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ABSTRACT 

Towing-tank experiments are performed for a surface combatant as it undergoes 

static and dynamic planar motion mechanism maneuvers in calm water.  The data in-

cludes global forces/moment/motions and phase-averaged local flow-fields, and uncer-

tainty assessment.  The geometry is DTMB model 5512, which is a 1/46.6 scale geosym 

of DTMB model 5415, with L = 3.048 m.  The experiments are performed in a 3.048  

3.048  100 m towing tank.  The measurement system features a planar motion mechan-

ism, a towed stereoscopic particle image velocimetry, a Krypton contactless motion 

tracker, and a 6-component loadcell.  The forces/moment and UA are conducted in colla-

boration with two international facilities (FORCE and INSEAN), including overlapping 

tests using the same model geometry but with different scales.  Quality of the data is as-

sessed by monitoring the statistical convergence.  Uncertainty is assessed following the 

ASME Standards (1998 and 2005).  Hydrodynamic derivatives are determined from the 

forces/moment data by using the Abkowitz (1966) model, with two different „Multiple-

Run (MR)‟ and „Single-Run (SR)‟ methods.  Hydrodynamic derivatives are compared 

between the facilities data and as well between different mount conditions.  The results 

indicate that the MR method is more rigorous than the SR that gives considerably larger 

errors in reconstructing the forces/moment, particularly when the PMM motion is small; 

the scale effect is small for sway derivatives whereas considerable for yaw derivatives; 

the linear derivatives values are less sensitive with the mount conditions, whereas the 

non-linear derivatives are considerably different between the mount conditions (fixed vs. 

free) with correlated with the heave, pitch, and roll motions.  Phase-averaged flowfield 

results indicate maneuvering-induced vortices and their interactions with the turbulent 

boundary layer.  The test program is undertaken to create a validation dataset for unstea-

dy Reynolds-averaged Navier Stokes maneuvering simulations.    
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CHAPTER 1 INTRODUCTION 

Predictions of ship-maneuvering performance have been one of the most chal-

lenging topics in ship hydrodynamics research because of its highly complex unsteady 

and non-linear nature.  Due to the lack of analytical methods for ship maneuverability, 

maneuvering predictions have traditionally relied on either empirical methods using data-

base or experimental model tests.  The empirical database methods usually use mathe-

matical model and maneuvering coefficients based on either empiricism or mixed semi-

theoretical and semi-empirical methods.  The methods include such as the cross flow drag 

model (Hooft, 1994), database regression methods (such as, Wagner Smitt, 1971, Norr-

bin, 1971, Inoue et al. 1981, Clarke et al., 1983, and Oltmann, 1992), the Kijima method 

(Kijima et al., 2003), and more recently the combined slender body and the cross flow 

drag theories (Martinussen et al., 2008, and Toxopeus et al., 2008).  The empirical data-

base methods are relatively simple and quick to use, however, typically these methods are 

only effective when main dimensions of the ship of interest are in the database and the 

accuracy of predictions is often limited by the sensitivity of the parameters used in the 

regressions.  Experimental model test method includes free and captive model tests.  Free 

model test (e.g., Martinussen and Linnerrud, 1987) is using a scaled model that is self-

propelled and –steered.  For the test, the model performs definitive maneuvers such as 

spiral, zigzag, or turning maneuvers.  Free model test is usually conceived as the closest 

to reality (except for scale effect) as no mathematic model or assumption is made.  How-

ever, usually free model test yields only the final results/information, thus the test results 

may be less insightful to the individual maneuvering factors.  Recent studies to extract 

more information from the free model test results, so-called the system identification me-

thod, show progresses by using either mathematical models (Oltmann, 2000, Depascale et 

al., 2002, Viviani et al., 2003, Aryszuk, 2003, and Yoon et al., 2003) or a Neural Network 

logic (Hess and Faller, 2000, Moreira and Soares, 2003, and Hess et al., 2008).  On the 
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other hand, captive model test may comprise of oblique towing test, rotating arm test (or 

circular motion mechanism, CMT), and planar motion mechanism (PMM) test (Gertler, 

1966, Strøm-Tejsen, J. and Chislett, M.S., 1966).  Captive model test is based on mathe-

matical modeling of the ship motion equations, from which hydrodynamic derivatives (or 

maneuvering coefficients) of the mathematic model are determined experimentally. 

Recently, computational fluid dynamics (CFD) based methods have shown prom-

ise for computing complex hydrodynamic forces for steady and unsteady maneuvers.  

Significant progress has been made toward this goal by applying Reynolds-averaged 

Navier-Stokes (RANS)-based CFD codes to static maneuvers (Tahara et al., 2002, Si-

monsen and Stern, 2003a, b and c, Cura Hochbaum and Vogt, 2003, Toxopeus, 2006, 

Simonsen et al., 2006, Simonsen and Stern, 2006, Carrica et al., 2006, Xing et al., 2007, 

Bhushan et al., 2007), to dynamic maneuvers (Kim and Rhee, 2002, Burg and Marcum, 

2003, Di Mascio and Broglia, 2003, Di Mascio et al., 2004, Broglia et al., 2006, Cura-

Hochbaum, 2006,  Dimascio et al., 2007, Wilson et al., 2007, Sakamoto et al., 2009), and 

to trajectories (Pankajakshan et al., 2002, Jensen et al. 2004) or more direct six-degree-

of-freedom (6DOF) maneuvering predictions (Carrica and Stern, 2008), with generally 

good agreements with experimental data.  The CFD simulations provide more insight to 

the entire flow structure around the hull, and the simulation results can be used to com-

pute the forces and moment acting on the hull and to determine hydrodynamic deriva-

tives.  Although RANS methods are considered promising, they are still challenged by 

difficulties associated with time-accurate schemes, 6DOF ship motions, the implementa-

tions of complex hull appendages and propulsors, and environmental effects such as 

wind, waves, and shallow water.  Furthermore, to be accepted as a credible simulation 

tool by end-users such as industry or navy, and ultimately to be used for simulation-based 

design (SBD), they are required to be verified and validated (V&V, Stern et al., 2001) for 

practical ship geometries and conditions. V&V and benchmarking of unsteady RANS for 

ship hydrodynamics, however, as well remains a challenge due in part to lack of available 
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experimental fluid dynamics (EFD) validation data, especially for ship motions and ma-

neuvering.   

To meet the demands on EFD validation data, procurement of detailed global and 

local flow benchmark EFD data for fluid physics, model development, and validation of 

RANS ship hydrodynamics CFD codes has been an ongoing effort since 1970‟s.  Recent 

efforts have focused on modern tanker (KVLCC1 and KVLCC2), container (KCS), and 

surface combatant (DTMB 5415) hull forms, as per the Gothenburg 2000 Workshop 

(Larsson et al., 2003) and Tokyo 2005 Workshop (Hino et al., 2005).  Kim et al. (2001) 

and Lee et al. (2003) provided steady-flow data for KVLCC2 and KCS.  For DTMB 

5415, data procurement has been part of an international collaboration between IIHR1, 

INSEAN2, and DTMB3, more than 10 years.  Initially steady-flow data were procured, 

including rigorous uncertainty analysis (Longo et al., 2005), identification of facility bi-

ases (Stern et al., 2000, and Stern et al., 2005), mean flow map (Olivieri et al, 2001), 

steady nominal wake PIV (Gui et al, 2001a), and propeller-hull interaction (Ratcliffe et 

al., 2001).  Subsequently, unsteady-flow data was procured, including wave breaking 

(Olivieri et al., 2004), forward-speed diffraction forces, moment, and wave pattern (Gui 

et al., 2001b and 2002) and phase-averaged PIV nominal wake (Longo et al., 2007) and 

pitch and heave tests (Irvine et al., 2008) in regular head waves.  More recent effort has 

been made at the SMMAN 2008 Workshop (Stern et al., 2008).  The purpose of the 

workshop was to benchmark the prediction capabilities of different ship maneuvering si-

mulation methods including the systems- and CFD based methods through comparisons 

with results.  For SIMMAN 2008, the same tanker (KVLCC), container ship (KCS), and 

                                                 
1 IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA. 

2 Instituto Nazionale per Studi ed Esperienze di Architettura Navale, Rome, Italy. 

3 Naval Surface Warfare Center/Carderock Division (formerly David Taylor Model Basin), Be-
thesda, MD. 
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surface combatant (DTMB 5415) hull forms are used as for the earlier Gothenburg 2000 

and Tokyo 2005 Workshops, however, the focus has been on benchmarking the maneu-

vering prediction capability.  The international collaboration for captive and free model 

EFD validation data involves 11 International Towing Tank Conference (ITTC) institu-

tions and ten countries from Europe, Asia, and America.  The benchmark EFD data in-

cluded PMM and free model tests for KVLCC, PMM/CMT and free model tests for KCS, 

and free mode test with an appended model and PMM test with bare model for DTMB 

5415.  Particularly, the PMM test for DTMB bare model (the present work) was in colla-

boration between IIHR, FORCE4, and INSEAN including uncertainty analysis.  The 

SIMMAN 2008 Workshop results demonstrated the potential of RANS simulations to 

provide data fully equivalent to PMM/CMT model test data and a possibility of direct 

6DOF maneuvering simulations.  However, the workshop has also concluded that more 

EFD benchmark data is needed including uncertainty analysis for more quantitative veri-

fication and validation. 

PIV studies for ship velocity fields have been conducted for various specialized 

purposes, may or may not be directly intended as benchmark data for RANS simulations 

(mainly as per reviewed by Longo et al., 2004).  Dong et al. (1997) measured the bow 

flow of a 3.05 m ship model in a towing tank, from which the authors investigated the 

cross plane vector fields and considerable vorticity entrained into the toe of the bow 

wave.  Roth et al. (1999) studied the mean and turbulent bow flow of a 7.01 m ship mod-

el including convergence test.  Paik et al. (2004) conducted PIV analysis of flow around a 

container ship model with a rotating propeller.  PIV studies have also been made for 

submarine applications.  Fu et al. (2002) studied dominant cross-flow separation induced 

by a 5.18 m submarine model in a turn.  Atsavapranee et al. (2004) presented stereo PIV 

                                                 
4 Force Technology (formerly Danish Maritime Institute, DMI), Lyngby, Denmark. 
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measurements performed on a submarine towed with steady drift angle.  Many of PIV 

studies as well have been performed for propeller wake flow.  Di Felice and De Gregorio 

(2000) investigated the turbulent wake of a 5.41 m ship model equipped with two, four-

bladed propellers in a circulating water channel, at a range of phase angles.  Calcagno et 

al. (2002) used stereoscopic PIV in a circulating water tunnel to investigate the phase-

averaged turbulent propeller wake flow of a 6.096 m ship model equipped with a 0.222 m 

diameter, 5-bladed propeller.  Controni et al. (2000) and Di Felice et al. (2000) investi-

gated the phase-averaged wake flow of two, four-bladed propellers in a cavitation tunnel.  

Judge et al. (2001) measured tip leakage vortices from a 0.8506 m diameter, three-bladed, 

ducted rotor with PIV.  Lee et al. (2004) measured three-component velocity field of pro-

peller wake using stereo PIV. 

The present study is to provide benchmark EFD data and UA for DTMB model 

5512, a geosym (L = 3.048 m) of DTMB model 5415 for the US Navy DDG51.  The 

EFD data includes time histories of global forces and moment and motion measurements 

and phase-averaged SPIV local flow velocity and turbulent Reynolds stress field mea-

surements together with their UA.  The measurement system features a custom design 

comprised of a PMM for captive model testing with an integrated stereoscopic particle 

image velocimetry (SPIV) for procuring instantaneous and phase-averaged flow maps.  

The PMM consists of a PMM sway/yaw motion mechanism unit, an integrated SPIV sys-

tem with an automated traverse, roll/pitch/heave free/fixed mounts, and a six-component 

load cell, and a Krypton contactless motion tracker. The approach is complementary 

CFD, EFD, and uncertainty assessment.  CFD is used to guide EFD, EFD is used for va-

lidation and model development, and lastly CFD is validated and fills in sparse data for 

complete documentation and diagnostics of the flow.  Forces and moment and motions 

are measured for several towing speeds and mounting conditions for static drift and dy-

namic maneuvering tests.  Several drift angles, frequencies, amplitudes, and yaw rates are 

investigated.  The forces and moment measurements and UA are conducted in collabora-
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tion with FORCE, INSEAN, and the 24th-25th ITTC Maneuvering Committee, including 

overlapping tests using the same model geometry for validation of procedures and identi-

fication of facility biases and scale effects.  Results will be presented for both static and 

dynamic PMM, in the latter case including pure sway, pure yaw, and yaw and drift tests.  

The current project builds on previous work including forward-speed diffraction problem 

(Gui et al. 2001a; Gui et al. 2002; Longo et al. 2005), pitch and heave motions (Irvine et 

al., 2008), and investigations of roll motions with and without bilge keels (Bishop et al. 

2004; Felli et al. 2004; Irvine et al. 2004) and is part of a collaborative effort between 

IIHR, DTMB, and INSEAN which has been ongoing as part of an international project 

for 6DOF ship hydrodynamics research.  The overall focus is on benchmark CFD valida-

tion data for surface combatant DTMB model 5415 (Stern et al., 2000).
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CHAPTER 2 BACKGROUND THEORY 

2.1 Overview of Maneuvering Simulations 

The Maneuvering Committee (MC) of the 24
th

 International Towing Tank Confe-

rence (ITTC) reviewed state-of-the-art progress in maneuvering predictions, and catego-

rized typical maneuvering prediction methods into three groups: No Simulation, System 

Based Simulation, and CFD Based Simulation methods.   

