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CHAPTER 4 STATISTICAL CONVERGENCE 

4.1 Forces and Moment and Motions Data 

Single records of forces and moment and motions data for static and dynamic PMM 

tests are analyzed and statistical convergence of data are estimated.  Herein single record 

implies a set of data acquired during individual carriage runs.  Analysis begins with clas-

sifications of data into either deterministic or random data where further into either peri-

odic or transient for the former category and into either stationary or non-stationary for 

the latter category.  The term „deterministic‟ implies that data can be described explicitly 

by a mathematical relationship, on the other hand, the term „random‟ means that data 

cannot be described by explicit mathematical relationship, instead, by means of probabili-

ty statements and/or statistical averages (Bendat 1966, pp. 2).  A practical decision 

whether or not data are deterministic or random, as per Bendat, is usually based on the 

ability to reproduce the data by controlled experiments.  Accordingly, herein for PMM 

applications, only the time mean values of static drift test data and the harmonics of dy-

namic tests data are classified as deterministic, while all the other components of data 

including transient are considered as random.  Once deterministic part of data is decided, 

the stationarity of the random part of data is of interest since only stationary data are 

guaranteed to converge.  Stationarity of data is tested by using nonparametric (distribu-

tion-free) statistical procedures such as the „run test‟ and „trend test‟.  Next, statistical 

convergence of the time mean values of static drift test data is estimated based on the 

convergence of confidence interval of the mean values.  Typically, data samples contain-

ing narrow-banded sinusoid components or transient components may not be distributed 

normally, thus confidence interval is estimated using the Tchebycheff inequality for un-

known distributions rather than the Student-t for normal distributions.  Statistical conver-

gence, however, may not be applicable for dynamic tests data since usually two or three 

periods of data are available due to limited length of IIHR towing tank facility.   
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4.1.1 Time History of data 

Typical examples of time history and Fast Fourier Transform (FFT) of data are 

shown in Fig. 4-1 for static drift test.  Data includes carriage speed (UC), drift angle (), 

forces (Fx, Fy), moment (Mz), and motions (zmm, , ).  Of those variables, UC, , and  

are the controlled (input) parameters set at the desired values 1.531 m/s, -10, and 0, re-

spectively, whereas Fx, Fy, Mz, zmm, and  are the results (output) of the test.  Data are 

sampled at a rate of 100Hz (i.e. t = 0.01 sec) for a time-period of T = 20 sec correspond-

ing to UCT/L  10 where L = 3.148 m is the model length.  Data acquisition commences 

after carriage acceleration and UC nearly constant, which takes about 3  4 L.  For FFT, 

total N = 1,024 data are selected from the time history of each variable, between t = 5  

15 sec, which gives a frequency step f = 1/Nt  0.1 Hz in the FFT.  Time histories are 

shown for one case out of 12 repeat tests at the same conditions, whereas the FFT results 

are shown for all the 12 cases emphasizing the repeatability of measurement.  FFT data as 

well include two different  cases (0 and -20) for possible hydrodynamic effects on the 

results, which may or may not increase with , particularly in the frequency domain.   

For UC shown in Fig. 4-1 (a), time history exhibits random fluctuations of which 

root-mean-square (rms) value is 0.008 m/s (about 0.5% of the mean UC = 1.514 m/s).  

Dominant frequency of the random fluctuation is between 1  2.5 Hz from the FFT that 

as well reveals the underlying long-period oscillations of data with frequencies between 

0.1  0.6 Hz, otherwise seemingly white noise.  Drift angle  shown in Fig. 4-1 (b) also 

exhibits long-period oscillations with an amplitude 0.06 (about 0.6% of the mean  = -

10.1) and dominant frequency between 0.1 – 0.3 Hz from the FFT otherwise white 

noise.  Roll angle  shown in Fig. 4-1 (c) is almost random fluctuation with an rms value 

0.02 (about 36% of the mean  = -0.05) and dominant frequencies 1.2 and 2 Hz maybe 

coherent with those for UC.  Possible sources for long period oscillations of UC can be 

carriage speed control-loop feedback or non-perfectly straight rail alignments, and the 

sources for random fluctuations of UC can be mechanical vibrations due to the irregular 
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surfaces of the carriage wheels and/or rails.  Which may cause the long period oscilla-

tions and/or high frequency fluctuations in  and , too.  Deviations of the mean values 

of those variables from the initial set-up values, -10 and 0, respectively, can be attri-

buted in part to the model mount flexibility and in part to model asymmetry.  Note that 

although not shown, mean  value grows with , -0.004 and -0.07 at  = 0 and -20, 

respectively. 

Responses in forces and moment and motions to the aforementioned input para-

meters, UC, , and , are shown in Fig. 4-1 (d) – (h) for Fx, Fy, Mz, zmm, and .  From time 

histories, Fx, Fy, and Mz are random fluctuations with rms values 3.4 N, 3.3 N, and 3.4 

Nm (32%, 12%, and 8% of the mean values -10.7 N, -28.1 N, and -43.4 Nm), respective-

ly.  From FFT, those random fluctuations are narrow banded, in general between 2 – 10 

Hz with sharp peaks typically near at 3, 4, 5, and 10 Hz due mainly to mechanical vibra-

tions as will be identified latter.  On the other hand, heave and pitch motions zmm and  

time histories shown in Fig. 4-1 (g) and (h) are random fluctuations superposed on appar-

ently transient oscillations.  The random fluctuations are with rms values 0.5 mm and 

0.01 (5% of mean zmm = 8.9 mm and 9% of mean  = -0.153) respectively.  The tran-

sient oscillations are typically damped oscillations that can be written in a mathematic 

form as Ae
-at

cos(2ftrt).  The oscillation amplitude A is 1.13 mm and 0.09 (13% of mean 

zmm and 59% of mean ) respectively, however, subject to random depending on the time 

point where data sampling commences.  The damping coefficient a = 0.08 sec
-1

 and the 

oscillation frequency ftr = 0.255 Hz are the same for both zmm and .  Although not 

shown, in general A increases with  whereas a and ftr are nearly constant.  Those tran-

sient oscillations are due to start-up transient such that ftr is far from zmm and  natural 

frequency f3 = f5 = 1.2 Hz estimated from hydrostatic restoring forces (Irvine et al. 2008).  

The heave natural frequency f3 is clearly seen from the FFT for zmm shown in Fig. 4-1 (g) 

while the pitch natural frequency f5 is less distinctive from the FFT for  shown in Fig. 4-

1 (h).  Note that it is not clear if the similar or same peak frequencies of UC, i.e. near 0.2 
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Hz and 1.2 Hz form Fig. 4-1 (a), are coincidence or there may exist interactions between 

towing speed and model motions.   

