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Chapter 6 Differential Analysis of Fluid Flow  
 
Inviscid flow: Euler’s equations of motion 
 
Flow fields in which the shearing stresses are zero are said 
to be inviscid, nonviscous, or frictionless. for fluids in 
which there are no shearing stresses the normal stress at a 
point is independent of direction:  

xx yy zzp σ σ σ− = = =  
For an inviscid flow in which all the shearing stresses are 
zero, and the normal stresses are replaced by −p, the 
Navier-Stokes Equations reduce to Euler’s equations 
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The Bernoulli equation derived from Euler’s equations 
The Bernoulli equation can also be derived, starting from 
Euler’s equations. For inviscid, incompressible fluids, we 
end up with the same equation 
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It is often convenient to write the Bernoulli equation 
between two points (1) and (2) along a streamline and to 
express the equation in the “head” form by dividing each 
term by g so that 
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The Bernoulli equation is restricted to the following: 
• inviscid flow 
• steady flow 
• incompressible flow 
• flow along a streamline 

 
The Irrotational Flow and corresponding Bernoulli equation 
If we make one additional assumption—that the flow is 
irrotational 0∇× =V —the analysis of inviscid flow 
problems is further simplified. The Bernoulli equation has 
exactly the same form at that for inviscid flows:  
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but it can now be applied between any two points in the 
flow field, not limited to applications along a streamline. 
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Various regions of flow: (a) around bodies; 

 (b) through channels 
 
The Velocity Potential 
For an irrotational flow:  
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It follows that in this case the velocity components can be 
expressed in terms of a scalar function φ (x, y, z, t), called 
velocity potential, as 
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In vector form:  
φ= ∇V  
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The velocity potential is a consequence of the 
irrotationality of the flow field, whereas the stream function 
is a consequence of conservation of mass. It is to be noted, 
however, that the velocity potential can be defined for a 
general three-dimensional flow, whereas the stream 
function is restricted to two-dimensional flows. 
For an incompressible flow we know from the conservation 
of mass:  

0∇ ⋅ =V  
and therefore for incompressible, irrotational flow, it 
follows that 

2 0φ∇ =  
The velocity potential satisfies the Laplace equation.  
In Cartesian coordinates: 
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In cylindrical coordinates: 
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Some Basic, Plane Potential Flows 
For potential flow, basic solutions can be simply added to 
obtain more complicated solutions because of the major 
advantage of Laplace equation that it is a linear PDE. For 
simplicity, only plane (two-dimensional) flows will be 
considered. Since we can define a stream function for plane 
flow,  
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If we now impose the condition of irrotationality, it follows 
u v
y x
∂ ∂

=
∂ ∂  

and in terms of the stream function 
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Thus, for a plane irrotational flow we can use either the 
velocity potential or the stream function—both must satisfy 
Laplace's equation in two dimensions. It is apparent from 
these results that the velocity potential and the stream 
function are somehow related. It can be shown that lines of 
constant  (called equipotential lines) are orthogonal to 
lines of constant ψ (streamlines) at all points where they 
intersect. Recall that two lines are orthogonal if the product 
of their slopes is −1, as illustrated by this figure 

 
Along streamlines ψ=const:  

along const

dy v
dx uψ =

=  

Along equipotential lines  = const 
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along const

dy u
dx vφ=

= −  

Uniform flow at angle α with the x axis 

 
Velocity potential: ( )cos sinU x yφ α α= +  
Stream function: ( )cos sinU y xψ α α= −  
Velocity components: cos , sinu U v Uα α= =  
 
Source or sink (m > 0 source; m < 0 sink) 

 

Velocity potential: ln
2
m rφ
π

=  

Stream function: 2
mψ θ
π

=  

Velocity components: , 0
2r
mv v

r θπ
= =  
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Free vortex (Γ > 0 counterclockwise; Γ < 0 clockwise) 

 

Velocity potential: 2
φ θ

π
Γ

=  

Stream function: ln
2

rψ
π
Γ
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Velocity components: 0,
2rv v

rθ π
Γ
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Doublet (with strength k=ma/π) 

 

Velocity potential: 
cosK
r
θφ =  

Stream function: 
sinK
r
θψ =  

Velocity components: 2 2

cos sin,r
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r rθ
θ θ
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Superposition of Basic, Plane Potential Flows 
Source in a Uniform Stream—Half-Body 
Flow around a half-body is obtained by the addition of a 
source to a uniform flow. 

 
The flow around a half-body: (a) superposition of a source 
and a uniform flow; (b) replacement of streamline ψ = πbU 
with solid boundary to form half-body. 

Velocity potential: cos ln
2
mUr rφ θ
π

= +  

Stream function: sin
2
mUrψ θ θ
π

= +  

Velocity components: , sin
2r
mv v U

r θ θ
π

= − = −  
 
Rankine Ovals 
Rankine ovals are formed by combining a source and sink 
with a uniform flow. 
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The flow around a Rankine oval: (a) superposition of 
source–sink pair and a uniform flow; (b) replacement of 
streamline ψ = 0 with solid boundary to form Rankine oval. 

Velocity potential: ( )1 2cos ln ln
2
mUr r rφ θ
π

= − −  

Stream function: 
1
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Body half length: 
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Flow around a Circular Cylinder 
A doublet combined with a uniform flow can be used to 
represent flow around a circular cylinder. 

 
The flow around a circular cylinder 

Velocity potential: 
coscos KUr
r
θφ θ= +  
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Stream function: 
sinsin KUr
r
θψ θ= −  

Velocity components:  
2 2
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