 

 

Figure 2-1 Overview of Maneuvering prediction methods (Proceedings of 25
th

 ITTC, 
Vol. I, pp. 145). 

The No Simulation method needs no mathematical model and thus no hydrody-

namic derivative or maneuvering coefficient.  Maneuvering parameters such as ship ad-

vance, transfer, overshoot, and etc. are directly measured from the full-scale trial or mod-
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el-scale free-model test by measuring the ship trajectories or by using a database of exist-

ing full- and/or model-scale data.   

The System Based Simulation method, by contrast, simulates the ship trajectories 

by solving the motion equations using appropriate mathematical modeling along with hy-

drodynamic derivatives (or maneuvering coefficients).  This method includes 1) database, 

2) model testing, and 3) system identification methods.  First, the database method estab-

lishes an empirical formula or regression equations from databases of full- and/or model-

scale test results to obtain hydrodynamic derivatives (Oltmann 1992, Wagner-Smitt 1971, 

Norrbin 1971, Inoue et al. 1981, Clarke et al. 1983, Kijima et al. 1990 and 1993).  The 

database can be also combined with theoretical models such as the Japanese Mathemati-

cal Model Group (MMG) model (Kijima et al. 1993) or the cross-flow drag model 

(Hooft, 1994).  These methods are simple and quick to use, but the prediction accuracy 

and/or reliability can be limited when the ship dimensions are outside the database.  Next, 

the model test method includes free- and captive-model tests.  For free model tests (Mar-

tinussen et al. 1987), a self-propelled scale model ship is remotely controlled performing 

definitive maneuvers such as turning circle, zig-zag, and reverse spiral to evaluate turning 

performance and course keeping stability. This method is direct and effective since the 

maneuvering parameters are directly obtained without simulation, but with issues about 

viscous scale effects (Burcher 1975).  On the other hand, the captive model tests are 

based on mathematical modeling of motion equations.  For the tests, a model-scale ship is 

forced to move in prescribed motions over a range of parameters such as drift angle, 

sway/yaw motion amplitude and frequency, rudder angle, etc. to obtain the relevant hy-

drodynamic derivatives.  Details of the captive model tests are provided in the following 

Section 2.3.  Lastly, the system identification method (Artyszuk 2003, Hess and Faller 

2000, Moreira and Soares 2003, Oltmann 2003, Viviani et al. 2003, Depascale et al. 

2002, Yoon et al. 2003) obtains hydrodynamic derivatives from full-scale sea trial or 

free-model test results using measured ship motion and rudder angle as input parameters. 
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CFD Based Simulation method also simulates the ship trajectory to predict the ma-

neuvering parameters similarly as the System Based Simulation method but by using nu-

merical schemes to evaluated the hydrodynamic derivatives of the mathematic models 

used or to solve the motion equations directly.   

2.2 Mathematic Modeling and Hydrodynamic Derivatives 

The generalized motion equations for a rigid vessel in a ship-fixed, non-inertial 

frame of reference 𝑥𝑦𝑧 that is moving relative to an Earth-fixed, inertial reference frame 

𝑥𝐸𝑦𝐸𝑧𝐸  (Fig. 2-2) can be derived as (Fossen 1994): 

 

𝑚 𝑢 − 𝑟𝑣 + 𝑤𝑞 − 𝑥𝐺 𝑞
2 + 𝑟2 + 𝑦𝐺 𝑝𝑞 − 𝑟  + 𝑧𝐺 𝑝𝑟 + 𝑞   = 𝑋  (2.1a)  

𝑚 𝑣 − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝐺 𝑟
2 + 𝑝2 + 𝑧𝐺 𝑞𝑟 − 𝑝  + 𝑥𝐺 𝑞𝑝 + 𝑟   = 𝑌  (2.1b)  

𝑚 𝑤 − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝐺 𝑝
2 + 𝑞2 + 𝑥𝐺 𝑟𝑝 − 𝑞  + 𝑦𝐺 𝑟𝑞 + 𝑝   = 𝑍  (2.1c)  

𝐼𝑥𝑝 +  𝐼𝑧 − 𝐼𝑦 𝑞𝑟 + 𝑚 𝑦𝐺 𝑤 − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝐺 𝑣 − 𝑤𝑝 + 𝑢𝑟  = 𝐾  (2.1d)  

𝐼𝑦𝑞 +  𝐼𝑥 − 𝐼𝑧 𝑟𝑝 + 𝑚 𝑧𝐺 𝑢 − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝐺 𝑤 − 𝑢𝑞 + 𝑣𝑝  = 𝑀  (2.1e) 

𝐼𝑧𝑟 +  𝐼𝑦 − 𝐼𝑥 𝑝𝑞 + 𝑚 𝑥𝐺 𝑣 − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝐺 𝑢 − 𝑣𝑟 + 𝑤𝑞  = 𝑁  (2.1f) 

The origin of the ship-fixed reference frame is located at the mid-ship position.  The 𝑥, 𝑦, 

and 𝑧 axes correspond to the longitudinal, lateral, and vertical direction of the vessel, re-

spectively, so that the products of moment of inertia such as 𝐼𝑥𝑦 , 𝐼𝑥𝑧 , or 𝐼𝑦𝑧  vanish from 

the motion equations.  In the equations, 𝑋, 𝑌, 𝑍 are the external forces acting on the ves-

sel in surge, 𝑥, sway, 𝑦, and heave, 𝑧 directions, respectively.  𝐾, 𝑀, 𝑁 are the external 

angular moments in roll, 𝜙, pitch, 𝜃, and yaw, 𝜓, directions, respectively.  𝑚 is the mass 

of the vessel and 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧  are the moments of inertia of the vessel with respect to each 

axis.  𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺  are the location of the center of gravity of the vessel.  𝑢, 𝑣, 𝑤 are surge, 

sway, and heave velocities, 𝑥 , 𝑦 , 𝑧 , respectively, and 𝑢 , 𝑣 , 𝑟  are surge, sway, and heave 
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accelerations, 𝑥 , 𝑦 , 𝑧 , respectively.  𝑝, 𝑞, 𝑟 are roll, pitch, yaw rates, 𝜙 , 𝜃 , 𝜓 , respective-

ly, and 𝑝 , 𝑞 , 𝑟  are roll, pitch, yaw accelerations, 𝜙 , 𝜃 , 𝜓 , respectively. 

 

    

Figure 2-2 Earth- and ship-fixed coordinate systems. 

For maneuvering applications of the equations (2.1) for surface ships moving on 

unbounded, calm, and deep water, it is typically assumed that the heave, roll, and pitch 

motions can be neglected such that 𝑤 = 𝑝 = 𝑞 = 𝑤  = 𝑝  = 𝑞  = 0 and that the vessel geome-

try has the 𝑥𝑧-plane symmetry, i.e. 𝑦𝐺  = 0.  Then, the equations reduce to the following 

equations: 

 

𝑚 𝑢 − 𝑟𝑣 − 𝑥𝐺𝑟
2 = 𝑋       (2.2a)  

𝑚 𝑣 + 𝑢𝑟 − 𝑥𝐺𝑟  = 𝑌       (2.2b)  

𝐼𝑧𝑟 + 𝑚𝑥𝐺 𝑣 + 𝑢𝑟 = 𝑁       (2.2c) 

for surge, sway, and yaw, respectively.  In general the external forces and moment 𝑋, 𝑌, 

𝑁 at the right hand sides of the equations (2.2) include hydrodynamic forces due to the 
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surrounding fluid, control surface forces such as rudder forces, and propulsion forces 

such as propeller forces, which need to be described in proper mathematical forms for the 

motion equations to be solved.  One of the common mathematic modeling of those forces 

is by assuming that the forces are functions of ship motion parameters 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , 𝑟  and 

rudder deflection angle 𝛿 (Abkowitz, 1964) based on the „quasi-steady state‟ assumption 

which states that the value of the forces at any instant depends on the motion parameters 

defining the instantaneous motion of the vessel. 

 

 
𝑋
𝑌
𝑁
 = 𝑓 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , 𝑟 , 𝛿        (2.3) 

Abkowitz (1964) also proposed to use a 3
rd

-order Taylor Series expansion of the equation 

(2.3) with following additional assumptions: 

a) Forces and moments have appropriate port and starboard symmetry except for 

a constant force and moment caused by the propeller, and 

b) There are no second- or higher-order acceleration terms, and that cross-

coupling between acceleration and velocity parameters is negligible, 

as per re-stated by Strom-Tejsen and Chislett (1966).  Then, for small disturbances of the 

ship motions from a reference state, i.e. steady straight advancing with a constant speed 

𝑈, the equation (2.3) are written as following (Strom-Tejsen and Chislett 1966): 

 

𝑋 = 𝑋∗ + 𝑋𝑢 𝑢 + 𝑋𝑢Δ𝑢 + 𝑋𝑢𝑢Δ𝑢
2 + 𝑋𝑢𝑢𝑢 Δ𝑢3 +  

 𝑋𝑣𝑣𝑣
2 + 𝑋𝑟𝑟𝑟

2 + 𝑋𝛿𝛿𝛿
2 + 𝑋𝑣𝑣𝑢𝑣

2Δ𝑢 + 𝑋𝑟𝑟𝑢 𝑟
2Δ𝑢 + 𝑋𝛿𝛿𝑢 𝛿2Δ𝑢 +  

 𝑋𝑣𝑟𝑣𝑟 + 𝑋𝑣𝛿𝑣𝛿 + 𝑋𝑟𝛿 𝑟𝛿 + 𝑋𝑣𝑟𝑢𝑣𝑟Δ𝑢 + 𝑋𝑣𝛿𝑢𝑣𝛿Δ𝑢 + 𝑋𝑟𝛿𝑢 𝑟𝛿Δ𝑢 (2.4a)  

𝑌 = 𝑌∗ + 𝑌𝑢Δ𝑢 + 𝑌𝑢𝑢Δ𝑢
2 + 𝑌𝑢𝑢𝑢 Δ𝑢3 +  

 𝑌𝑣 𝑣 + 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 + 𝑌𝑣𝑟𝑟𝑣𝑟

2 + 𝑌𝑣𝛿𝛿 𝑣𝛿
2 + 𝑌𝑣𝑢𝑣Δ𝑢 + 𝑌𝑣𝑢𝑢 𝑣Δ𝑢

2 +  

 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟
3 + 𝑌𝑟𝑣𝑣𝑟𝑣

2 + 𝑌𝑟𝛿𝛿 𝑟𝛿
2 + 𝑌𝑟𝑢𝑟Δ𝑢 + 𝑌𝑟𝑢𝑢 𝑟Δ𝑢2 +  
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 𝑌𝛿𝛿 + 𝑌𝛿𝛿𝛿 𝛿
3 + 𝑌𝛿𝑣𝑣𝛿𝑣

2 + 𝑌𝛿𝑟𝑟 𝛿𝑟
2 + 𝑌𝛿𝑢𝛿Δ𝑢 + 𝑌𝛿𝑢𝑢 𝛿Δ𝑢2 + 

 𝑌𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 + 𝑌𝑣𝑟𝛿𝑣𝑟𝛿       (2.4b)  

𝑁 = 𝑁∗ + 𝑁𝑢Δ𝑢 + 𝑁𝑢𝑢Δ𝑢
2 + 𝑁𝑢𝑢𝑢 Δ𝑢3 +  

 𝑁𝑣 𝑣 + 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 + 𝑁𝑣𝑟𝑟𝑣𝑟

2 + 𝑁𝑣𝛿𝛿𝑣𝛿
2 + 𝑁𝑣𝑢𝑣Δ𝑢 + 𝑁𝑣𝑢𝑢𝑣Δ𝑢

2 + 

 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑟
3 + 𝑁𝑟𝑣𝑣𝑟𝑣

2 + 𝑁𝑟𝛿𝛿 𝑟𝛿
2 + 𝑁𝑟𝑢𝑟Δ𝑢 + 𝑁𝑟𝑢𝑢 𝑟Δ𝑢2 +  

 𝑁𝛿𝛿 + 𝑁𝛿𝛿𝛿 𝛿
3 + 𝑁𝛿𝑣𝑣𝛿𝑣

2 + 𝑁𝛿𝑟𝑟 𝛿𝑟
2 + 𝑁𝛿𝑢𝛿Δ𝑢 + 𝑁𝛿𝑢𝑢 𝛿Δ𝑢2 + 

 𝑁𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 + 𝑁𝑣𝑟𝛿𝑣𝑟𝛿       (2.4c) 

where Δ𝑢 ≡ 𝑢 − 𝑈 is the disturbance in surge velocity.  The terms 𝑋∗, 𝑌∗, 𝑁∗ are the ref-

erence steady state values of 𝑋, 𝑌, 𝑁, respectively.  Typically, 𝑋∗ is zero for ships ad-

vancing straight with a constant speed as the ship total resistance 𝑅𝑇  is balanced by the 

propeller thrust 𝑇, however, 𝑌∗ and 𝑁∗ may have non-zero values when the ship has a sin-

gle propeller or multiple propellers rotating in the same direction.  The coefficients of 

Taylor Series terms at the right hand sides of (2.4) with subscripts of motion parameters, 

such as 𝑋𝑢   𝜕𝑋 𝜕𝑢   or 𝑋𝑣𝑣 ≡
1

2
𝜕2𝑋 𝜕𝑣2 , are the reduced expressions of the Taylor Se-

ries expansion following the simplified derivative notation of SNAME (Nomenclature, 

1952), so-called „hydrodynamic derivatives‟ or „maneuvering coefficients‟, evaluated at 

the reference steady state.  Note that, although the Taylor Series were assumed as 3
rd

-

order expansions, Strom-Tejsen and Chislett (1966) also used fourth-order as well for the 

rudder force terms such as 𝑌𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 and 𝑁𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 to obtain sufficient flexibility in 

expressing the influence of surge velocity on the rudder action.  Note also that the surge 

velocity expansion terms for 𝑌 and 𝑁 such as 𝑌𝑢Δ𝑢, 𝑌𝑢𝑢Δ𝑢
2, 𝑌𝑢𝑢𝑢 Δ𝑢3 and 𝑁𝑢Δ𝑢, 

𝑁𝑢𝑢Δ𝑢
2, 𝑁𝑢𝑢𝑢 Δ𝑢3 in (2.4) replaced the terms 𝑌∗𝑢Δ𝑢, 𝑌∗𝑢𝑢Δ𝑢

2 and 𝑁∗𝑢Δ𝑢, 𝑁∗𝑢𝑢Δ𝑢
2, re-

spectively, in Strom-Tejsen and Chislett (1966) as the former expressions are considered 

to be more consistent with the mathematical definitions of Taylor Series expansion in that 

the reference state values 𝑌∗ or 𝑁∗ are not expanded.   
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2.3 PMM Tests 

General descriptions and procedures of PMM tests including the static drift, pure 

sway, pure yaw, and yaw and drift tests and determination of hydrodynamic derivatives 

are provided.  The procedures for rudder related tests such as static rudder, static drift and 

rudder, and yaw and rudder tests are not provided herein as the present research objective 

is focused on the PMM applications for a bare hull form, i.e. without rudders, propellers, 

and appendages except for bilge keels. 