Dynamic test time history and FFT are shown in Fig. 4-2 similarly as for static 

drift test.  Shown at the left column are the time histories of pure sway test data for one 

case out of 12 repeat tests at max = 10 condition.  Carriage speed UC, sway trajectory y, 

and heading angle  shown in (a) – (c) are the controlled (input) parameters for pure 

sway test.  The overall trend of UC (set at 1.531 m/s) is similar as for static drift test dis-

cussed previously.  Sway trajectory y = A sin(2fPMMt) is a forced sinusoidal oscillation 

with A = 0.317 m (about 0.1 L) and fPMM = 0.134 Hz.  Heading angle  is set at zero but 

exhibits an oscillation with amplitude 0.06 and almost out of phase with y.  Although not 

shown, roll angle  is also set at zero and shows an oscillation with amplitude 0.1 and 

out of phase with y.  Forces and moment Fx, Fy, and Mz in (d) – (f) are random fluctua-

tions with rms values 4.0 N, 4.7 N, and 2.3 Nm (54%, 4%, and 3% of the dynamic range 

7.4 N, 114.4 N, and 92.7 Nm) respectively, over-riding the harmonic oscillations with 

fPMM as the fundamental frequency.  Heave zmm and pitch  motions in (g) and (h) are 

mixtures of harmonic oscillation, transient oscillation, and random fluctuations.  Harmon-

ic oscillations are with fPMM as the fundamental frequency.  Transient oscillations may be 

similar as for static drift test, however, it is difficult to identify them from the signal as 

the transient oscillation frequency ftr = 0.255 Hz is close to the dominant harmonic (the 

2
nd

 order harmonic) frequency 2fPMM = 0.268 Hz for both variables.  Random fluctuations 

are with rms values 0.4 mm and 0.015 (7% of mean zmm = 5.6 mm and 10% of mean  = 

-0.164) respectively.  For dynamic test data, the harmonic oscillation component of each 

variable data is classified as deterministic and other components including transient oscil-

lations and random fluctuations as random data, designated with a „*‟ symbol such that 

 

x
*
 = x(t) – xFS(t)         (4.1)  



65 
 

 

6
5
 

where x can be any dynamic test variable (except for UC) and xFS is the harmonic compo-

nent of x evaluated using a Fourier Series (FS) expansion of x with fPMM as the fundamen-

tal frequency.  Note that UC is independent of fPMM and not expanded with FS.  Note also 

for zmm and  that xFS can include the transient oscillation component of the variable data 

when ftr  nfPMM for any integer number of n.  At the right column of Fig. 4-2, shown are 

the FFT results of x
*
 for all types of dynamic test including pure sway, pure yaw, and 

yaw and drift tests, which are the UA cases of each test with 12 repeat tests.  In general 

the FFT results for each type of dynamic tests are similar each other, and as well similar 

with those for static drift test shown in Fig. 4-1.  For UC in (a), same discussions can be 

make as for static drift test.  For y and  in (b) and (c), two peak frequencies in the FFT 

are observed near at 3fPMM and 5fPMM but with very small amplitudes, usually much less 

than 0.1% of the range of the variables.  For Fx, Fy, and Mz in (d) – (f), peak frequencies 

are usually near 3, 4, 5, 7, and 10 Hz similarly as static drift data.  FFT‟s for zmm and  

shown in (g) and (h) are almost same as those for static drift except for relatively smaller 

amplitudes at the frequency range between 0.1 – 0.3 Hz as ftr  2fPMM for all cases. 

A separate set of tests were carried out identifying the sources of peak frequencies 

of the forces and moment data.  Test was done first without the model and only the load-

cell was installed to the PMM carriage that is connect to the driving carriage.  Tests in-

cluded total 11 cases arranged into five groups (A, B, C, D, and E) as summarized in Ta-

ble 4-1.  Model was not installed for Groups A, B, C, and D whereas installed for Group 

E but in air to avoid any possible hydrodynamic effects.  Tests were stationary in surge 

direction for Groups A, B, and C with UC = 0 whereas in towing motion for Groups D 

and E with UC = 1.531 m/s (with two repeat tests for Group E).  The PMM motor was 

turned on for all test groups rotating with one of the three cyclic frequencies fe = 0.01, 

0.96, or 0.134 Hz to excite the load-cell.  Group A emphasizes the natural frequencies of 

the PMM system including the load-cell by minimizing any possible external noise 

sources but fe.  Groups B and C are intended to include the effects of mechanical vibra-
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tions from the Scotch Yoke system for PMM.  Groups D and E are to include mechanical 

vibrations of the PMM system from such as non-perfectly regular surfaces of the rails 

and/or wheels of carriages.  The FFT results of the test are shown in Fig. 4-3, for which 

the harmonics of the excitation frequency fe up to the 6
th

 order were filtered out from the 

signals using the equation (4.1).  From Fig. 4-3 (a) – (f), the responses are at very specific 

frequencies near 5 and 7 Hz.  From Fig. 4-3 (g) – (l), as the carriages are running, many 

of peak frequencies appear roughly between 2 – 10 Hz with sharp peaks near at 3, 4, 5, 7, 

and 10 Hz.  Consequently, test results suggest that the sources of the 5 and 7Hz are the 

natural frequencies of the load-cell, the PMM carriage, or combined, and the sources of 

the 3, 4, and 10 Hz are from the mechanical vibration.  However, more study is needed to 

determine whether a portion may be due to hydrodynamic sources such as flow turbu-

lence, flow separation instabilities, and/or, vortex breakdown.   

4.1.2 Stationarity Test 

The time history data are tested for stationarity by using the two non-parametric 

statistical procedures known as „Run test‟ and „Trend test‟ (Bendat 1966, pp. 219 - 223).  

Four important assumptions made for the stationarity tests are: 1) If the data of interest 

are stationary, then the statistical properties computed for each sequence of short time 

intervals will not vary significantly from on time interval to the next; 2) Verification of 

weak stationarity (time invariance of the mean value and autocorrelation function) will be 

acceptable; 3) The sample record of the data to be investigated is very long compared to 

the random fluctuations of the data time history; 4) If the mean square value (or variance) 

of the data of interest is stationary, then the autocorrelation function for the data is also 

stationary.  Some important features of the non-parametric (or distribution-free) proce-

dures which do not assume a specific distribution for the random data are: 1) The fre-

quency bandwidth of the data is not required; 2) The exact averaging time used to meas-

ure the mean and mean square values is not required; 3) It is not necessary for the data to 
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be completely random.  Two non-parametric procedures „Run test‟ and „Trend test‟ are 

briefly summarized from Bendat (1966, pp. 156 – 159) as follows. 

Run test:  Consider a sequence of N observations of a random variable x where each ob-

servation is classified into one of two mutually exclusive categories, which may be identi-

fied simply by plus (+) or minus (-).  The simplest example would be a sequence measured 

values xi, i = 1, 2, 3, …, N, with a mean value 𝑥 , where each observation is xi  𝑥  (+) or xi < 

𝑥  (–).  A run is defined as a sequence of identical observations that are followed or pre-

ceded by a different observation or no observation at all.  For example; ++ (1), – (2), ++ 

(3), – (4), +++ (5), – (6), + (7), – – (8), + (9), – – (10), + (11), – – – (12).  In this example 

there are r = 12 runs in the sequence of N = 20 observations.  The number of runs which 

occur in a sequence of observations gives an indication as to whether or not results are 

independent random observations of the same random variable.  Specifically, if a se-

quence of N observations are independent observations of the same random variable, 

that is, the probability of a (+) or (-) result does not change from one observation to the 

next, then the sampling distribution for the number of runs in the sequence is a random 

variable r with a mean value and variance as follows. 

