be
2. expansions and contractions L Jarge
3. bends, elbows, tees, and other fittings effect
4. valves (open or partially closed) )

For such complex geometries we must rely on experimental
data to obtain a loss coefficient
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K= i]/_rg’\ head loss due to minor losses
29

In general,

K = K(geometry, Re, /D)
-
dependence usually
not known

Loss coefficient data is supplied by manufacturers and also
listed in handbooks. The data are for turbulent flow
conditions but seldom given in terms of Re.

Modified Energy Equation to Include Minor Losses (where
V=V):

P 1 P 1
71"‘21 +£0C1V12 +h, :72_'_22 +50L2V22 +hy+he +2 0,
2
RV
29

Note: Xh, does not include pipe friction and e.g. in elbows
and tees, this must be added to hs.
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1. Flow.in a bena\
\ 12 10p
\ e JL
\ A p or

r
et N N |
i _ I / \ centrifugal
CedpD A acceleration
/ >
/ < o v
8=0 ’

e. ? > 0 which is an adverse pressure gradient inr
r

direction. The slower moving fluid near wall responds first
and a swirling flow pattern results.

@ This swirling flow represents an
¢ o energy loss which must be added
@ to the hy.

Also, flow separation can result due to adverse longitudinal
pressure gradients which will result in additional losses.

—

A A, Flen \
CP Vo \\)\\ jgj-r)?
wfo Sah ¢ 1 Te
Cp = e X —— iy
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%

W/ L,,_)\\
3

‘}Aw‘% o

N VMW

o ‘\0 (1Y
ThIS shows potential flow is not a good approximate in
internal flows (except possibly near entrance)

2. Valves: enormous losses
3. Entrances: depends on rounding of entrance

4. Exit (to a large reservoir): K=1
I.e., all velocity head is lost

5. Contractions and Expansions

sudden or gradual
H_J

theory for expansion:

(V- V, )2
29

h, =

from continuity, momentum, and energy
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(assuming p = p; in separation pockets)

d2)  h

D?) VS
29
no theory for contraction:

D2

Vool Eaaveda
from experiment

If the contraction or expansion is gradual the losses are

quite different. A gradual expansion is called a diffuser.

Diffusers are designed with the intent of raising the static

pressure.

c —P2—P
p E V2
ZP 1
2 :
[ A Bernoulli and
Pidea A, continuity equation
K= N =C, _—C, Energy equation

v2/
"2
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Actually very complex flow and

Cp, = C, (geometry, inlet flow conditions)

_

FIGURE 10.10

Flow characteristics at a

pipe inlet (not to scale).

FIGURE 10. 11

Distribution of velocity
and pressure in the inlet
region of a pipe [Barbin
and Jones (3)].

(@) Velocity distribution.
(b) Pressure distribution.

FIGURE 10. 12
Flow at a sharp-edged
inlet.

St~

—

—~—

.e., fully developed (long pipe) reduces C,
thin boundary layer (short pipe) high C,
(more uniform inlet profile)

Region of developing flow

(nonuniform flow)

0.2

1.0 LI
08h
ox/D=45
06 wwp=165
o x/D =405
0.4}
021 Re=388.000
0 1 1 t : :
06 07 08 09 10 11 12 13

174
(a)

Limit of boundary layer

Fully developed fiow

(uniform flow)

Re = 388.000

! 1 | {

5

10 15 20 25

x/D

(b)

Turbulent
flow
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FIGURE 10.13

Flow pattern in an
elbow.

Separation zone

See textbook Table 8.2 for a table of the loss coefficients
for pipe components
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TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Additional
Description Sketch Data K Source
b r/d K. Q2)*
Pipe entrance a v 0.0 0.50
0.1 0.12
h, = K.V/2g 0 >0.2 0.03
Ke Ke
Contraction D,/D, 6 =60° 6 =180° (2)
Dy 0.0 0.08 0.50
——r—7\_{722 020  0.08 0.49
Dy 0 0.40 0.07 0.42
—+ >F 060 006 0.27
0.80 0.06 0.20
b= KcVi/2g 0.90 0.06 0.10
Ke K
Expansion b D,/D, 6=20° 6=180° (2)
! 0.0 1.00

"
S 020 030 087
——f\i ¥ 0.40 0.25 0.70

0.60 0.15 0.41
h, = KgV3/2g 0.80 0.10 0.15
Vanes Without
N vanes K, =11 (37)
90° miter bend
With
vanes K, = 0.2 37
rd ®)
and
90° smooth ! Ky, =039 (19)
bend 2 0.19
© 4 0.16
6 0.21
8 0.28
10 0.32
Globe valve—wide open K,=10.0 37N
Angle valve—wide open K,= 50
Gate valve—wide open K,= 02
Gate valve—half open K,= 56
Thrf:aded Return bend K,= 22
.pl.pe Tee
fittings straight-through flow K, = 04
side-outlet flow K,= 18
90° elbow K,= 09
45° elbow K,= 04

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditionir
Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.
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FIGURE 10 .14 Steeper gradient in the EGL due to

turbulence produced at the entrance

EGL and HGL at a
“sharp-edged pipe
entrance. EGL
Drop in the HGL
due to high
velocity in flow
just downstream
of entrance
hy due to
entrance
V2
2g
h; due to partially
closed valve
IGURE 10.15

ead losses in a pipe.
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