 

 

Figure 2-3 General PMM test coordinate system and motion parameters. 

2.3.1 Definitions of Motions 

Two coordinate systems are shown in Fig. 2-3: the Earth-fixed 𝑥𝐸𝑦𝐸-coordinate 

system (dashed arrows) and the ship-fixed 𝑥𝑦-coordinate system (dash-dot arrows).  The 

Earth-fixed coordinates are fixed at the towing tank with 𝑥𝐸  and 𝑦𝐸  coordinates aligned 

with the longitudinal and lateral directions of towing tank, respectively.  The ship-fixed 

coordinates are moving with the model with 𝑥 and 𝑦 coordinates aligned with the longi-

tudinal and lateral directions of the model, respectively.  For convenience, in the figure 

the Earth-fixed coordinate system is shown overlaid on the ship-fixed coordinate system 
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at a certain instant.  Vectors 𝑢𝐸  and 𝑣𝐸  are the velocities and 𝑢 𝐸  are 𝑣 𝐸  are the accelera-

tions of the model in the 𝑥𝐸  and 𝑦𝐸  directions of the Earth-fixed coordinate system, re-

spectively; and 𝑢 and 𝑣 are the velocities and 𝑢  and 𝑣  are the accelerations of model in 

the 𝑥 and 𝑦 directions of the ship-fixed coordinate system, respectively.  The advance 

speed 𝑈 is the resultant of 𝑢𝐸  and 𝑣𝐸  or the resultant of 𝑢 and 𝑣 such that 

 

𝑈 =  𝑢𝐸
2 + 𝑣𝐸

2 =  𝑢2 + 𝑣2        (2.5) 

always tangent to the model path line (dotted line) that is the trajectory of the mid-ship 

point.  Drift angle, 𝛽, is defined as the model orientation with respect to 𝑈, i.e., the actual 

direction of model with respect to its heading, which can be written as 

 

𝛽 = − arctan 𝑣 𝑢           (2.6) 

Heading (or yaw angle) 𝜓 is defined as the model orientation with respect to a reference 

direction, 𝑥𝐸 .  Note that yaw rate 𝜓  and acceleration 𝜓  are identical in both the Earth-

fixed and the ship-fixed coordinate systems, i.e. 𝑟𝐸 = 𝑟 = 𝜓  and 𝑟 𝐸 = 𝑟 = 𝜓 .  Lastly, the 

vector transformations between the Earth- and ship-fixed coordinate systems are given as 

following: 

 

𝑢 = 𝑢𝐸 cos 𝜓 + 𝑣𝐸 sin 𝜓        (2.7a) 

𝑣 = −𝑢𝐸 sin 𝜓 + 𝑣𝐸 cos 𝜓        (2.7b) 

𝑟 = 𝑟𝐸            (2.7c) 

𝑢 = 𝑢 𝐸 cos 𝜓 + 𝑣 𝐸 sin 𝜓 + 𝑟𝐸 −𝑢𝐸 sin 𝜓 + 𝑣𝐸 cos 𝜓     (2.7d) 

𝑣 = −𝑢 𝐸 sin 𝜓 + 𝑣 𝐸 cos 𝜓 − 𝑟𝐸 𝑢𝐸 cos 𝜓 + 𝑣𝐸 sin 𝜓     (2.7e) 

𝑟 = 𝑟 𝐸            (2.7f) 
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2.3.2 PMM Motions 

PMM motions are the forced model trajectories comprised of three basic motions 

𝑥𝐸 , 𝑦𝐸 , and 𝜓 described in the 𝑥𝐸𝑦𝐸-coordinate system:    

 

𝑥𝐸 = 𝑈𝐶𝑡          (2.8) 

𝑦𝐸 = −𝑦𝑚𝑎𝑥 sin 𝜔𝑡         (2.9) 

𝜓 = − arctan 𝜀 cos 𝜔𝑡 + 𝛽       (2.10)  

where 𝑈𝐶  is the towing speed, 𝑦𝑚𝑎𝑥  is the sway amplitude, and 𝜀 is the maximum tangent 

of model trajectory defined as 

 

𝜀 =  
𝑑𝑦𝐸

𝑑𝑥𝐸
 
𝑚𝑎𝑥

=  
𝑑𝑦𝐸 𝑑𝑡 

𝑑𝑥𝐸 𝑑𝑡 
 
𝑚𝑎𝑥

=
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
      (2.11) 

The 𝑥𝐸  in (2.8) corresponds to straight advancing motion with speed 𝑈𝐶  along the towing 

tank longitudinal direction.  The 𝑦𝐸  in (2.9) is a sinusoidal lateral motion with an ampli-

tude 𝑦𝑚𝑎𝑥  and frequency 𝜔.  The 𝜓 in (2.10) is a combination of a sinusoidal yaw motion 

and any drift angle 𝛽.  For static drift test, 𝑦𝑚𝑎𝑥  = 𝜀 = 𝜔 = 0 in (2.9) and (2.10) and 𝛽 is a 

fixed value in time, which corresponds to an oblique towing motion as shown in Fig. 2-4 

(a) and (e).  For pure sway test, 𝑦𝑚𝑎𝑥  and 𝜔 are non-zero values in (2.9) thus a sinusoidal 

lateral motion but the model heading is kept in straight, i.e 𝜓 = 0 in (2.10), as illustrated 

in Fig. 2-4 (b), which makes a continuously changing drift angle 𝛽 = arctan 𝜀 cos 𝜔𝑡  

from (2.10) as shown in Fig. 2-4 (f).  For pure yaw test, 𝑦𝑚𝑎𝑥  and 𝜔 are non-zero in (2.9) 

and (2.10) similarly as pure sway test but 𝛽 = 0 in (2.10), then the model is always tan-

gent to its path-line as shown Fig. 2-4 (c) and (g).  For yaw and drift test, 𝑦𝑚𝑎𝑥  and 𝜔 are 

the same as for pure yaw test but 𝛽 is set to a non-zero constant value in (2.10), which 

makes an asymmetric yaw motion as shown in Fig. 2-4 (d) and (h).  For all tests, 𝑈𝐶  in 

(2.8) is constant in time.  From those model trajectories, the model velocities and accele-
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rations in the Earth-fixed coordinates, i.e. 𝑢𝐸 = 𝑥 𝐸 , 𝑣𝐸 = 𝑦 𝐸 , 𝑟𝐸 = 𝜓 𝐸 , 𝑢 𝐸 = 𝑥 𝐸 , 𝑣 𝐸 =

𝑦 𝐸 , and 𝑟 𝐸 = 𝜓 𝐸 , and in the ship-fixed coordinates 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , and 𝑟  as per the relation-

ships (2.7) are summarized in Tables 2-1 and 2-2, respectively. 

 

 

 

 

    
(e) (f) (g) (h) 

Figure 2-4 Illustrations of typical PMM motions for (a) static drift, (b) pure sway, (c) 
pure yaw, and (d) yaw and drift tests, and definitions of PMM motion parame-
ters in the PMM coordinate systems for (e) static drift, (f) pure sway, (g) pure 
yaw, and (h) yaw and drift tests. 
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Table 2-1 PMM Motions in the Earth-fixed Coordinates. 

Motion Static drift Pure sway Pure yaw Yaw and drift 

𝑢𝐸  𝑈𝐶  𝑈𝐶  𝑈𝐶  𝑈𝐶  

𝑢 𝐸  0 0 0 0 

𝑣𝐸  0 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 

𝑣 𝐸  0 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 

𝑟𝐸  0 0 𝜀𝜔 sin 𝜔𝑡
1

1 + 𝜀2 cos2 𝜔𝑡
 𝜀𝜔 sin 𝜔𝑡

1

1 + 𝜀2 cos2 𝜔𝑡
 

𝑟 𝐸  0 0 𝜀𝜔2 cos 𝜔𝑡
1 + 𝜀2 1 + sin2 𝜔𝑡 

 1 + 𝜀2 cos2 𝜔𝑡 2  𝜀𝜔2 cos 𝜔𝑡
1 + 𝜀2 1 + sin2 𝜔𝑡 

 1 + 𝜀2 cos2 𝜔𝑡 2  

 

Table 2-2 PMM Motions in the Ship-fixed Coordinates. 

Motion Static drift Pure sway Pure yaw Yaw and drift 

𝑢 𝑈𝐶 cos 𝛽 𝑈𝐶  𝑈𝐶 1 + 𝜀2 cos2 𝜔𝑡 = 𝑢1 𝑢1 cos 𝛽 

𝑢  0 0 −𝑈𝐶𝜔 ⋅
𝜀2 sin 2𝜔𝑡

2 1 + 𝜀2 cos2 𝜔𝑡
= 𝑢 1 𝑢 1 cos 𝛽 

𝑣 −𝑈𝐶 sin 𝛽 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 0 −𝑢1 sin 𝛽 

𝑣  0 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 0 −𝑣 1 sin 𝛽 

𝑟 0 0 𝜀𝜔 sin 𝜔𝑡 ⋅
1

1 + 𝜀2 cos2 𝜔𝑡
= 𝑟1 𝑟1 

𝑟  0 0 𝜀𝜔2 cos 𝜔𝑡 ⋅
1 + 𝜀2 1 + sin2 𝜔𝑡 

 1 + 𝜀2 cos2 𝜔𝑡 2 = 𝑟 1 𝑟 1 

 

 

The PMM motions, however, may violate the steady advance speed 𝑈 condition 

for the Taylor-series expansions of hydrodynamic forces and moment shown in (2.4).  If 

the surge 𝑢𝐸 = 𝑥 𝐸  and sway 𝑣𝐸 = 𝑦 𝐸  velocities from (2.8) and (2.9), respectively, are 

used in (2.5), then 𝑈 becomes time-dependent (except for static drift case where 𝑈 = 𝑈𝐶) 

and suggests PMM motions should be small such that 

  

𝑈 = 𝑈𝐶 1 + 𝜀2 cos2 𝜔𝑡 = 𝑈𝐶 + 𝑂 𝜀2 ≈ 𝑈𝐶     for  𝜀 ≪ 1   (2.12) 

Then, the PMM motions summarized in Table 2-1 can be simplified as follows.   
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Static drift: 

𝑣 = −𝑈𝐶 sin 𝛽            (2.13)   

Pure sway: 

𝑦 = −𝑦𝑚𝑎𝑥 sin 𝜔𝑡            (2.14a) 

𝑣 = −𝑣𝑚𝑎𝑥 cos 𝜔𝑡;  𝑣𝑚𝑎𝑥 = 𝑦𝑚𝑎𝑥 𝜔     (2.14b) 

𝑣 = 𝑣 𝑚𝑎𝑥 sin 𝜔𝑡;   𝑣 𝑚𝑎𝑥 = 𝑦𝑚𝑎𝑥 𝜔2     (2.14c) 

Then, drift angle 𝛽 is from (6) as 

 

𝛽 𝑡 = 𝛽𝑚𝑎𝑥 cos 𝜔𝑡;  𝛽𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
     (2.15) 

Pure yaw: 

𝜓 = −𝜓𝑚𝑎𝑥 cos 𝜔𝑡;  𝜓𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
     (2.16a) 

𝑟 = 𝑟𝑚𝑎𝑥 sin 𝜔𝑡;  𝑟𝑚𝑎𝑥 = 𝜓𝑚𝑎𝑥 𝜔    (2.16b) 

𝑟 = 𝑟 𝑚𝑎𝑥 cos 𝜔𝑡;  𝑟 𝑚𝑎𝑥 = 𝜓𝑚𝑎𝑥 𝜔2     (2.16c) 

Yaw and drift: 

𝜓 = −𝜓𝑚𝑎𝑥 cos 𝜔𝑡 + 𝛽; 𝜓𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
     (2.17a) 

𝑣 = −𝑈𝐶 sin 𝛽         (2.17b) 

where 𝑟 and 𝑟  for yaw and drift test are same as (2.16b) and (2.16c) for pure yaw test.  