 𝜇𝑟 =
𝑁

2
+ 1         (4.2) 

 𝜍𝑟
2 =

𝑁 𝑁−2 

4 𝑁−1 
         (4.3)  

Trend test:  Consider a sequence of N observations of a random variable x, where the ob-

servations are denoted by xi, i = 1, 2, 3, …, N.  Now, count the number of times that xi > xj 

for i < j.  Each such inequality is called a reverse arrangement.  The total number of re-

verse arrangements is denoted by A.  A general definition for A is as follows.  From the 

set of observations x1, x2, …, xN, define 

 𝑕𝑖𝑗 =  
1    𝑖𝑓 𝑥𝑖 > 𝑥𝑗  
0    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

         (4.4) 

Then 

 𝐴 =  𝐴𝑖
𝑁−1
𝑖=1          (4.5) 

where 

 𝐴𝑖 =  𝑕𝑖𝑗
𝑁
𝑗=𝑖+1         (4.6) 

If the sequence of N observations are independent observations of the same random va-

riable, then the number of reverse arrangements is a random variable A with a mean 

and variance as follows. 
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 𝜇𝐴 =
𝑁 𝑁−1 

4
         (4.7) 

 𝜍𝐴
2 =

𝑁 2𝑁+5  𝑁−1 

72
        (4.8) 

In general, the trend test is more powerful than the run test for detecting monotonic 

trends in a sequence of observations, however, not powerful for detecting fluctuating 

trends. 

For stationarity tests the time histories of static drift test and pure sway test data 

shown in Figs. 4-1 and 4-2 are divided into N = 20 equal time intervals with an interval 

size of 100 data per each interval (corresponding to 1 sec), where the data in each interval 

may be considered independent.  Note for pure sway data (and for all dynamic tests data) 

that stationarity tests are applied only for the random component of data 𝑥∗ defined in 

equation (4.1).  Once proved the stationarity of its random part, then the dynamic data is 

referred herein as stationary.  Next, a mean value (𝑥 1, 𝑥 2, 𝑥 3, … ,𝑥 𝑁) and mean square 

value (𝑥1
2   , 𝑥2

2   , 𝑥3
2   , …, 𝑥𝑁

2    ) for each interval are computed and aligned in time sequence as  

shown in Fig. 4-4.  It is hypothesized that the sequence of 𝑥  and the sequence of 𝑥2    are 

each independent sample values of a random variable with a true mean value and mean 

square value, respectively.  If this hypothesis is true, the variations in the sequence of 

sampled values will be random and display no trends.  Hence, the number of runs in the 

sequence will be as expected for a sequence of independent random observations of the 

random variable.  Moreover, the number of reverse arrangements in the sequence will be 

as expected for a sequence of independent random observations of the same variable.  If 

the number of runs or reverse arrangements is significantly different from the expected 

number, the hypothesis of stationarity would be rejected.   

Run and Trend tests results are presented in Table 4-2 for static drift and pure 

sway tests data, respectively.  Both tests were performed at the 5% level of significance.  

Then, the acceptance region8 is 6  r  15 for the run test and 64  A  125 for the trend 

                                                 

8 The acceptance region can be read from a statistics tables (e.g. Bendat 1966, pp. 170 – 171) or 

calculated as follows.  
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test, respectively, for N = 20.  From Table 4-2, r and A values of the mean square 𝑥2    for 

all variables are within the acceptance regions of run test and trend test, indicating there 

is no evidence of an underlying trend.  However, r and A values of the mean 𝑥  value for 

some variables are outside the acceptance regions, indicating possible non-stationarity of 

those variables.  For static drift data, only 𝛽 fails the run test (r = 5 for 𝑥 ) whereas 𝑈𝐶 , 𝜙, 

and 𝐹𝑦  fail the trend test (A = 145, 127, and 133 for 𝑥 , respectively).  For pure sway data, 

𝐹𝑥 , 𝐹𝑦 , and 𝑧𝑚𝑚  fail the run test (r = 16, 5, and 4 for 𝑥 , respectively) whereas 𝑈𝐶 , 𝑦, and 

𝑧𝑚𝑚  fail the trend test (A = 136, 126, and 129 for 𝑥 , respectively).  When the tests are 

performed for collections of data from the 12 repeat tests, however, the average r and A 

values show that UC, , and  fail the tests and the other variables Fx, Fy, Mz, zmm, and  

are all stationary in an average sense.  Nonetheless, the average r and A values for 𝛽 (r = 

5) and 𝜙 (A = 130, 126) are not significantly different from the acceptance regions such 

that can be considered as accepted if lower the level of significance of test to 1% of 

which acceptance region is 5  r  16 for the run test and 59  A  130 for the trend test, 

respectively.  UC fails both the run test (r =5) and the trend test (A = 143, 140) revealing a 

strong evidence of an underlying trend.  The underlying trend in UC can be easily seen 

from Fig. 10 (a) where a step-wise decrease in the interval mean value of UC is observed 

near at the 12
th

 interval and as well from Figs. 4-1 (a) and 4-2 (a) where apparent de-

crease of UC in the time histories neat at t = 12 sec.  This decrease of UC is considered as 

due to the lack in electric power for driving two carriages, the main driving carriage and 

the PMM carriage, at the same time.  However, the amount of change of UC is fairly 

                                                                                                                                                 

 

(r,A + z1-/2r,A)  r, A  (r,A + z/2r,A) 

 

where  = 0.05 and z/2 = –z1-/2 = 1.96 for 5% level of significance and r, r, A, A are 

given in equations (4.2), (4.3), (4.7), (4.8), respectively.  Note that the limit value of the accep-

tance region should be rounded down to an integer number. 
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small (usually 0.6  0.7% of mean UC) such that the stationarity of other variables is not 

affected significantly or at least not noticeable.   

4.1.3 Statistical Convergence 

Convergence of a random data being measured as time history can be defined 

such that the result of data, e.g. the mean value, does not change as acquiring more and 

more data.  The Law of Large Numbers (e.g., Feller, 1968) guarantees that for any ran-

dom data, x, the sample mean converges to an expected value (the true mean of x) when 

an infinite number of data is available.  However, the number of data collectable from 

practical situations is in general limited to a finite number N, hence the extent of differ-

ence between the true mean x and the sample mean 𝑥  of the N data is of interest.  Here-

in, the difference is estimated using a statistical concept of confidence interval for 𝑥  with 

a certain probability.  When the limit of interval, d, is smaller than a predetermined (or 

desired) value as increasing the sample size N, then the variable x is said to be „statistical-

ly converged‟ and d is defined as the „statistical convergence error‟ in 𝑥 .   

Confidence interval of 𝑥  is usually estimated by assuming a normal distribution of 

the random variable x and subsequently by assuming the Student-t distribution of 𝑥 , 

which is the underlying basic concept of typical uncertainty analysis procedures estimat-

ing the precision limit.  The normal distribution assumption is justified by virtue of the 

central limit theorem for the precision limit of which random variable is the mean of each 

x time histories from a collection (ensemble) of repeated tests at the same conditions.  In 

general, however, a normal distribution assumption is not justified for a single record of 

time history data that may contain narrow band sinusoid components and/or transient 

components as discussed previously for time histories of the PMM test data.  In such a 

case a more generous and robust inequality, the Tchebycheff inequality, may be used es-

timating the confidence interval for any variable x without knowing the exact distribu-
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tion.  The Tchebycheff inequality can be written in probability statement as follows 

(Bendat 1966, pp. 62). 

 

Prob   𝑥 − 𝜇𝑥  ≤ 𝑐 ⋅
𝜍𝑥

 𝑁
 ≥ 1 −

1

𝑐2       (4.9) 

where x and x is the true mean and standard deviation of x, respectively, 𝑥  is the sample 

mean and N is the sample size of the x time history, and c can be any positive real num-

ber.  The meaning of Tchebycheff inequality is that the probability for the true mean to 

fall within an interval (𝑥  – d, 𝑥  + d) where d = cx/ 𝑁 is larger than p = 1 – 1/c
2
 regard-

less of underlying distribution of x.  In other words, the absolute difference between the 

true mean and the sample mean would be smaller than d with a confidence of 100p per-

cent, for example, 95% for c = 4.5.  A difficulty in applications of the inequality (9), 

however, arise from the fact that the true standard deviation x value is unknown for the 

most of practical cases.  Thus, herein the sample standard deviation sx is used as a best 

estimator of x for practical application purposes such that an approximate confidence 

interval 𝑑  and the statistical convergence error Esc(%) are defined as follows. 