For such small motions, i.e. 𝜀 ≪ 1, and additionally for small 𝛽 for static drift and yaw 

and drift tests, surge velocity 𝑢 ≈ 𝑈𝐶  and thus Δ𝑢 = 𝑢 − 𝑈 = 0 for all tests.   
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2.3.3 Simplified Mathematic Models for PMM  

For a bare model without propellers or rudders, the Abkowitz‟s mathematic mod-

els for hydrodynamic forces and moment shown in (2.4) can be reduced by dropping the 

terms related to rudder angle 𝛿 as: 

 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2 + 𝑋𝑟𝑟𝑟

2 + 𝑋𝑣𝑟𝑣𝑟  

     +𝑋𝑢Δ𝑢 + 𝑋𝑢𝑢Δ𝑢
2 + 𝑋𝑢𝑢𝑢 Δ𝑢3 + 𝑋𝑣𝑣𝑢𝑣

2Δ𝑢 + 𝑋𝑟𝑟𝑢 𝑟
2Δ𝑢 + 𝑋𝑣𝑟𝑢𝑣𝑟Δ𝑢 (2.18a) 

𝑌 = 𝑌𝑣 𝑣 + 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 + 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟

3 + 𝑌𝑣𝑟𝑟𝑣𝑟
2 + 𝑌𝑟𝑣𝑣𝑟𝑣

2  

     +𝑌𝑣𝑢𝑣Δ𝑢 + 𝑌𝑣𝑢𝑢𝑣Δ𝑢
2 + 𝑌𝑟𝑢𝑟Δ𝑢 + 𝑌𝑟𝑢𝑢 𝑟Δ𝑢2    (2.18b) 

𝑁 = 𝑁𝑣 𝑣 + 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 + 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑟

3 + 𝑁𝑣𝑟𝑟𝑣𝑟
2 + 𝑁𝑟𝑣𝑣𝑟𝑣

2  

     +𝑁𝑣𝑢𝑣Δ𝑢 + 𝑁𝑣𝑢𝑢𝑣Δ𝑢
2 + 𝑁𝑟𝑢𝑟Δ𝑢 + 𝑁𝑟𝑢𝑢 𝑟Δ𝑢2    (2.18c) 

The math-models (18) are further simplified by using the simplified motions (2.13) – 

(2.17) to leave terms for the variables of interest and to determine the hydrodynamic de-

rivatives.   

 

Static drift: 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2         (2.19a) 

𝑌 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3         (2.19b) 

𝑁 = 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3         (2.19c) 

Pure sway: 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2         (2.20a) 

𝑌 = 𝑌𝑣 𝑣 + 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3        (2.20b) 

𝑁 = 𝑁𝑣 𝑣 + 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3        (2.20c) 

or in harmonic forms by substituting (2.14b) and (2.14c) into (2.20), 
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𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡       (2.21a) 

𝑌 = 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝐶3 cos 3𝜔𝑡      (2.21b)  

𝑁 = 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝐶3 cos 3𝜔𝑡    (2.21c) 

Pure yaw: 

𝑋 = 𝑋∗ + 𝑋𝑟𝑟𝑟
2         (2.22a)  

𝑌 = 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟
3        (2.22b) 

𝑁 = 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑣
3        (2.22c)  

or in harmonic forms by substituting (2.16b) and (2.16c) into (2.22),  

 

𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡        (2.23a) 

𝑌 = 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝑆3 sin 3𝜔𝑡      (2.23b) 

𝑁 = 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝑆3 sin 3𝜔𝑡     (2.23c) 

Yaw and drift: 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2 + 𝑋𝑟𝑟𝑟

2 + 𝑋𝑣𝑟𝑣𝑟       (2.24a) 

𝑌 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 + 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟

3 + 𝑌𝑣𝑟𝑟𝑣𝑟
2 + 𝑌𝑟𝑣𝑣𝑟𝑣

2   (2.24b) 

𝑁 = 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 + 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑣

3 + 𝑁𝑣𝑟𝑟𝑣𝑟
2 + 𝑁𝑟𝑣𝑣𝑟𝑣

2  (2.24c) 

or in harmonic forms by substituting (2.16b), (2.16c), and (2.17b) into (2.24),  

 

𝑋 = 𝑋0 + 𝑋𝑆1 sin 𝜔𝑡 + 𝑋𝐶2 cos 2𝜔𝑡      (2.25a) 

𝑌 = 𝑌0 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶2 cos 2𝜔𝑡 + 𝑌𝑆3 cos 3𝜔𝑡  (2.25b)  

𝑁 = 𝑁0 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶2 cos 2𝜔𝑡 + 𝑁𝑆3 cos 3𝜔𝑡  (2.25c) 

The expressions for the harmonics 𝑋0, 𝑋𝑆𝑛 , 𝑋𝐶𝑛 , 𝑌0, 𝑌𝑆𝑛 , 𝑌𝐶𝑛 , 𝑁0, 𝑁𝑆𝑛 , and 𝑁𝐶𝑛  for 𝑛 = 1, 

2, or 3 in (2.21), (2.23), and (2.25) are summarized in Table 2-3. 
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Table 2-3. Mathematic Models in Harmonics Forms. 

Pure sway models: 

𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡  

𝑌 = 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶3 cos 3𝜔𝑡  

𝑁 = 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶3 cos 3𝜔𝑡  

 

𝑋 model 𝑌 model 𝑁 model 

𝑋0 = 𝑋∗ +
1

2
𝑋𝑣𝑣𝑣𝑚𝑎𝑥

2   𝑌𝐶1 = − 𝑌𝑣𝑣𝑚𝑎𝑥 +
3

4
𝑌𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3    𝑁𝐶1 = − 𝑁𝑣𝑣𝑚𝑎𝑥 +
3

4
𝑁𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3    

𝑋𝐶2 =
1

2
𝑋𝑣𝑣𝑣𝑚𝑎𝑥

2   𝑌𝑆1 = 𝑌𝑣 𝑣 𝑚𝑎𝑥   𝑁𝑆1 = 𝑁𝑣 𝑣 𝑚𝑎𝑥   

 𝑌𝐶3 = −
1

4
𝑌𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3   𝑁𝐶3 = −
1

4
𝑁𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3   

Pure yaw models: 

𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡  

𝑌 = 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆3 sin 3𝜔𝑡  

𝑁 = 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆3 sin 3𝜔𝑡  

 

𝑋 model 𝑌 model 𝑁 model 

𝑋0 = 𝑋∗ +
1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌𝑆1 = 𝑌𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   𝑁𝑆1 = 𝑁𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   

𝑋𝐶2 = −
1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌𝐶1 = 𝑌𝑟 𝑟 𝑚𝑎𝑥   𝑁𝐶1 = 𝑁𝑟 𝑟 𝑚𝑎𝑥   

 𝑌𝑆3 = −
1

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   𝑁𝑆3 = −
1

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   

Yaw and drift models: 

𝑋 = 𝑋0 + 𝑋𝑆1 sin 𝜔𝑡 + 𝑋𝐶2 cos 2𝜔𝑡  

𝑌 = 𝑌0 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝐶2 cos 2𝜔𝑡 + 𝑌𝑆3 sin 3𝜔𝑡  

𝑁 = 𝑁0 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝐶2 cos 2𝜔𝑡 + 𝑁𝑆3 sin 3𝜔𝑡  

 

𝑋 model 𝑌 model 𝑁 model 

𝑋0 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2 +

1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌0 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 +

1

2
𝑌𝑣𝑟𝑟𝑣𝑟𝑚𝑎𝑥

2   𝑁0 = 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 +

1

2
𝑁𝑣𝑟𝑟𝑣𝑟𝑚𝑎𝑥

2   

𝑋𝑆1 = 𝑋𝑣𝑟𝑣𝑟𝑚𝑎𝑥   𝑌𝑆1 = 𝑌𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3 + 𝑌𝑟𝑣𝑣𝑟𝑚𝑎𝑥 𝑣2  𝑁𝑆1 = 𝑁𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3 + 𝑁𝑟𝑣𝑣𝑟𝑚𝑎𝑥 𝑣2  

𝑋𝐶2 = −
1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌𝐶1 = 𝑌𝑟 𝑟 𝑚𝑎𝑥   𝑁𝐶1 = 𝑁𝑟 𝑟 𝑚𝑎𝑥   

 𝑌𝐶2 = −
1

2
𝑌𝑣𝑟𝑟 𝑣𝑟𝑚𝑎𝑥

2   𝑁𝐶2 = −
1

2
𝑁𝑣𝑟𝑟 𝑣𝑟𝑚𝑎𝑥

2   

 𝑌𝑆3 = −
1

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   𝑁𝑆3 = −
1

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   
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2.3.4 Non-dimensionalization  

Non-dimensionlization follows the Prime-system of SNAME (Nomenclature, 

1952) for which 𝐿, 𝐿 𝑈 , and ½𝜌𝐿2𝑇 are used as the characteristic scales for length, time, 

and mass, respectively, where 𝐿 is the ship length, 𝑈 is the ship advance speed, 𝜌 is the 

water density, and 𝑇 is the draft of the ship.  Some of the non-dimensional variables are 

shown below: 

 

𝑦 =
𝑦

𝐿
;  𝑦𝑚𝑎𝑥

′ =
𝑦𝑚𝑎𝑥

𝐿
        (2.26a) 

𝜔′ =
𝜔𝐿

𝑈
≈

𝜔𝐿

𝑈𝐶
          (2.26b) 

Δ𝑢′ = 𝑢′ − 1 =
𝑢

𝑈
− 1       (2.26c) 

𝑢 ′ =
𝑢 𝐿

𝑈2         (2.26d) 

𝑣 ′ =
𝑣

𝑈
;  𝑣𝑚𝑎𝑥

′ =
𝑣𝑚𝑎𝑥

𝑈
≈  

𝑦𝑚𝑎𝑥

𝐿
  

𝜔𝐿

𝑈𝐶
      (2.26e) 

𝑣 ′ =
𝑣 𝐿

𝑈2;  𝑣 𝑚𝑎𝑥
′ =

𝑣 𝑚𝑎𝑥 𝐿

𝑈2 ≈  
𝑦𝑚𝑎𝑥

𝐿
  

𝜔𝐿

𝑈𝐶
 

2

    (2.26f) 

𝑟′ =
𝑟𝐿

𝑈
;  𝑟𝑚𝑎𝑥

′ =
𝑟𝑚𝑎𝑥 𝐿

𝑈
≈ 𝜓𝑚𝑎𝑥  

𝜔𝐿

𝑈𝐶
      (2.26g) 

𝑟 ′ =
𝑟 𝐿2

𝑈2 ;  𝑟 𝑚𝑎𝑥
′ =

𝑟 𝑚𝑎𝑥 𝐿2

𝑈2 ≈ 𝜓𝑚𝑎𝑥  
𝜔𝐿

𝑈𝐶
 

2

     (2.26h) 

𝑋′ =
𝑋

1 2 𝜌𝑈2𝐿𝑇
         (2.26i) 

𝑌′ =
𝑌

1 2 𝜌𝑈2𝐿𝑇
         (2.26j) 

𝑁′ =
𝑁

1 2 𝜌𝑈2𝐿2𝑇
        (2.26k) 

Note that in the remainder of the thesis the prime symbol is omitted for simplicity.   
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2.3.5 Determination of hydrodynamic derivatives 

Hydrodynamic derivatives (simply „derivatives‟) in the mathematic models (2.18) 

are determined from the static drift, pure sway, pure yaw, and yaw and drift data.  Sway-

velocity derivatives 𝑋∗, 𝑋𝑣𝑣, 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  are determined from the static drift 

data and sway-acceleration derivatives 𝑌𝑣  and 𝑁𝑣  are from the pure sway data.  Sway-

velocity derivatives can be determined as well from the pure sway data, however, deriva-

tives determined from the static drift data are preferred in general as the derivatives from 

dynamic-test data are known as often frequency-dependent (van Leeuwen 1964).  As the 

dynamic-motion frequency 𝜔 becomes large, the „quasi-steady‟ or the „slow-motion‟ as-

sumptions for the math-models can fail and the hydrodynamic forces and moment during 

the PMM tests become dependent not only on the instantaneous motions but partly also 

on the previous motions (Bishop et al. 1970, 1972, 1973), known as the „memory effect‟.  

The yaw-rate derivatives 𝑋𝑟𝑟 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑟 , and 𝑁𝑟𝑟𝑟  and the yaw-acceleration derivatives 

𝑌𝑟  and 𝑁𝑟  are determined from the pure yaw test.  The cross-coupled derivatives between 

sway and yaw such as 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑣𝑟𝑟 , and  𝑁𝑟𝑣𝑣   are determined from the yaw and 

drift test that is a combination of pure yaw and static drift tests.  The surge-coupled de-

rivatives such as 𝑋𝑢 , 𝑋𝑢𝑢 , 𝑋𝑢𝑢𝑢 , 𝑋𝑣𝑣𝑢 , 𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , and 𝑁𝑣𝑢𝑢  are determined by repeat-

ing the static drift (or pure sway) test and 𝑋𝑟𝑟𝑢 , 𝑌𝑟𝑢 , 𝑌𝑟𝑢𝑢 , 𝑁𝑟𝑢 , 𝑁𝑟𝑢𝑢  are by repeating the 

pure yaw test over a range of towing speed, respectively.  The sway-yaw-surge-coupled 

derivative 𝑋𝑣𝑟𝑢  can be determined by repeating the yaw and drift test, but typically of 

negligible value.   

The derivatives are evaluated by curve-fitting the data for static drift test and by 

using either the „Multiple-run (MR)‟ or „Single-run (SR)‟ methods for dynamic tests as 

per introduced below:  
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2.3.5.1 Static drift test 

Data are measured over a range of drift angle 𝛽 and curve-fitted to polynomial 

functions as per the mathematic model (2.19): 

 

𝑦 = 𝐴 + 𝐵𝑥2;  𝑦 = 𝑋;  𝑥 = 𝑣       (2.27a) 

𝑦 = 𝐴𝑥 + 𝐵𝑥3;  𝑦 = 𝑌, 𝑁;  𝑥 = 𝑣       (2.27b) 

Then, 

 

𝑋∗, 𝑌𝑣 , 𝑁𝑣 = 𝐴          (2.28a) 

𝑋𝑣𝑣 , 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 = 𝐵        (2.28b) 

respectively.  

2.3.5.2 Dynamic tests 

Derivatives can be determined from the math-models (2.20), (2.22), and (2.24) 

with expressed in harmonics form, summarized in Table 2-3.  Then, the derivatives5 are 

evaluated either by curve-fitting the harmonics data into those equations, named as the 

„Multiple-Run‟ method; or by solving the harmonics equations for the derivatives, named 

as the „Single-Run‟ method.  The harmonics data are determined experimentally by mea-

suring the 𝑋, 𝑌, and 𝑁 as time-histories from PMM tests as 

 

𝑋, 𝑌, 𝑁 = 𝑓 𝑡          (2.29) 

and using a Fourier-integral equation as:  

 

                                                 
5 Derivatives can be also determined by using a regression method, although not used herein.  By 
using the math-models (2.19) as the regression equations, the PMM test data can be curve-fitted 
using such as a Least-square-error method to evaluate the derivatives. 
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𝑋0, 𝑌0, 𝑁0 =
1

𝑇
 𝑓 𝑡 𝑑𝑡

𝑇

0
        (2.30a) 

𝑋𝐶𝑛 , 𝑌𝐶𝑛 , 𝑁𝐶𝑛 =
2

𝑇
 𝑓 𝑡 cos 𝑛𝜔𝑡 𝑑𝑡

𝑇

0
      (2.30b) 

𝑋𝑆𝑛 , 𝑌𝑆𝑛 , 𝑁𝑆𝑛 =
2

𝑇
 𝑓 𝑡 sin 𝑛𝜔𝑡 𝑑𝑡

𝑇

0
       (2.30c) 

where 𝑇 = 2𝜋 𝜔 .   

 ‘Multiple-run’ (MR) method: Derivatives are determined by using data from a se-

ries of PMM tests.   For this, PMM tests are repeated over a range of input motions para-

meters such as 𝑣𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , or 𝛽, and then a set of harmonics data, evaluated from each 

test as per (2.30), is fitted into polynomial functions as 

 

 
𝑋0, 𝑌0, 𝑁0

𝑋𝑆𝑛 , 𝑌𝑆𝑛 , 𝑁𝑆𝑛

𝑋𝐶𝑛 , 𝑌𝐶𝑛 , 𝑁𝐶𝑛

 = 𝑦 𝑥 ;  𝑥 = 𝑣𝑚𝑎𝑥 , 𝑣 𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , 𝑟 𝑚𝑎𝑥 , or 𝑣    (2.31)  

Polynomial functions 𝑦 𝑥  in (2.31) for each harmonic are summarized in Table 2-4 

where the resulting hydrodynamic derivatives are expressed with the polynomial coeffi-

cients.  From Table 2-4, the non-linear derivatives such as 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 , 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , 

𝑁𝑟𝑟𝑟 , 𝑌𝑣𝑟𝑟 , and 𝑁𝑣𝑟𝑟  can be determined either from the 0
th

- or 1
st
-order (low-order) har-

monics such as 𝑋0, 𝑌0, 𝑌𝐶1, 𝑌𝑆1, 𝑁0, 𝑁𝑆1, and 𝑁𝑆1 or from the 2
nd

- or 3
rd

-order (high-

order) harmonics such as 𝑋𝐶2, 𝑌𝐶2, 𝑌𝐶3, 𝑌𝑆3, 𝑁𝐶2, 𝑁𝐶3, or 𝑁𝑆3, which are designated as the 

„MRL‟ and the „MRH‟ methods, respectively.   

‘Single-run’ (SR) method: Hydrodynamic derivatives are determined by using da-

ta from a single realization (carriage-run) of dynamic PMM test (or from a mean-data by 

repeating the tests at the same condition).  First, FS harmonics of the data are evaluated 

as per (2.30), and then the equations of harmonics amplitudes in Table 2-3 are solved for 

hydrodynamic derivatives such that 
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𝑋∗, 𝑋𝑣𝑣 , 𝑋𝑟𝑟 , 𝑋𝑣𝑟 ;

𝑌𝑣 , 𝑌𝑣𝑣𝑣 , 𝑌𝑣 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 , 𝑌𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 ;
𝑁𝑣 , 𝑁𝑣𝑣𝑣 , 𝑁𝑣 , 𝑁𝑟 , 𝑁𝑟𝑟𝑟 , 𝑁𝑟 , 𝑁𝑣𝑟𝑟 , 𝑁𝑟𝑣𝑣

 = 𝑓  

𝑋0, 𝑋𝑆𝑛 , or 𝑋𝐶𝑛 ;
𝑌0, 𝑌𝑆𝑛 , or 𝑌𝐶𝑛 ;
𝑁0, 𝑁𝑆𝑛 , or 𝑁𝐶𝑛

   (2.32) 

respectively, where 𝑛 = 1, 2, or 3.  The solutions are summarized in Table 2-5, where two 

derivatives, 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟 , can be determined either from the 0
th

-order (low-order) har-

monics 𝑌0 and 𝑁0 or from the 2
nd

-order (high-order) harmonics 𝑌𝐶2 and 𝑁𝐶2, which are 

designated as the „SRL‟ and the „SRH‟ methods, respectively. 
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Table 2-4. „Multiple-Run‟ Method.  

Test Variable Polynomial equation  𝑦  𝑥  Derivatives 

Pure sway 𝑋  𝑦 = 𝐴 + 𝐵𝑥2  𝑋0  𝑣𝑚𝑎𝑥   𝑋∗ = 𝐴; 𝑋𝑣𝑣 = 2𝐵 

  𝑦 = 𝐶𝑥2  𝑋𝐶2  𝑣𝑚𝑎𝑥   𝑋𝑣𝑣 = 2𝐶  

 𝑌, 𝑁  𝑦 = 𝐴𝑥 + 𝐵𝑥3  𝑌𝐶1, 𝑁𝐶1  𝑣𝑚𝑎𝑥   𝑌𝑣 , 𝑁𝑣 = 𝐴; 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 =
4

3
𝐵 

  𝑦 = 𝐶𝑥  𝑌𝑆1, 𝑁𝑆1  𝑣 𝑚𝑎𝑥   𝑌𝑣 , 𝑁𝑣 = 𝐶  

`  𝑦 = 𝐷𝑥3  𝑌𝐶3, 𝑁𝐶3  𝑣𝑚𝑎𝑥   𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 = −4𝐷  

Pure yaw 𝑋  𝑦 = 𝐴 + 𝐵𝑥2  𝑋0  𝑟𝑚𝑎𝑥   𝑋∗ = 𝐴; 𝑋𝑟𝑟 = 2𝐵 

  𝑦 = 𝐶𝑥2  𝑋𝐶2  𝑟𝑚𝑎𝑥   𝑋𝑟𝑟 = −2𝐶  

 𝑌, 𝑁  𝑦 = 𝐴𝑥 + 𝐵𝑥3  𝑌𝑆1, 𝑁𝑆1  𝑟𝑚𝑎𝑥   𝑌𝑟 , 𝑁𝑟 = 𝐴; 𝑌𝑟𝑟𝑟 , 𝑁𝑟𝑟𝑟 =
4

3
𝐵 

  𝑦 = 𝐶𝑥  𝑌𝐶1, 𝑁𝐶1  𝑟 𝑚𝑎𝑥   𝑌𝑟 , 𝑁𝑟 = 𝐶  

  𝑦 = 𝐷𝑥3  𝑌𝑆3, 𝑁𝑆3  𝑟𝑚𝑎𝑥   𝑌𝑟𝑟𝑟 , 𝑁𝑟𝑟𝑟 = 4𝐷  

Yaw and drift 𝑋  𝑦 = 𝐴𝑥  𝑋𝐶1  𝑣  𝑋𝑣𝑟 =
1

𝑟𝑚𝑎𝑥
𝐴  

 𝑌, 𝑁  𝑦 = 𝐴𝑥 + 𝐵𝑥3  𝑌0, 𝑁0  𝑣  𝑌𝑣𝑟𝑟 =
2

𝑟𝑚𝑎𝑥
2  𝐴 − 𝑌𝑣 ; 𝑁𝑣𝑟𝑟 =

2

𝑟𝑚𝑎𝑥
2  𝐴 − 𝑁𝑣  

  𝑦 = 𝐶 + 𝐷𝑥2  𝑌𝑆1, 𝑁𝑆1  𝑣  𝑌𝑟𝑣𝑣 , 𝑁𝑟𝑣𝑣 =
1

𝑟𝑚𝑎𝑥
𝐷  

  𝑦 = 𝐸𝑥  𝑌𝐶2, 𝑁𝐶2  𝑣  𝑌𝑣𝑟𝑟 , 𝑁𝑣𝑟𝑟 = −
2

𝑟𝑚𝑎𝑥
2 𝐸  

 

Table 2-5. „Single-Run‟ Method.  

Pure sway Pure yaw Yaw and drift 

𝑋∗ = 𝑋0 − 𝑋𝐶2    𝑋∗ = 𝑋0 + 𝑋𝐶2   

𝑌𝑣 = −
1

𝑣𝑚𝑎𝑥

 𝑌𝐶1 − 3𝑌𝐶3   𝑌𝑟 =
1

𝑟𝑚𝑎𝑥

 𝑌𝑆1 + 3𝑌𝑆3   
 

𝑁𝑣 = −
1

𝑣𝑚𝑎𝑥

 𝑁𝐶1 − 3𝑁𝐶3   𝑁𝑟 =
1

𝑟𝑚𝑎𝑥

 𝑁𝑆1 + 3𝑁𝑆3    

𝑋𝑣𝑣 =
2

𝑣𝑚𝑎𝑥
2 𝑋𝐶2  𝑋𝑟𝑟 = −

2

𝑟𝑚𝑎𝑥
2 𝑋𝐶2  𝑋𝑣𝑟 =

1

𝑣𝑟𝑚𝑎𝑥
𝑋𝑆1  

𝑌𝑣𝑣𝑣 = −
4

𝑣𝑚𝑎𝑥
3 𝑌𝐶3  𝑌𝑟𝑟𝑟 = −

4

𝑟𝑚𝑎𝑥
3 𝑌𝑆3  𝑌𝑣𝑟𝑟 =

2

𝑣𝑟𝑚𝑎𝑥
2  𝑌0 − 𝑌𝑣𝑣 − 𝑌𝑣𝑣𝑣𝑣

3   or −
2

𝑣𝑟𝑚𝑎𝑥
2 𝑌𝐶2 

𝑁𝑟𝑟𝑟 = −
4

𝑣𝑚𝑎𝑥
3 𝑁𝐶3  𝑁𝑟𝑟𝑟 = −

4

𝑟𝑚𝑎𝑥
3 𝑁𝑆3  𝑁𝑣𝑟𝑟 =

2

𝑣𝑟𝑚𝑎𝑥
2  𝑁0 − 𝑁𝑣𝑣 − 𝑁𝑣𝑣𝑣𝑣

3   or −
2

𝑣𝑟𝑚𝑎𝑥
2 𝑁𝐶2 

𝑌𝑣 =
1

𝑣 𝑚𝑎𝑥
𝑌𝑆1  𝑌𝑟 =

1

𝑟 𝑚𝑎𝑥
𝑌𝐶1  𝑌𝑟𝑣𝑣 =

1

𝑟𝑚𝑎𝑥 𝑣2  𝑌𝑆1 − 𝑌𝑟𝑟𝑚𝑎𝑥 −
3

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3    

𝑁𝑣 =
1

𝑣 𝑚𝑎𝑥
𝑁𝑆1  𝑌𝑟 =

1

𝑟 𝑚𝑎𝑥
𝑁𝐶1  𝑁𝑟𝑣𝑣 =

1

𝑟𝑚𝑎𝑥 𝑣2  𝑁𝑆1 − 𝑁𝑟𝑟𝑚𝑎𝑥 −
3

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3    
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2.3.5.3 Speed variation test 

Surge-derivatives such as 𝑋𝑢 , 𝑋𝑢𝑢 , and 𝑋𝑢𝑢𝑢  in (2.18) are determined by repeat-

ing the static drift test at the 𝛽 = 0 for a range of 𝑈 (i.e. 𝑈𝐶).  The static drift 𝑋 at 𝛽 = 0, 

the steady reference state value 𝑋∗, corresponds to the resistance of the model at the 

speed 𝑈 as no propeller is working.  If the model towing speed is changed, say 𝑈 + Δ𝑢, 

the 𝑋∗ value will change as the model resistance increase (or decrease) such that   

 

𝑋∗ 𝑈 + Δ𝑢 = 𝑋∗ 𝑈 + Δ𝑋         (2.33) 

The changes in resistance Δ𝑋 in (2.33) can be written using a Taylor series expansion as 

 

Δ𝑋 = 𝑓 𝑢 =
𝜕𝑋

𝜕𝑢
Δ𝑢 +

1

2

𝜕2𝑋

𝜕𝑢2 Δ𝑢2 +
1

6

𝜕3𝑋

𝜕𝑢3 Δ𝑢3 + ⋯    (2.34) 

where the differentiations of 𝑋 are evaluated at Δ𝑢 = 0 or 𝑢 = 𝑈, which are identical 

with the definitions of surge hydrodynamic derivatives.  When the test is repeated over a 

range of 𝑈, the measured 𝑋 values can be expressed as a polynomial function of Δ𝑢 =