 

𝑑 ≡ 𝑐 ⋅
𝑠𝑥

 𝑁
         (4.10) 

𝐸𝑠𝑐 % ≡
𝑑 

𝑥 
=

𝑐

 𝑁
⋅
𝑠𝑥

𝑥 
× 100        (4.11) 

where N is the sample size, 𝑥  and sx are the sample mean and standard deviation, respec-

tively, and c = 4.5 for a 95% confidence.  Note that 𝑑  is equivalent to the confidence in-

terval for a normal distribution when N > 10 and c = t = 2.0 in (10), which has the same 

95% confidence level.   

Knowing the normality of data is important to estimate the convergence as it al-

lows one to use the Student t instead of the c in (11) along with the justification for the 

use of sample standard deviation.  Normality of data is tested using the chi-square good-
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ness-of-fit test (Bendat 1966, pp. 146).  For the test, data are grouped into K class inter-

vals determined by using the „minimum optimum number of class‟ for a sample size of N 

(Williams, C.A., Jr., 1950), which gives   

 

Χ2 =  
 𝑓𝑖−𝐹𝑖 

2

𝐹𝑖

𝐾
𝑖=1          (4.12)  

where 𝑓𝑖  and 𝐹𝑖  are the observed frequency and the expected frequency in the ith class 

interval, respectively.  The acceptance region for a hypothesis that the data of interest is 

normal is  

 

Χ2 ≤ 𝜒𝑛;𝛼
2           (4.13) 

where 𝜒𝑛;𝛼
2  is the 𝜒2 value for a degree of freedom n = K – 3 and for an  level of signi-

ficance of the test.  If the sample value of Χ2 is greater than 𝜒𝑛;𝛼
2 , the normality hypothe-

sis is rejected.   

In Fig. 4-5, shown are the sample distributions of the static drift UC, , , Fx, Fy, 

Mz, zmm, and  data collected from 12 repeat tests (designated with symbols 1  9, A, B, 

and C in the figure) with compared to theoretical standard normal distribution.  The Χ2    

values shown in the figure are the average Χ2 values tested for each of the 12 repeat cas-

es.  An interval size K = 39 is used for the sample size N = 2,000 and the chi-square tests 

are done at the 5% level of significance ( = 0.05), which gives 𝜒36;0.05
2  = 51.0.  Test re-

sult is fail for all variables as Χ2 values are larger than 𝜒36;0.05
2 , whereas relatively not 

significantly for Fx, Fy ,and Mz (Χ2    = 60.5, 72.1, and 119.8, respectively) showing their 

probability density functions (pdf‟s) close to a normal distribution in Fig. 4-5 (d) – (f).  

The Χ2    values for zmm, , and  (121.5, 139.0, and 145.5,) are relatively moderately and 

those for UC, and  (471.8 and 1737.3) are significantly larger than 𝜒36;0.05
2 , respectively, 

showing moderate and significant discrepancies of pdf from a normal distribution as 



73 
 

 

7
3
 

shown in Fig. 4-5 (g), (c), (h), respectively and in Fig. 4-5 (a) and (b), respectively, re-

spectively.   

Running mean 𝑥 (N) and standard deviation sx(N) values are shown in Fig. 4-6 

(left column) for static drift test data x = UC, , , Fx, Fy, Mz, zmm, and   of which time 

histories are shown in Fig. 4-1.   The 𝑥 (N) and sx(N) are the sample mean and sample 

standard deviation values for a subset of data with a sample size N increasing from 1 to 

2,000 (in time-wise from t = 0.01 to 20.0 sec) by continuously adding more and more da-

ta to the sample.  In Fig. 4-6, the 𝑥 (N) and sx(N) are normalized with their final values, 

i.e. values at N = 2,000, designated as 𝑥 *(N) and sx
*
(N), respectively, emphasizing the 

convergence of those values.  In general, both 𝑥 *(N) and sx
*
(N) at first oscillate and then 

converge to their final values, a unity, as N increasing.  The statistical convergence error 

Esc(%) values of those variables are as well shown in Fig. 4-6 (right column), evaluated 

as per equation (4-11) using the 𝑥 (N) and sx(N) values at each N.  Shown in the figure are 

the Esc(%) values using two c values, c = 2.0 and c = 4.5, providing a 75% and a 95% 

confidence in 𝑑 , respectively, from the Tchebycheff inequality.  Summarized in Table 4-

3 are the confidence interval (𝑥 *(N) – 𝑑 ∗, 𝑥 *(N) + 𝑑 ∗) values at N = 1,000, where 𝑑 ∗ is the 

normalized 𝑑  value similarly as for 𝑥 *(N), and the Esc(%) values at N = 2,000, which are 

the average values of 12 repeat tests.  Discussions for the results follow. 

From the left column of Fig. 4-6, the convergence of 𝑥 *(N) can be categorized in-

to three types according to the trend of sx
*
(N) with N after the initial oscillation phase; 

almost const (Type I), decreasing (Type II), or increasing (Type III) with N, respectively.  

Variables Fx, Fy, and Mz shown in Fig. 4-6 (d), (e), and (f) correspond to Type I, of which 

sample distributions were close to a normal distribution as discussed previously. 

Confidence interval of those variables evaluated at N = 1,000 (shown as dashed lines, 

green for c = 2.0 and red for c = 4.5) well include the future 𝑥 *(N) values up to N = 2,000 

even with c = 2.0.  Variables zmm and  shown in Fig. 4-6 (g) and (h) correspond to Type 

II, which are the variables contain transient components in their data time histories.  Con-
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fidence interval of those variables evaluated at N = 1,000 for the c = 4.5 case contains the 

future 𝑥 *(N) but not for the c = 2.0 case.  Variables UC, , and  shown in Fig. 4-6 (a), 

(b), and (c) correspond to Type III, which are the variables of which dominant frequen-

cies in data time history are low near at 0.1  0.2 Hz.  Confidence interval of those va-

riables evaluated at N = 1,000 does not contain future 𝑥 *(N) even for the c = 4.5 case.  

For the Type I or II data, the sample standard deviation sx is either constant or decreasing 

as the sample size N is increasing.  The true standard deviation x is expected to be simi-

lar with or smaller than the sample standard deviation, which may justify the use of sx in 

equation (4-10) instead of x.  For a pure sine wave, for example, of which x = 1/ 2 is 

known, the ratio sx/x  1.04 after about one cycle and sx/x < 1.01 after about four 

cycles.  For the Type III data, however, the use of sx instead of x is not justified, possibly 

the data sampling time might not be long enough to include more than four cycles of the 

long period (low frequency) oscillation of data.   