𝑢 − 𝑈 as 

 

𝑓 𝑢 = 𝑎0 + 𝑎1Δ𝑢 + 𝑎2Δ𝑢
2 + 𝑎3Δ𝑢

3 + ⋯      (2.35) 

and hydrodynamic derivatives 𝑋𝑢 , 𝑋𝑢𝑢 , 𝑋𝑢𝑢𝑢  are determined as following: 

 

𝑋𝑢 =
𝜕𝑓

𝜕𝑢
= 𝑎1         (2.36a) 

𝑋𝑢𝑢 =
1

2

𝜕2𝑓

𝜕𝑢2
= 𝑎2         (2.36b) 

𝑋𝑢𝑢𝑢 =
1

6

𝜕3𝑓

𝜕𝑢3
= 𝑎3        (2.36c) 

Derivatives such as 𝑋𝑣𝑣, 𝑌𝑣, 𝑁𝑣, and 𝑋𝑟𝑟 , 𝑌𝑟 , 𝑁𝑟 , and 𝑋𝑣𝑟  evaluated at 𝑈 may also change 

with Δ𝑢 and can be expressed as appropriate polynomial functions 𝑓 𝑢  similarly as 
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(2.35) by repeating the static drift tests, pure yaw test, and yaw and drift test, respective-

ly.  Subsequently, the surge-coupled hydrodynamic derivatives such as 𝑋𝑣𝑣𝑢 , 𝑋𝑟𝑟𝑢 , 𝑋𝑣𝑟𝑢 , 

𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , 𝑁𝑣𝑢𝑢  are determined as following:  

 

 
𝑋𝑣𝑣𝑢 , 𝑋𝑟𝑟𝑢 , 𝑋𝑣𝑟𝑢

𝑌𝑣𝑢 , 𝑌𝑟𝑢
𝑁𝑣𝑢 , 𝑁𝑟𝑢

 =
𝜕𝑓

𝜕𝑢
= 𝑎1        (2.37a) 

 𝑌𝑣𝑢𝑢 , 𝑌𝑟𝑢𝑢
𝑁𝑣𝑢𝑢 , 𝑁𝑟𝑢𝑢

 =
1

2

𝜕2𝑓

𝜕𝑢2 = 𝑎2         (2.37b) 
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CHAPTER 3 TEST DESIGN 

3.1 Facility and coordinate systems 

3.1.1 Towing Tank 

Tests are conducted at the IIHR towing tank shown in Fig. 3-1.  The tank is 100 m 

long, 3.048 m wide and 3.048 m deep, and equipped with a drive carriage, PMM car-

riage, Krypton camera module, automated wave dampener system, and wave-dampening 

beach.  The drive carriage is instrumented with several data-acquisition computers, speed 

circuit, and signal conditioning for analog voltage measurements of such as forces and 

moments, ship motions, and carriage speed.  The drive carriage pulls the PMM carriage 

that is used as a point of attachment for model 5512.  The Krypton camera module, an 

infrared-camera-based motion tracking system, tracks the dynamic motions of the model.  

Wave dampeners and the wave-dampening beach enable twelve-minute intervals between 

carriage runs that is determined sufficient based on visual inspection of the free surface. 

 

 

 

Figure 3-1 IIHR towing tank facility and maneuvering experimental setup. 
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3.1.2 PMM 

Design and construction of the PMM is a collaborative effort by Sanshin Seisaku-

sho Ltd. and Mori Engineering Ltd. for the mechanical and electrical systems, respective-

ly.  A four-wheel carriage supports the main PMM mechanical system that is towed be-

hind the IIHR drive carriage.  The mechanical system is a scotch-yoke type which con-

verts rotational motion of an 11 kW AC servo motor to linear sway motion of a sway box 

and angular yaw motion of a yaw platter beneath the sway box (Fig. 3-2).  The scotch 

yoke is driven through a control rack, PC, and software up to 0.25 Hz with maximum 

sway and yaw amplitudes of ±500 mm and ±30, respectively.  Two types of strongback, 

long (4 m) and short (1.5 m), are attached to the yaw platter for fixed- and free-mount 

conditions (See Section 3.2), respectively.  Each strongback is pre-settable at drift angle 

𝛽 between ±30.  Factory calibrated linear and rotational potentiometers are installed on 

the PMM carriage to monitor and report the sway and yaw positions of the sway box and 

yaw platter, respectively.  Static calibrations of the linear potentiometers are conducted 

periodically to check their output. 

 

 

Figure 3-2 Top view of PMM carriage (top left), close up of the scotch yoke drive (top 
right), and towing tank PMM test coordinate systems (bottom). 
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3.1.3 Coordinate systems 

The Earth-fixed (or the Towing-tank-fixed) 𝑥𝐸-𝑦𝐸  coordinate system (See Fig. 3-

3) can be fixed at any arbitrary position in the towing tank, with its longitudinal axis 𝑥𝐸  

aligned with the towing tank centerline and pointed to the towing direction. 

 

 

Figure 3-3 Coordinate systems for PMM test (Not scaled). 

PMM-fixed 𝑥𝑃𝑀𝑀 -𝑦𝑃𝑀𝑀  coordinate system (See Fig. 3-3) is fixed at the PMM 

carriage, traveling at a constant speed 𝑈𝐶 , with its lateral axis 𝑦𝑃𝑀𝑀  placed normal to the 

towing tank centerline.  PMM motions for the Sanshin PMM carriage basically can be 

described in the PMM-fixed coordinate system by five quantities.  These include 1) the 

carriage speed 𝑈𝐶 , 2) sway crank amplitude 𝑆𝑚𝑚 , 3) yaw motion amplitude 𝜓max , 4) drift 

angle 𝛽, and 5) the number of PMM rotations per minute N.  The following relations are 

used to setup static and dynamic tests according to the test conditions: 
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𝑦𝑃𝑀𝑀 = −2𝑆𝑚𝑚 sin 𝜔𝑡        (3.1a)  

𝑣𝑃𝑀𝑀 = −2𝑆𝑚𝑚 𝜔 cos 𝜔𝑡        (3.1b) 

𝑣 𝑃𝑀𝑀 = 2𝑆𝑚𝑚 𝜔2 sin 𝜔𝑡        (3.1c) 

𝜓 = −𝜓𝑚𝑎𝑥 cos 𝜔𝑡 + 𝛽        (3.1d) 

𝑟𝑃𝑀𝑀 = 𝜓𝑚𝑎𝑥 𝜔 sin 𝜔𝑡        (3.1e) 

𝑟 𝑃𝑀𝑀 = 𝜓𝑚𝑎𝑥 𝜔2 cos 𝜔𝑡       (3.1f)  

where, 𝜔 = 2𝜋N 60 .   

Ship-fixed 𝑥-𝑦 coordinate system is fixed at the midship point of the model with 

its x and y coordinates aligned with the model longitudinal and lateral directions, respec-

tively, and pointing to upstream and to the starboard side, respectively (See Fig. 3-3).  

The ship motion parameters such as model velocities and accelerations (at the midship 

point) in the ship-fixed coordinate system can be written using (2.7) as following: 

 

𝑢 = 𝑈𝐶 cos 𝜓 + 𝑣𝑃𝑀𝑀 sin 𝜓       (3.2a) 

𝑢 = 𝑣 𝑃𝑀𝑀 sin 𝜓 + 𝑟 𝑣𝑃𝑀𝑀 cos 𝜓 − 𝑈𝐶 sin 𝜓      (3.2b) 

𝑣 = 𝑣𝑃𝑀𝑀 cos 𝜓 − 𝑈𝐶 sin 𝜓       (3.2c) 

𝑣 = 𝑣 𝑃𝑀𝑀 cos 𝜓 − 𝑟 𝑈𝐶 cos 𝜓 + 𝑣𝑃𝑀𝑀 sin 𝜓     (3.2d) 

𝑟 = 𝑟𝑃𝑀𝑀          (3.2e) 

𝑟 = 𝑟 𝑃𝑀𝑀          (3.2f) 

Note that the carriage acceleration is assumed to be zero, i.e. 𝑈 𝐶  = 𝑢 𝐸  = 0.  The motion 

parameters in (3.2) are shown as dimensional while those can be non-dimensionalized 

using the Prime-System shown in (2.26) when necessary. 

For the PIV applications of the PMM, the PMM-fixed 𝑥𝑃𝑀𝑀 -𝑦𝑃𝑀𝑀  coordinate 

system that is advancing forward with UC is considered as stationary, instead an incoming 
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free stream velocity 𝑈𝐶  is assumed, as depicted in Fig. 3-4.  In the figure, the PMM-fixed 

𝑥𝑃𝑀𝑀  and 𝑦𝑃𝑀𝑀  coordinates are re-designated as 𝑋 and 𝑌, respectively, and the direction 

of 𝑋 coordinate is reverted from Fig. 3-3, pointing to downstream .  Then, the PMM mo-

tion equations (3.1a) and (3.1d) are re-described as  

 

𝑌 = −𝑌0 sin 𝜔𝑡        (3.3a) 

𝜓 = −𝜓0 cos 𝜔𝑡        (3.3b)  

respectively, where 𝑌0 and 𝜓0 are renamed from 2𝑆𝑚𝑚  and  𝜓𝑚𝑎𝑥  in (3.1a) and (3.1d), 

respectively, and for (3.3b) the drift angle 𝛽 in (3.1d) is set to zero.  Accordingly, the 

sway velocity and the yaw rate, with designated as 𝑉𝑃 and 𝑟, respectively, are written as 

 

𝑉𝑃 = −𝑌0𝜔 cos 𝜔𝑡         (3.4a) 

𝑟 = 𝜓0𝜔 sin 𝜔𝑡         (3.4b) 

by re-describing the equations (3.1b) and (3.1e), respectively.   

In Fig. 3-4, the ship-fixed 𝑥-𝑦 coordinate system is fixed at the forward perpendi-

cular (FP) position and the direction of the 𝑥 coordinate is reverted from that in Fig. 2-3, 

pointing to the stern side of the model.  Then, as the model is undergoing a reciprocal lat-

eral sway motion 𝑌 and an angular yaw motion 𝜓 with pivoted at the midship point 

(𝑥0,𝑦0), as per the equations (3.3a) and (3.3b), respectively, the free stream velocity 𝑈𝐶  

can be described in the ship-fixed coordinate system.  For a field point P(𝑥,𝑦) shown in 

Fig. 8, the free stream velocity components in 𝑥 and 𝑦 directions of the ship-fixed coor-

dinate system, with designated as 𝑢𝑃  and 𝑣𝑃 , respectively, are written as 

 

𝑢𝑃 = 𝑈𝐶 cos 𝜓 + 𝑉𝑃 sin 𝜓 − 𝑟 ⋅ 𝑑𝑦      (3.5a) 

𝑣𝑃 = −𝑈𝐶 sin 𝜓 + 𝑉𝑃 cos 𝜓 + 𝑟 ⋅ 𝑑𝑥      (3.5b) 
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where  

 

𝑑𝑥 = 𝑥 – 𝑥0          (3.6a) 

𝑑𝑦 = 𝑦 – 𝑦0         (3.6b) 

and (𝑥0, 𝑦0) = (0.5L, 0) , where L is the model length, is the mid-ship location or the yaw 

motion pivot point in the ship-fixed coordinate system. 

 

 

Figure 3-4 Coordinate systems for PIV test (Not scaled).  
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3.2 Model 

The model geometry is DTMB model 5512 (Fig. 3-5), a 1:46.6 scale, LPP = 3.048 

m, fiber-reinforced Plexiglas hull with block coefficient, CB = 0.506.  DTMB model 5512 

is a geosim of DTMB model 5415, which is a 1:24.8 scale, LPP = 5.72 m model of the 

U.S. Navy‟s pre-contract design for a surface combatant (DDG-51) ca. 1980 with a sonar 

dome bow and transom stern.  The model was manufactured at the Naval Surface War-

fare Center (NSWC) of USA Navy.  The model is un-appended except for port and star-

board bilge keels, i.e., not equipped with shafts, struts, propulsors, or rudders.  To initiate 

transition to turbulent flow, a row of cylindrical studs of 1.6 mm height and 3.2 mm di-

ameter are fixed with 9.5 mm spacing at x = 0.45 (x = 0 at the mid-ship, forward posi-

tive).  The stud dimensions and placement on the model are in accordance with the rec-

ommendations by the 23
rd

 ITTC (ITTC, 2002). 

 

 

 

 

Figure 3-5 Photographs of DTMB model 5512.  The top view highlights the bilge keels. 
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Table 3-1 Full- and model-scale particulars.  

 Ship IIHR FORCE INSEAN 

  Fix mount Free mount   

Scale - 1 : 1 1 : 46.588 1:35.48 1:24.83 

𝐿 (𝐿𝑃𝑃) m 142.00 3.048 4.0023 5.7200 

𝐿𝑊𝐿 m 142.18 3.052 4.0083 5.7273 

𝐵𝑊𝐿  m 19.10 0.410 0.5382 0.7690 

𝑇 (𝑇𝑚 ) m 6.16 0.136 0.1736 0.2480 

∇ m3 8472 0.086 0.1897 0.5540 

Δ Ton 8684 0.086 0.1897 0.5540 

𝐶𝑏  - 0.506 0.506 0.506 0.506 

𝑚 Kg  83.35 82.55 235.9 N/A 

𝑥𝐺  m  -0.0157  N/A 

𝑦𝐺  m  0.0000  N/A 

𝑧𝐺  m  N/A 0.084 N/A N/A 

𝐼𝑥  Kgm2  N/A 1.98 N/A N/A 

𝐼𝑦  Kgm2  N/A 53.88 225.3 1151.4 

𝐼𝑧  Kgm2  44.35 49.99 235.9 N/A 

 

 

Model- and full-scale geometric parameters for 5512 are summarized in Table 3-

1.  The length between perpendiculars LPP, length at the design waterline LWL, beam at 

the design waterline BWL, mean draft Tm, volume , displacement , block coefficient 

CB, and the longitudinal and transverse center of gravity (COG) xG and yG are provided 

by NSWC.  Total mass m of the model is a sum of element mass parts including the bare 

model (shell), several ballast weights, and several fixing parts for model mounting.  The 

vertical COG zG is determined using the added ballast method as per M. Irvine et al. 

(2008).  The moments of inertia in roll and pitch Ix and Iy are determined using the pendu-

lum method as well per M. Irvine et al. (2008) by measuring the roll and pitch gyradius, 

respectively.  The yaw moment of inertia Iz is determined by using a forced-yaw me-

thod6.  Lastly, the FORCE and INSEAN model scale particulars are as well included in 

Table 3-1.   

                                                 

6 Model is placed in air and forced to oscillate sinusoidally in yaw with known amplitude 𝜓 and 

frequency 𝜔 to measure the yaw moment 𝑀𝑧 .  Then, the yaw moment of inertia 𝐼𝑧  can be deter-

mined from the relation 𝑀𝑧 = 𝐼𝑧 ⋅ 𝑟 , where 𝑟 = 𝜓𝜔2 and 𝐼𝑧 , for a set of combinations of 𝜓 and 𝜔 

using such as a least-square-error method. 
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3.3 Mount and Mount Conditions 

Model is installed to PMM using two types of mount, fix- or free-mount shown in 

Fig. 3-6 (a) and (b), respectively.  The fix-mount constrains the model in all motions, 

whereas the free-mount allows the model to move freely in selective motions such as 

heave, pitch, and roll.  The free-mount consists of the short strongback and a combination 

of three balances, the fore, midship, and aft balances that are identical in shape.  Each 

balance is a crank-assembly with counter weights (colored in yellow in the figure) for a 

neutral angular moment of each crank part.  The balances allow the model to move freely 

in heave and pitch while the mid balance (placed in normal direction with respect to the 

other balances) prevents the relative surge motion of the model while towed.  At the end 

of each balance, two types of joints using roller or spherical bearings are used for model 

connection; the former prevents and the latter allows the roll motion, respectively, while 

transmitting the heave and pitch motions of the model.   

Tests are carried out four mount conditions: 1) fixed at evenkeel (FX0); 2) fixed 

sunk and trim (FX); 3) free to heave and pitch (FRz); and 4) free to heave, pitch and 

roll (FRz).  The FX0 and FX mount conditions are the model installations using the 

fix-mount (fixed-model setup, Fig. 3-6c).  For the installations, the model is first assem-

bled rigidly with the fix-mount and then ballasted to the static waterline position for the 

FX0 condition and to the dynamic sinkage ( = 0.192  10
-2

 L) and trim ( = -0.136, bow 

down) corresponding to Fr = 0.280 for the FX condition, respectively.  The FRz and 

FRz mount conditions are using the free-mount (free-model setup, Fig. 3-6d).  Model is 

first ballasted to the static waterline and then connected to the free-mount using the roller 

joint for the FRz condition and using the spherical joint for the FRz condition, respec-

tively.  A summary of the mount conditions are presented in Table 3-2. 
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(a) (b) 

 

 
 

  
(c) (d) 

Figure 3-6 Sideviews show: (a) fixed- and (b) free-mounts, and (c) fixed- and (d) free-
model setups. 

 

Table 3-2 Mount Conditions. 

Motion 
Mount conditions 

FX0 FX FRz FRz 

Surge (x) Forced Forced Forced Forced 
Sway (y) Forced Forced Forced Forced 

Yaw () Forced Forced Forced Forced 

Heave (z) Fixed at 0.0 Fixed at 1.920910-3L Free Free 

Pitch () Fixed at 0.0 Fixed at -0.136 Free Free 

Roll () Fixed at 0.0 Fixed at 0.0 Fixed at 0.0 Free 
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3.4 Test Conditions 

Test conditions are summarized in Table 3-3.  Static drift tests are conducted at 

three towing speeds corresponding to Fr = 0.138, 0.280, and 0.410, which are the low, 

medium, and high Fr condition, respectively.  For low and medium Fr conditions, drift 

angle 𝛽 values are varied between 20, whereas between 12 for the high Fr condition 

limited by the capacity of load-cell.  The largest drift angle values correspond to sway 

velocities 𝑣 = 0.342 and 0.208, respectively.  The angles are distributed symmetrically 

with respect to the 𝛽 = 0∘ line, i.e. the model towing direction, but distributed unevenly 

with clustered around 𝛽 = ±10.  Pure sway tests are carried out at medium 𝐹𝑟 only and 

at three maximum drift angles 𝛽𝑚𝑎𝑥  = 2, 4, 10 which correspond to the maximum 

sway velocity values 𝑣𝑚𝑎𝑥  = 0.035, 0.070, 0.174, respectively.  Pure yaw tests are carried 

out for all three 𝐹𝑟 cases, at six maximum yaw rates 𝑟max  = 0.05, 0.15, 0.30, 0.45, 0.60, 

and 0.75 for low and medium 𝐹𝑟 cases and at first four maximum yaw rates for high 𝐹𝑟 

case, respectively, again limited by load-cell capacity.  Yaw and drift tests are carried out 

for medium 𝐹𝑟 case only and at three drift angles 𝛽 = 9, 10, and 11 with the maximum 

yaw rate fixed at 𝑟max  = 0.3.   

Sway motion amplitude 2𝑆𝑚𝑚 , yaw motion amplitude 𝜓max , and drift angle 𝛽 

used in (3.1) are determined to yield the motion parameters such as sway 𝑣max , 𝑣 max  and 

𝑟max , 𝑟 max  with considerations of minimizing interferences between the PMM motions 

and the tank walls.  PMM motion frequency N values are determined to avoid possible 

hydrodynamic effects such as tank resonance and memory effects associated with the dy-

namic tests.  Typically, PMM motion frequencies are restricted in terms of three non-

dimensional frequencies: 𝜔1 = 𝜔𝐿 𝑈𝐶 , 𝜔2 = 𝜔 𝐿 𝑔 , and 𝜔3 = 𝜔𝑈𝐶 𝑔 , where 𝜔 is the 

PMM motion frequency and 𝑔 is the local value of gravity.  𝜔1 is related to non-

stationary lift and memory effects (Nomoto 1975, Wagner Smitt & Chislett 1974, Mila-

nov 1984, van Leeuwen 1969), 𝜔2 is related to tank resonance, and 𝜔3 is related to un-
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realistic combinations of pulsation and translation (Brard 1948, Wehausen & Laitone 

1960, van Leeuwen 1964).  The ITTC Recommended Procedures and Guidelines 7.5-02-

06-02.2 „Captive Model Test Procedures‟ recommends 𝜔1 = 1 ∼ 4, 𝜔2 = 0.15 ∼ 0.2, 

and 𝜔3 ≪ 0.25, however, the PMM motion frequencies in the present tests are 𝜔1 =

1.14 ∼ 3.13, 𝜔2 = 0.27 ∼ 0.88, and 𝜔3 = 0.04 ∼ 0.34 due to the facility limitations 

regarding dimensions and capabilities. 

Tests are repeated 12 times at selected conditions (marked as bold characters) for 

the purpose of uncertainty analysis (UA) presented in Chapter 5.  UA cases include  = 

10 for static drift test, 𝛽max  = 10 for pure sway test, 𝑟max  = 0.3 for pure yaw test, and 

𝛽 = 10 for yaw and drift test.  For FX0 and FRz conditions, all the test cases listed in 

Table 3-3 are carried out.  For FX condition, test cases include static drift test at all Fr 

conditions and pure sway and pure yaw tests at the medium Fr conditions.  For FRz 

condition, static drift test at all Fr and dynamic tests only at the UA cases. 

PIV measurements are for pure sway and pure yaw tests.  Both of the pure sway 

and pure yaw tests are carried out at the FR mount condition and at Fr = 0.280.  Test 

cases are highlighted in Table 3-3. 
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Table 3-3 PMM Test conditions.  

Test Fr 𝑈𝐶 𝛽 
𝑦𝑚𝑎𝑥

𝐿
 

𝑣max

𝑈𝐶

 
𝑣 max 𝐿

𝑈𝐶
2  𝛽max  𝜓max  

𝑟max 𝐿

𝑈𝐶

 
𝑟 max 𝐿

𝑈𝐶
2  

𝜔𝐿

𝑈𝐶

 Mount condition 

  (m/s) () (-) (-) (-) () () (-) (-) (-)  

Static 

drift 

0.138 0.754 -20, -16, -12, 

-11, -10‡, -9,   

-6, -2, 0, 2, 6, 
9, 10†, 11, 

12, 16, 20 

0 0 0 - 0 0 0 0 FX0, FX, FRz, FR z 

 0.280 1.531 -20, -16, -12, 
-11, -10‡, -9,   

-6, -2, 0, 2, 6, 

9, 10†, 11, 
12, 16, 20 

0 0 0 - 0 0 0 0 FX0, FX, FRz, FR z 

 0.410 2.241 -12, -11,       -

10‡, -9, -6,   -
2, 0, 2, 6, 9, 

10†, 11, 12 

0 0 0 - 0 0 0 0 FX0, FX, FRz, FR z 

Pure 0.280 1.531 0 0.021 0.035 0.058 2 0 0 0 1.672 FX0, FX, FRz, FR z 

sway   0 0.042 0.070 0.117 4 0 0 0 1.672 FX0, FX, FRz, FR z 

   0 0.104 0.174 0.291 10 0 0 0 1.672 FX0, FX, FRz, FR z 

Pure 0.138 0.754 0 0.013 0 0 - 1.5 0.05 0.10 0.956 FX0, FX, FRz, FR z 

yaw   0 0.040 0 0 - 4.4 0.15 0.29 0.956 FX0, FX, FRz, FR z 

   0 0.080 0 0 - 8.8 0.30 0.58 0.956 FX0, FX,FRz, FR z 

   0 0.120 0 0 - 13.1 0.45 0.87 0.956 FX0, FX, FRz, FR z 

   0 0.104 0 0 - 14.2 0.60 1.49 1.194 FX0, FX, FRz, FR z 

   0 0.128 0 0 - 17.2 0.75 1.82 1.194 FX0, FX, FRz, FR z 

 0.280 1.531 0 0.018 0 0 - 1.7 0.05 0.08 1.672 FX0, FX, FRz, FR z 

   0 0.054 0 0 - 5.1 0.15 0.25 1.672 FX0, FX, FRz, FR z 

   0 0.107 0 0 - 10.2 0.30 0.50 1.672 FX0, FX, FRz, FR z 

   0 0.099 0 0 - 12.0 0.45 0.98 2.150 FX0, FX, FRz, FR z 

   0 0.046 0 0 - 8.2 0.45 1.41 3.127 FX0, FX, FRz, FR z 

   0 0.130 0 0 - 15.6 0.60 1.29 2.150 FX0, FX, FRz, FR z 

   0 0.061 0 0 - 10.9 0.60 1.88 3.127 FX0, FX, FRz, FR z 

   0 0.124 0 0 - 17.2 0.75 1.93 2.502 FX0, FX, FRz, FR z 

   0 0.077 0 0 - 13.5 0.75 2.35 3.127 FX0, FX, FRz, FR z 

 0.410 2.241 0 0.038 0 0 - 2.5 0.05 0.06 1.672 FX0, FX, FRz, FR z 

   0 0.115 0 0 - 7.5 0.15 0.17 1.672 FX0, FX, FRz, FR z 

   0 0.072 0 0 - 8.4 0.30 0.61 2.986 FX0, FX,FRz, FR z 

   0 0.108 0 0 - 12.5 0.45 0.92 2.986 FX0, FX, FRz, FR z 

Yaw 0.280 1.531 9 0.107 0 0 - 10.2 0.30 0.50 1.672 FX0, FX, FRz, FR z 

and   10 0.107 0 0 - 10.2 0.30 0.50 1.672 FX0, FX,FRz, FR z 

drift   11 0.107 0 0 - 10.2 0.30 0.50 1.672 FX0, FX, FRz, FR z 

Bold: UA cases with 12 repeat tests; † UA cases for FX0 and FX conditions; ‡ UA cases for FRz and FR z conditions.  
Highlighted: PIV conditions.  
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3.5 Data Acquisition and Reduction Methodology 

3.5.1 Forces and Moment and Motions 

The present interest is in data acquisition of carriage speed 𝑈𝐶 , forces and mo-

ments (𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧 , 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧), and ship model motions (𝑥𝑃𝑀𝑀 , 𝑦𝑃𝑀𝑀 , 𝑧𝑚𝑚 , 𝜙, 𝜃, 𝜓) for 

static and dynamic PMM tests.  All variables are acquired as time histories through each 

carriage run.  Static test variables (𝐹𝑥 , 𝐹𝑦 , 𝑀𝑧 , 𝑧𝑚𝑚 , 𝜃, 𝜙) are time-averaged whereas dy-

namic test variables (𝐹𝑥 , 𝐹𝑦 , 𝑀𝑧 , 𝑦𝑃𝑀𝑀 , 𝑧𝑚𝑚 , 𝜙, 𝜃, 𝜓) are treated with harmonic analysis 

in the data reduction phases of the study which is explained in further detail below.  