  From the right column of Fig. 4-6, the statistical convergence error Esc(%) typi-

cally decrease with N either fast or gradually.  The rate of decrease of Esc(%) with N seem 

to be with regardless of the type of convergence discussed above, rather related to the ra-

tio sx/𝑥  value summarized Table 4-3.  For UC and  shown in Fig. 4-6 (a) and (b), the ra-

tio sx/𝑥  = 0.006 and 0.003, respectively, is so small that Esc(%) becomes immediately 

smaller than 0.2% and 0.1%, respectively.  For Fy, Mz, and zmm shown in Fig. 4-6 (e), (f), 

and (g), the ratio sx/𝑥  = 0.11, 0.08, and 0.07, respectively, is moderate small and Esc(%) 

value becomes smaller than 1% after N  400 (UCt/L  2) for c = 2.0 and after N  1,400 

(UCt/L  7) for c = 4.5 except for Fy for the latter case.  For , Fx, and  shown in Fig. 4-

6 (c), (d), and (h), the ratio sx/𝑥  = 0.36, 0.30, and 0.25, respectively, is relatively larger 

than other variables and Esc(%) value is larger than 1% even at N = 2,000 for both c = 2.0 

and c = 4.5 cases. 

Consequently, three factors play important roles for statistical convergence of da-

ta, which are the normality, the trend of sample standard deviation, and the ratio of stan-
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dard deviation to the mean value of the data, respectively.  When data are normal or near-

ly normal (such as Fx, Fy, or Mz), the statistical convergence error Esc(%) can be eva-

luated using the confidence interval 𝑑 evaluated with the Student t = 2.0 for a 95% confi-

dence level, similarly as for typical uncertainty analysis procedures estimating the preci-

sion limit, which is equivalent to using 𝑑  in equation (4-10) with c = 2.0.  However, when 

data are not normal the used of Student t may underestimate the convergence error more 

than two times at the same level of confidence (e.g. for 95%, c/t = 4.5/2.0 = 2.25), and the 

distribution-free Tchebycheff inequality should be used estimating the confidence inter-

val.  More specifically, when data are not normal but the sample standard deviation sx is 

almost constant or decreasing with N (such as zmm or ) the use of sx in the Tchebycheff 

inequality is justified and the Esc(%) can be estimated using the confidence interval 𝑑  in 

equation (4-10) with c = 4.5 for a 95% confidence level.  When data are not normal and 

the sx is increasing with N (such as UC, , or ), however, the used of sx in the Tcheby-

cheff inequality is not justified and the Esc(%) may not be estimated properly.  Lastly, the 

statistical convergence of data is also dependent on the ratio sx/𝑥 ; data converge fast 

when the ratio sx/𝑥  is small (such as UC or ), gradually for moderate sx/𝑥  values (such as 

Fy, Mz, or zmm), and rather slowly for larger sx/𝑥  values (such as , Fx, or ), respectively. 
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Table 4-1 Noise Test Conditions. 

Group Model UC (m/s) 2Smm (mm) max () fe (Hz) 

A Not Installed 0 0 0 0.010, 0.096, 0.134 

B Not Installed 0 317 0 0.010, 0.096, 0.134 

C Not Installed 0 318 14.2 0.010, 0.096, 0.134 
D Not Installed 1.531 317 0 0.134 

E Installed (in air) 1.531 327 10.2 0.134 

 

 

Table 4-2 Tests for Stationarity.  

 Run Test, 𝑟  Trend Test, 𝐴 

 †(6  𝑟  15 for 𝑁 = 20)  †(64  𝐴  125 for 𝑁 = 20) 

 Static drift Pure sway  Static drift Pure sway 

Var. 𝑥  𝑥2    𝑥  𝑥2     𝑥  𝑥2    𝑥  𝑥2    

𝑈𝐶 6 (5) 11 (10) 6 (5) 12 (12)  145 (143) 104 (104) 136 (140) 116 (104) 

𝛽 or 𝑦  5 (5) 12(11) 9 (9) 6 (8)  82(82) 71(89) 126 (105) 101 (95) 

𝜙 7 (6) 9 (10) 9 (7) 6 (9)  127 (130) 78 (96) 121 (126) 68 (90) 

𝐹𝑥  12 (12) 10 (10) 16 (13) 10 (11)  108 (103) 100 (100) 92 (102) 76 (92) 

𝐹𝑦  8 (8) 12 (9) 5 (7) 6 (9)  133 (114) 76 (87) 67 (76) 82 (89) 

𝑀𝑧  6 (8) 10 (9) 11 (9) 13 (10)  121 (113) 106 (103) 90 (92) 103 (96) 

𝑧𝑚𝑚  10 (10) 12 (12) 4 (7) 11 (10)  95 (106) 86 (103) 129 (116) 71 (83) 

𝜃 11 (11) 14 (11) 10 (10) 9 (9)  102 (101) 108 (122) 100 (103) 77 (71) 

† Acceptance region at the 5% level of significance   
 (  ): Average value for 12 repeat tests;  

Red: Outside the acceptance region. 

 

 

Table 4-3 Statistical Convergence of Data (Averages for 12 repeat tests).  

Var. 

x 

Normality 

Χ2     

†Confidence interval 𝑑  at N = 1,000 Esc(%) at N = 2,000 

c = 2.0 c = 4.5 
sx/𝑥  c = 2.0 c = 4.5 

𝑥 * – 𝑑 * 𝑥 * + 𝑑 * 𝑥 * – 𝑑 * 𝑥 * + 𝑑 * 

UC 471.8 1.002 1.003 1.002 1.003 0.006 0.03 0.06 

 1737.3 1.001 1.001 1.001 1.002 0.003 0.01 0.03 

 139.0 0.924 0.966 0.898 0.992 0.36 1.6 3.6 

Fx 60.5 0.977 1.015 0.953 1.039 0.30 1.3 3.0 

Fy 72.1 0.990 1.004 0.982 1.012 0.11 0.5 1.1 
Mz 119.8 0.993 1.002 0.987 1.008 0.08 0.3 0.8 

zmm 121.5 1.000 1.010 0.994 1.016 0.07 0.3 0.8 

 145.5 0.959 0.997 0.936 1.020 0.25 1.1 2.5 

†The cases for which the confidence interval contains the final value 𝑥 * = 1.0 are colored in green, otherwise in red.  
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 Time history (static drift test at  = -10; single record)  FFT (static drift test; collections of runs) 

(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

 (d) 

 

 

 

(e) 

 

 

 

(f) 

 

 

 

(g) 

 

 

 

(h) 

 

 

 

Figure 4-1 Time history (left) and FFT(right) of static drift test data: (a) UC, (b) , (c) , 
(d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) .  Tests are for FRz mount condition 
and at Fr = 0.280.   
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 Time history (pure sway test; single record)  FFT (all dynamic tests; collections of runs) 

(a) 

 

 

 

(b) 
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Figure 4-2 Time history (left) and FFT (right) of dynamic tests data: (a) UC, (b) y, (c) , 
(d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) .  Tests are for FRz mount condition 
and at Fr = 0.280.  
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 Group A: No model, UC = 0, Smm = 0, max = 0  Group B, C: No model, UC = 0, Smm  0, max  0 

(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

 
    

 Group D: No model, UC  0, Smm  0, max  0  Group E: Model in air, UC  0, Smm  0, max  0 

(g) 

 

(j) 

 

(h) 

 

(k) 

 

(i) 

 

(l) 

 

Figure 4-3 PMM noise test results: FFT for Fx, Fy, and Mz.  Groups A, B, and C show 
noise sources for 5 and 7 Hz (natural frequencies of the load-cell) and Groups 
D and E for 3, 4, and 10 Hz (mechanical vibrations due to carriage speed), re-
spectively.  
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 Static drift test  Pure sway test 

(a) 
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Figure 4-4 Tests for stationarity: Normalized interval mean (𝑥 𝑖) and mean square (𝑥𝑖
2   ) 

values for (a) UC, (b)  or y, (c) , (d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) .  
Red: 𝑥 𝑖 ; green: 𝑥𝑖

2   , which are normalized such that z(yi) = (yi – m)/s where yi = 
𝑥 𝑖  or 𝑥𝑖

2    and m and s are the mean and standard deviation of yi for N = 20, re-
spectively.   
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(f) 
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(h)  

 

Figure 4-5 Probability density functions of the static drift test data for (a) UC, (b) , (c) , 
(d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) , respectively.  Χ2    is the average Χ2 
value of for 12 repeat tests.  The acceptance region for a normality is Χ2  
𝜒𝑛:𝛼

2  = 51.0 for n = 36 and  = 0.05.  
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 Running mean  Convergence 
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Figure 4-6 Normalized running mean 𝑥 *(N) and running standard deviation sx
*
(N) (left 

column) and statistical convergence error Esc(%) (right column) of (a) UC, (b) 
, (c) Fx, (d) Fy, (e) Mz, (f) zmm, (g) , and (h)  (Static drift test).  
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4.2 Phase-Averaged Flow Field Data 

Statistical convergence of phase-averaged velocities (𝑈, 𝑉, 𝑊) and Reynolds 

stresses (𝑢𝑢, 𝑣𝑣, 𝑤𝑤) are estimated based on the convergence of confidence interval of 

the variables.  Let 𝑥 be instantaneous velocities from 𝑁 independent measurements, 𝑥 at a 

given phase may be a stationary random variable of which statistical properties such as 

mean and variance values do not vary with time as the sample size 𝑁 becomes large.  Of 

interest herein is determining 𝑁 where the mean and variance of the variable (i.e. the 

phased-averaged velocity and Reynolds stress, respectively) converge within a certain 

statistical confidence level, or vice versa estimating a confidence interval of the variable 

for a given 𝑁.  For present study the confidence level are set at 95%. 

The mean and variance of a sample of 𝑁 independent observations from a random 

variable 𝑥 are calculated as 

 

𝑥 =
1

𝑁
 𝑥𝑖

𝑁
𝑖=1           (4.14) 

𝑠2 =
1

𝑁−1
  𝑥𝑖 − 𝑥  2𝑁

𝑖=1         (4.15)  

respectively.  Assume 𝑥 is normally distributed with a mean value of 𝜇𝑥  and a variance of 

𝜍𝑥
2.  Then, the confidence interval can be established for the mean values 𝜇𝑥  based upon 

sample values 𝑥  and 𝑠 as follows (Bendat 1966). 

 

  𝑥 −
𝑠⋅𝑡𝑛

 𝑁
 ≤ 𝜇𝑥 <  𝑥 +

𝑠⋅𝑡𝑛

 𝑁
        (4.16) 

where 𝑡𝑛  is the 95% point of the Student 𝑡 distribution with 𝑛 = 𝑁 − 1 degree of free-

dom.  Which states “the true mean value 𝜇𝑥  falls within the noted interval with a confi-

dence of 95%.”  In other words, the difference between the true and the sample mean 

would be  
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−
𝑠𝑡𝑛

 𝑁
≤  𝜇𝑥 − 𝑥  <

𝑠𝑡𝑛

 𝑁
       (4.17) 

with a confidence of 95% for the sample size 𝑁.  Then, the interval limit 𝑑 = 𝑠𝑡𝑛  𝑁  

can be used for defining the statistical convergence error for 𝑥  such that 

 

𝐸 ≡
𝑑

𝑥𝑟𝑒𝑓
=

𝑡𝑛

 𝑁
⋅  

𝑠

𝑥𝑟𝑒𝑓
         (4.18) 

indicating that the mean value of 𝑥 (phase-averaged velocity) with 𝑁 samples (PIV im-

ages) can has an error 𝐸 of 𝑥𝑟𝑒𝑓  with a 95% confidence.  Where, 𝑥𝑟𝑒𝑓  can be any refer-

ence value for 𝑥 such as the phase-averaged velocities 𝑈, 𝑉, 𝑊, or the carriage towing 

speed 𝑈𝐶 .  From (4.18), the convergence error 𝐸 is inversely proportional to the square 

root of sample size 𝑁 and proportional to the standard deviation 𝑠 of 𝑥, i.e., the turbu-

lence intensity of the flow.  If one expects a certain level of 𝐸 for a mean velocity with 

known turbulent intensity, i.e. 𝑠 𝑥𝑟𝑒𝑓 , then, the number of PIV images, i.e. 𝑁, can be es-

timated using the equation (4.18) as 

 

𝑁 =
4

𝐸2 ⋅  
𝑠

𝑥𝑟𝑒𝑓
 

2

         (4.19) 

by approximating 𝑡𝑛 ≈ 2 for 𝑁 >> 10. 

The variance 𝜍𝑥
2 for a normally distributed random variable 𝑥 follows a 𝜒2 distri-

bution, in contrast to the mean value 𝜇𝑥  following the Student 𝑡 distribution as discussed 

above.  Then, the confidence interval for the variance 𝜍𝑥
2 based upon a sample variance 

𝑠2 from a sample of size 𝑁 is (Bendat 1966) 

 

 
𝑛 𝑠2

𝜒𝑛 ;0.025
2 ≤ 𝜍𝑥

2 <
𝑛 𝑠2

𝜒𝑛 ;0.975
2         (4.20) 
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where 𝜒𝑛;0.025
2  and 𝜒𝑛;0.975

2  are the 2.5% and 97.5% points, respectively, of the 𝜒2 distri-

bution with 𝑛 = 𝑁 − 1 degree of freedom.  Subsequently, the difference between the true 

variance 𝜍𝑥
2 and the sample variance 𝑠2 falls within an interval 

 

−𝑑𝐿 ≤ 𝜍𝑥
2 − 𝑠2 < 𝑑𝑈         (4.21) 

with a 95% confidence, where the upper limit 𝑑𝑈  and the lower limit 𝑑𝐿 are 

 

𝑑𝑈 =
𝑛 𝑠2

𝜒𝑛 ;0.975
2 − 𝑠2         (4.22) 

𝑑𝐿 = 𝑠2 −
𝑛 𝑠2

𝜒𝑛 ;0.025
2          (4.23) 

Note that as the 𝜒2 distribution is non-symmetric for 𝑛 > 2, the upper and lower limits of 

the interval has difference values and the statistical convergence error 𝐸𝑈  and 𝐸𝐿, respec-

tively, is defined separately as follow. 

 

𝐸𝑈 ≡
𝑑𝑈

𝑠𝑟𝑒𝑓
2 =  

𝑛 

𝜒𝑛 ;0.975
2 − 1 ⋅

𝑠2

𝑠𝑟𝑒𝑓
2        (4.24)  

𝐸𝐿 ≡
𝑑𝐿

𝑠𝑟𝑒𝑓
2 =  1 −

𝑛 

𝜒0.025
2  ⋅

𝑠2

𝑠𝑟𝑒𝑓
2         (4.25) 

where, 𝑠𝑟𝑒𝑓
2  can by any reference variance value for the random variable 𝑥 such as the 

phase-averaged Reynolds stresses 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, or the turbulent kinetic energy 𝑘.  

Typical examples of 𝐸, 𝐸𝑈 , and 𝐸𝐿 values versus the sample size 𝑁 are shown in 

Fig. 4-7 as charts for several practical cases of the 𝑠 𝑥𝑟𝑒𝑓  and 𝑠2 𝑠𝑟𝑒𝑓
2  values.  The error 

values for an example flow field shown in Fig. 4-8 will be estimated by using the charts 

and the number of samples 𝑁 necessary for a desired error levels.  The example flow 

field shown in Fig. 4-8 (a) and (b) are the mean axial velocity 𝑈 and the turbulent kinetic 

energy 𝑘 = 1

2
 𝑢𝑢 + 𝑣𝑣 + 𝑤𝑤  at the nominal wake region (x/L = 0.935) of the DTMB 

5512 model in steady straight towing condition at Fr = 0.280.  The mean velocity 𝑈 and 
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the turbulent velocity fluctuations 𝑢, 𝑣, 𝑤 are normalized with the model towing speed 

𝑈𝐶  = 1.531 m/s, respectively.  The total number of PIV images used for the mean is 

𝑁𝑡𝑜𝑡𝑎𝑙  = 2,250 collected from a set of 30 carriage runs (75 images per each run).  The ef-

fective number of data at the point A in Fig. 4-8 is 𝑁 = 1,720 by excluding the null vec-

tors due to insufficient PIV particle density at the point and by rejecting spurious vectors 

from the PIV image correlations process.  Typically 𝑁 is close to 𝑁𝑡𝑜𝑡𝑎𝑙  at the outer flow 

regions and less than 𝑁𝑡𝑜𝑡𝑎𝑙  inside the boundary layer or at spots where the turbulent in-

tensity is high.  At Point A, measured are the root-mean-square 𝑢 = 0.09 (i.e. 𝑠 of 𝑈) and 

the axial component of Reynolds stress 𝑢𝑢 = 0.0075 (i.e. 𝑠2 of 𝑈), thus 𝑠 𝑥𝑟𝑒𝑓  = 0.09 

and 𝑠2 𝑠𝑟𝑒𝑓
2  = 1.1 when 𝑥𝑟𝑒𝑓  = 𝑈𝐶  and 𝑠𝑟𝑒𝑓

2  = 0.007 (the range of 𝑘), respectively, are 

used.  From the charts in Fig. 4-7, then, the expected 𝐸 for 𝑈 is about 0.4% of 𝑈𝐶  and 𝐸𝑈  

for 𝑢𝑢 is about 8% of 𝑘 at 𝑁  1,700, respectively.  For the latter case, if 𝐸𝑈  less than 1% 

is desired, 𝑁 > 10
5
 is necessary.  Note from Fig. 4-7 (b) that 𝐸𝑈  is always larger than 𝐸𝐿 

and both have similar values as 𝑁 increase, thus 𝐸𝑈  can be considered as the representing 

𝐸 for statistical convergence of the Reynolds stresses. 

The actual 𝑁 = 1,720 samples of 𝑈, 𝑉, and 𝑊 data measured at the point A of the 

previous example flow field are shown in Fig. 4-9, along with the statistics of the data 

and their convergence errors.  The sample 𝑈𝑖 , 𝑉𝑖 , 𝑁𝑖  data shown in Fig. 4-9 (a) are appar-

ently stationary and random of which mean and variance values are 𝑥  = 0.543, -0.023, 

0.059, respectively, and 𝑠2 = 0.0075, 0.0035, 0.0024, respectively.  When data are nor-

malized as 𝑧 =  𝑥 − 𝑥  𝑠 , all variables exhibit a standard normal distribution, shown in 

Fig. 4-9 (b), as assumed.  The probability density functions 𝑝 𝑥  in the figure for 𝑈, 𝑉, 

and 𝑊 are obtained by pooling the data sample into 𝐾 = 35 equally spaced intervals and 

counting the frequency of data at each interval classes divided by 𝑁.  The minimum op-

timum number 𝐾 of class intervals was used as suggested for Chi-Square Goodness-of-

Fit test (Williams 1950).  Time histories of the mean values 𝑥  and variance 𝑠2 of the data 

using the equations (4-14) and (4-15) are shown in Fig. 4-9 (c) and (d), designated as 𝑥 𝑁  



87 
 

 

8
7
 

and 𝑠𝑁
2 , respectively, as increasing the number of data sample 𝑁 from 2 to 1,720.  For 

each 𝑁, the variance 𝑠𝑁
2  is re-calculated using a new 𝑥 𝑁 value accounting for the newly 

added data sample 𝑥𝑁  into the previous mean 𝑥 𝑁−1, for which the following recursive 

expressions are useful when 𝑁 is large. 

 

𝑥 𝑁 =
1

𝑁
  𝑁 − 1 𝑥 𝑁−1 + 𝑥𝑁         (4.26) 

𝑠𝑁
2 =  

𝑁−2

𝑁−1
 𝑠𝑁−1

2 +  
𝑁

𝑁−1
  𝑥 𝑁−1

2 − 𝑥 𝑁
2  +  

1

𝑁−1
  𝑥𝑁

2 − 𝑥 𝑁−1
2     (4.27) 

for 𝑁  2.  As shown in Fig. 4-9 (c) and (d), the 𝑥 𝑁  converges fast for all variables typi-

cally for 𝑁 < 100 whereas the 𝑠𝑁
2  first fluctuates large for 𝑁 < 500 and converges slowly 

as 𝑁 increases, demonstrating the stationary of the variables as assumed.   Shown in Fig. 

4-9 (e) are the 𝐸 for 𝑈, 𝑉, 𝑊 as per (4-18) and in Fig. 4-9 (f) are the 𝐸𝑈  for 𝑢𝑢, 𝑣𝑣, 𝑤𝑤 

as per (4-24), respectively.  In the equations, the values of 𝑡𝑛  and 𝜒𝑛;0.975
2  at each 

𝑛 = 𝑁 − 1 can be found from typical textbooks on Statistics (e.g. Bendat 1966, pp. 162 

and 163).  The 𝑠 and 𝑠2 in the equations are evaluated by using the  𝑠𝑁
2  and 𝑠𝑁

2  as per (4-

27) at each 𝑁, respectively.  Used as 𝑥𝑟𝑒𝑓  and 𝑠𝑟𝑒𝑓
2  are the same 𝑈𝐶  and 𝑘 used at the pre-

vious paragraph.  From Fig. 4-9 (e) and (f), the 𝐸 and 𝐸𝑈  exhibit similar curve shapes as 

those shown in Fig. 4-7 (a) and (b) at the corresponding 𝑠 𝑥𝑟𝑒𝑓  (0.09, 0.06, 0.05 for 𝑈, 𝑉, 

𝑊, respectively) and 𝑠2 𝑠𝑟𝑒𝑓
2  (1.1, 0.5, 0.4 for 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, respectively), respectively.  

From Fig. 4-9 (e) and (f), at 𝑁 = 1720, 𝐸 = 0.4% for 𝑈 and 𝐸𝑈  = 8% for 𝑢𝑢 are the same 

as the chart readings from Fig. 4-7 (a) and (b), respectively, proving the validity of the 

method.  The 𝐸‟s for 𝑉 and 𝑊 are smaller than for 𝑈, about 0.3%, respectively, and the 

𝐸𝑈‟s for 𝑣𝑣 and 𝑤𝑤 are also smaller than for 𝑢𝑢, 4% and 3%, respectively, as well agree 

with the chart readings.   

The application of the method to phase-averaged PMM PIV measurement is 

shown in Fig. 19.  Shown in the figure are the phased-averaged (a) mean axial velocity 𝑈 

and (b) turbulent kinetic energy 𝑘 of the same model for the previous example case but in 
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a forced dynamic pure yaw motion.  The measurement location is at the same x/L = 0.935 

as for previous example flow case, whereas shifted in lateral direction more to the star-

board side of the model.  Selected for a presentation case out of the 32 phase groups of 

the PMM PIV measurements is the 180 case where the flow structure is largest at the 

port side thus slower convergences (larger convergence error) of the mean flow variable 

values are expected.  Total 100 carriage runs were made to sample 𝑁𝑡𝑜𝑡𝑎𝑙  = 250 PIV im-

ages collected from 2.5 PMM cycles per each run.  As shown in Fig. 4-10, the flow field 

becomes more complex than the steady towing case shown in Fig. 4-8 due to the forced 

oscillatory PMM motions of the model, accordingly stronger turbulence of the flow with 

about two times larger range of turbulent kinetic energy,  𝑘  = 0.014.  To see more global 

trend of the convergence, the flow field points are grouped into three categories: Group A 

(0 < 𝑘  𝑘    0.1), Group B (0.1 < 𝑘  𝑘    0.5), and Group C (0.5 < 𝑘  𝑘    1.0), 

representing the regions where fast, moderate, and slow convergence is expected, respec-

tively.  In Table 4-4, presented are the ranges and average values of the effective number 

of PIV images 𝑁, turbulence intensity  𝑘 (approximately corresponds to the average of 

𝑢, 𝑣, and 𝑤), the normalized turbulent kinetic energy 𝑘  𝑘  , and the convergence errors 

𝐸 and 𝐸𝑈  for the Groups A, B, and C, respectively.  The average effective PIV image 

numbers 𝑁 = 235, 210, and 177 respectively for each group corresponds to 94%, 84%, 

71% of 𝑁𝑡𝑜𝑡𝑎𝑙 , respectively, due to the same reasons as explained previously for the 

steady flow case.  The  𝑘 and 𝑘  𝑘   correspond to the statistical convergence parameters 

𝑠 𝑥𝑟𝑒𝑓  and 𝑠2 𝑠𝑟𝑒𝑓
2 , respectively, which can be used for the chart (Fig. 4-7) readings 

along with 𝑁 estimating the convergence errors.  The ranges and average values of 𝐸 and 

𝐸𝑈  presented in the table are for all phase-averaged mean velocities 𝑈, 𝑉, 𝑊 and Rey-

nolds stresses 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, respectively.  In spite of relatively smaller sample number, 𝑁 

 200 (for the steady towing case 𝑁  2,000), 𝐸 for the mean velocities is usually smaller 

than 1% of 𝑈𝐶 , at best about 2% for Group C, and 𝐸𝑈  for the mean Reynolds stresses is 

also satisfactory less than 10% of  𝑘  in average.  However, 𝐸𝑈  can be significantly large 
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up to 36% at the region where 𝑘  𝑘    1.0 (upper left corner of Fig. 4-10) and the num-

ber of PIV images required to reduce 𝐸𝑈  to 10% is 𝑁  1,000 from Fig. 4-7, which re-

quires more than 400 times of carriage runs.    

From the above two example flow cases, it is shown that the statistical conver-

gence of PIV measured mean velocities and Reynolds stresses can be estimated using the 

confidence intervals of the mean and variance values by assuming those variables are sta-

tionary and random following the normal distribution.  From the first example flow, 

steady straight towing condition, where a large number of data (𝑁  2,000) is available, 

revealed that the instantaneous velocity data are stationary random variables following a 

normal distribution as assumed and accordingly their mean values follow Student 𝑡 dis-

tribution and variance values 𝜒2 distribution.  From the second example flow, forced os-

cillatory PMM motions, even with relatively small number of data (𝑁  200), statistical 

convergence errors 𝐸 and 𝐸𝑈  values are fairly small, usually less than 1% of 𝑈𝐶  and 10% 

of  𝑘 , for the phase-averaged velocities and Reynolds stresses, respectively.  Those sta-

tistical convergence errors indicate that the true mean and variance values may differ 

from the sample mean and variance values by the amount of 𝐸 and 𝐸𝑈 , respectively, with 

a 95% confidence.  However, the term „true mean‟ should be distinguished from the term 

„true value‟ as the former value may biased from the latter value, if exists, due to syste-

matic errors which can be identified by calibrating the PIV system to a known standard.  

In the uncertainty analysis (UA) contexture, then, the convergence error can be consi-

dered as the precision limit at the „1
st
-order replication-level‟ (Coleman and Steel 1999 

and Moffat 1982, 1985, and 1988) as all the PIV system remain the same as sample after 

sample is tested.  Thus the „true value‟ relative to the measurement values can be esti-

mated at the „Nth-order replication-level‟ including the random errors together with the 

systematic errors, which will be further discussed at the Section 4 „Uncertainty Analysis‟.  

Lastly, estimating the „1
st
-order replication-level‟ precision limits of the mean Reynolds 

stresses, it should be noted that the typical UA procedures (assuming Student 𝑡 distribu-
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tion of data) can underestimate the precision limit significantly as the Reynolds stress da-

ta actually follow the 𝜒2 distribution which converges much slower than the Student 𝑡 

distribution. 
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Table 4-4 Statistical convergence of Phase-averaged velocity and Reynolds stress. 

Group A B C 

𝑁  62  251 (235) 106  243 (210) 107  232 (177) 

 𝑘  0.02  0.04 (0.03) 0.04  0.08 (0.06) 0.08  0.12 (0.09) 

𝑘  𝑘    0.02  0.1 (0.06) 0.1  0.5 (0.25) 0.5  1.0 (0.62) 

𝐸 (% 𝑈𝐶) 0.1  0.8 (0.3) 0.2  1.4 (0.6) 0.5  2.4 (1.1) 

𝐸𝑈  (%  𝑘 ) 0.1  3.5 (0.9) 0.5  15.0 (3.8) 2.3  35.9 (10.4) 

(  ) : average value;  𝑘  is the range of 𝑘. 
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(a) (b) 

  

Figure 4-7 Statistical convergence errors of (a) the mean 𝑥  and (b) variance 𝑠2 for statio-
nary random variable 𝑥.  

(a) (b) 

  

Figure 4-8 Example PIV flow field data: Contours of (a) mean axial velocity 𝑈 and (b) 
mean turbulent kinetic energy 𝑘 of DTMB 5512 model in steady straight tow-
ing at Fr = 0.280 condition.  Measurement location is at x/L = 0.935, near the 
center plane of the model (port side).  The total number of PIV images used 
for averaging 𝑁𝑡𝑜𝑡𝑎𝑙  = 2,250 and the effective number 𝑁 = 1,720 at Point A. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4-9 Flow data and statistics for Point A of the example flow: (a) instantaneous ve-
locities 𝑈𝑖 , 𝑉𝑖 , 𝑊𝑖 , (b) standard normal probability density function 𝑝 𝑥 , (c) 
running mean 𝑥 𝑁 , (d) running variance 𝑠𝑁

2 , (e) 𝐸 for 𝑈, 𝑉, 𝑊, and (f) 𝐸𝑈  for 
𝑢𝑢, 𝑣𝑣, 𝑤𝑤, respectively.  
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Figure 4-10 Example PMM PIV flow field data: Contours of phase-averaged (left) axial 
velocity 𝑈 and (right) turbulent kinetic energy 𝑘 of DTMB 5512 model in 
pure yaw motion ( = 180) at Fr = 0.280.  Measurement location is at x/L = 
0.935, near the keel of the model.  The total number of PIV images 𝑁𝑡𝑜𝑡𝑎𝑙  = 
254.  
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