𝑦𝑃𝑀𝑀 , 𝑧𝑚𝑚 , 𝜙, 𝜃, and 𝜓 are measured only for free-model condition tests.  Although not 

used in the data-reduction equations, 𝑥𝑃𝑀𝑀 , 𝐹𝑧 , 𝑀𝑥 , 𝑀𝑦  are also measured to monitor op-

eration of the mount and loadcell.  The measurement details for 𝑈𝐶  are presented in Lon-

go and Stern, (2005).  First, the data reduction equations for static and dynamic PMM 

tests are presented followed by the data-reduction methodology. 

The data reduction equations (DRE‟s) for hydrodynamic forces and moment are:  

 

𝑋 = 
𝐹𝑥 +𝑚 𝑢 −𝑣𝑟−𝑥𝐺𝑟2−𝑦𝐺𝑟  

1
2
𝜌 𝑢2+𝑣2 𝐿𝑇

         (3.7a)  

𝑌 = 
𝐹𝑦 +𝑚 𝑣 +𝑢𝑟−𝑦𝐺𝑟2+𝑥𝐺𝑟  

1
2
𝜌 𝑢2+𝑣2 𝐿𝑇

       (3.7b)  

𝑁 = 
𝑀𝑧+𝐼𝑧𝑟 +𝑚 𝑥𝐺 𝑣 +𝑢𝑟  −𝑦𝐺 𝑢 −𝑣𝑟  

1

2
𝜌 𝑢2+𝑣2 𝐿2𝑇

       (3.7c) 

where 𝑦𝐺  is assumed as non-zero from equations (2.1) for the purpose of uncertainty 

analysis in Section 5.1.  Although the equations (3.7) are technically applicable DRE‟s 

for all tests herein, they can be simplified considerably by dropping the inertia terms for 

the case of static drift tests, which is done below in equations (3.8). 

 

𝑋 = 
𝐹𝑥

1

2
𝜌𝑈𝐶

2𝐿𝑇
         (3.8a)  
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𝑌 = 
𝐹𝑦

1

2
𝜌𝑈𝐶

2𝐿𝑇
         (3.8b)  

𝑁 = 
𝑀𝑧

1

2
𝜌𝑈𝐶

2𝐿2𝑇
         (3.8c) 

The PMM motion parameters 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , and 𝑟  in (3.7) are derived from the measured 

sway displacement 𝑦𝑃𝑀𝑀  and yaw angle 𝜓 data by using the coordinate transformations 

between the ship-fixed and PMM-fixed reference frames shown in (3.2).  For this, first, 

time histories of the 𝑦𝑃𝑀𝑀  and 𝜓 data are FS reconstructed by using (3.11) for 𝜒 = 𝑦𝑃𝑀𝑀  

and 𝜓, respectively, and then 𝑣𝑃𝑀𝑀 , 𝑣 𝑃𝑀𝑀  and 𝑟𝑃𝑀𝑀 , 𝑟 𝑃𝑀𝑀  are obtained through succes-

sive differentiations of the 𝜒‟s with respect to time 𝑡, respectively.  The motions data, 

heave 𝑧, pitch 𝜃, and roll 𝜙 are not reduced except for the nondimensionalization of 𝑧 

with the ship length 𝐿,  

 

 𝑧 =
𝑧𝑚𝑚

𝐿
          (3.9) 

where the 𝑧𝑚𝑚  is dimensional heave data as measured in mm unit.   

For dynamic tests, time-histories of the data can be expressed in harmonic forms 

using a 6
th

-order Fourier-series (FS) equation as following:  

 

𝜒 𝑡 = 𝜒0 +   𝜒𝑆𝑛 sin 𝑛𝜔𝑡 + 𝜒𝐶𝑛 cos 𝑛𝜔𝑡 6
𝑛=1      (3.10a) 

where, 

𝜒0 =
1

𝑀
 𝜒𝑖

𝑀
𝑖=1          (3.10b) 

𝜒𝑆𝑛 =
2

𝑀
 𝜒𝑖 sin 𝑛𝜔𝑡𝑖 

𝑀
𝑖=1         (3.10c) 

𝜒𝐶𝑛 =
2

𝑀
 𝜒𝑖 cos 𝑛𝜔𝑡𝑖 

𝑀
𝑖=1        (3.10d) 

Here, 𝜒 is either 𝑋, 𝑌, 𝑁, 𝑧, 𝜃, or 𝜙, subscript 𝑛 is the order of the FS, 𝑀 is the total 

number of data for FS, 𝜒𝑖  is the data sample at time 𝑡𝑖 , 𝜔 is the PMM frequency, and 𝜒𝐶𝑛  
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and 𝜒𝑆𝑛  are the 𝑛th
-order cosine and sine harmonic amplitudes, respectively.  Alternative-

ly, (3.10) can also be expressed as  

 

𝜒 𝑡 = 𝜒0 +  𝜒𝑛 cos 𝑛𝜔𝑡 + 𝜑𝜒𝑛  
6
𝑛=1       (3.11a) 

where 

𝜒𝑛 =  𝜒𝑆𝑛
2 + 𝜒𝐶𝑛

2          (3.11b) 

𝜑𝜒𝑛 = − arctan  
𝜒𝑆𝑛

𝜒𝐶𝑛
         (3.11c) 

where, 𝜒𝑛  and 𝜑𝑛  are the 𝑛th
-order harmonic amplitude and phase, respectively, and 𝜒0, 

𝜒𝑆𝑛 , and 𝜒𝐶𝑛  are as per (3.10).   

3.5.2 Phase-Averaged Flow field 

Data acquisition includes carriage speed 𝑈𝐶 , PMM sway displacement 𝑌 and yaw 

angle 𝜓, and the flow velocity components 𝑈𝑖  where 𝑖 = 1, 2, 3 for 𝑈, 𝑉, 𝑊, respectively.  

All variables are acquired at a number 𝑁 of phase 𝛾 positions per each PMM cycle of 

frequency 𝑓𝑃𝑀𝑀 , and a total number 𝐿 of data acquisitions during a carriage run where 

typically two and three quarters of PMM cycles are made.  The nominal value of the 

phase position is given as 𝛾 =  𝑛 − 1 ⋅ Δ𝛾 for 𝑛 = 1, …, 𝑁, where the phase interval Δ𝛾 

= 2𝜋 𝑁 .  If 𝑁 = 32 phase positions per one PMM cycle, for example, a total 𝐿 = 88 data 

per one carriage run and a Δ𝛾 = 11.25 of phase interval.  The data acquisition procedure 

is repeated for a total number 𝐾 of carriage runs, accumulating data for the phase-

averaging purpose. 

The data acquisition time-point 𝑡𝑘,𝑙  of the 𝑙th
 data from the 𝑘th

 carriage run is writ-

ten as, 

 

𝑡𝑘,𝑙 = 𝑡0𝑘
+  𝑙 − 1 ⋅ Δ𝑡        (3.12) 
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for 𝑘 = 1, …, 𝐾 and 𝑙 = 1, …, 𝐿, where 𝑡0𝑘
 is the time when the first data sample of the 

𝑘th
 carriage run is acquired and Δ𝑡 =  𝑓𝑃𝑀𝑀  −1 𝑁  is the time interval between adjacent 

data samples.  Subsequently, the 𝑈𝐶 , 𝑌, 𝜓, and 𝑈𝑖  data acquired at time 𝑡𝑘,𝑙  are designat-

ed as 𝑈𝐶𝑘,𝑙
, 𝑌𝑘,𝑙 , 𝜓𝑘,𝑙 , and 𝑈𝑖𝑘,𝑙

, respectively.  The acquisition of 𝑈𝐶𝑘,𝑙
, 𝑌𝑘,𝑙 , and 𝜓𝑘,𝑙  data 

is the time-mean of twenty-five samplings of 𝑈𝐶 , 𝑌, and 𝜓 signal, respectively, for a short 

time period, a 100 s, and the acquisition of 𝑈𝑖𝑘,𝑙
 is result from cross-correlation of the 

Stereo PIV image pairs take at time 𝑡𝑘,𝑙 .   

The phase position 𝛾 (not the nominal value but the actual value) at each data ac-

quisition time 𝑡𝑘,𝑙 , designated as 𝛾𝑘,𝑙 , may be found using the 𝑌𝑘,𝑙  and 𝜓𝑘,𝑙  data from the 

equations (3a) and (3b) in Section 3.1.2, along with the relationship 𝛾 = 𝜔𝑡, such that7 

 

𝛾𝑘,𝑙 = arctan  
𝑌𝑘,𝑙 𝑌0𝑘   

𝜓𝑘,𝑙 𝜓0𝑘   
         (3.13)  

where, 𝑌0𝑘
 and 𝜓0𝑘

 are the sway and yaw motions amplitudes of the 𝑘th
 carriage run, re-

spectively, evaluated using Fourier Series expressions of the 𝑌𝑘,𝑙  and 𝜓𝑘,𝑙  data such that 

 

𝑌0𝑘
= −

2

𝐿𝐹𝑆
  𝑌𝑘,𝑙 ⋅ sin 𝜔𝑡𝑘,𝑙  

𝐿𝐹𝑆
𝑙=1       (3.14) 

𝜓0𝑘
= −

2

𝐿𝐹𝑆
  𝜓𝑘,𝑙 ⋅ cos 𝜔𝑡𝑘,𝑙  

𝐿𝐹𝑆
𝑙=1       (3.15)  

where, 𝐿𝐹𝑆  = 𝑛𝑐𝑦𝑐𝑙𝑒 ⋅ 𝑁 and 𝑛𝑐𝑦𝑐𝑙𝑒  is the (integer) number of PMM cycles from the 𝑘th
 

carriage run.   

The PIV measured velocity data 𝑈𝑖 𝑘,𝑙
 are normalized with the carriage speed 𝑈𝐶𝑘,𝑙

 

measured at the same time instant, 𝑡𝑘,𝑙 , as  

 

                                                 

7 For pure sway tests, where the yaw amplitude 𝜓0 = 0 in equation (3.3b); the phase is 𝛾𝑘,𝑙 =

arcsin −𝑌𝑘,𝑙 𝑌0𝑘
  .  
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𝑈𝑖𝑘,𝑙
∗ = 𝑈𝑖 𝑘,𝑙

𝑈𝐶𝑘,𝑙
          (3.16) 

Note that, hereafter, the „*‟ symbol in (3.16) is omitted for simplicity as only the norma-

lized velocity is of interest herein, otherwise mentioned.  Then, the 𝑈𝑖𝑘,𝑙
 data are sorted 

into 𝑁 phase-groups by approximating the corresponding 𝛾𝑘,𝑙  value to the nearest nomin-

al phase value, collecting a total number of 𝑀 data for each phase-group.  Subsequently, 

the 𝑈𝑖𝑘,𝑙
 data are re-indexed as 𝑈𝑖𝑚,𝑛

 for 𝑛 = 1, …, 𝑁 and 𝑚 = 1, …, 𝑀, indicating the 

𝑚th
 data of the 𝑛th

 phase-group.   

For a given 𝑛th
 phase-group, the phase-averaged velocity component  𝑈𝑖  can be 

computed from 𝑈𝑖𝑚,𝑛
 data such that 

 

 𝑈𝑖 =   𝑈𝑖𝑚,𝑛
𝑀
𝑚=1  𝑀         (3.17) 

respectively for 𝑖 = 1, 2, 3.  Then, the turbulent velocity 𝑢𝑖  for 𝑈𝑖𝑛 ,𝑚
 data is defined as the 

deviation from the phase-averaged velocity  𝑈𝑖  such as 

 

𝑢𝑖 𝑛,𝑚
= 𝑈𝑖 𝑛,𝑚

−  𝑈𝑖         (3.18) 

Next, the phase-averaged turbulent Reynolds stress at the 𝑛th
 phase is defined as the 

(co)variance between the turbulent velocity components and evaluated as 

 

 𝑢𝑖𝑢𝑗  =   𝑢𝑖 𝑛,𝑚
⋅ 𝑢𝑗 𝑛,𝑚

𝑀
𝑚=1  𝑀       (3.19) 

respectively for 𝑖, 𝑗 = 1, 2, or 3.  Note that, the „  ‟ symbol used for phase-averaged ve-

locity 𝑈𝑖  in (3.17) and Reynolds stress 𝑢𝑖𝑢𝑗  in (3.19) is omitted hereafter for simplicity. 

Turbulent kinetic energy 𝑘 and axial vorticity 𝜔𝑥  are evaluated from the phase-

averaged Reynolds stress 𝑢𝑖𝑢𝑗  and velocity 𝑈𝑖  fields, respectively.  The turbulent kinetic 

energy is defined as one half of the sum of the phase-averaged Reynolds stress compo-

nents 𝑢𝑖𝑢𝑖  such that 
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𝑘 =
1

2
 𝑢𝑢 + 𝑣𝑣 + 𝑤𝑤        (3.20) 

The axial vorticity is the spatial differentiations of the phase-averaged cross-plane veloci-

ty components such that 

  

 𝜔𝑥 =
𝜕𝑊

𝜕𝑦
−

𝜕𝑉

𝜕𝑧
         (3.21)  

where 𝑦 and 𝑧 are both non-dimensional with the model length L.  Note that the vorticity 

components in the transverse and vertical directions are not evaluated, as no longitudinal 

gradient information is available from the stereo PIV data. 

On the other hand, the 𝑈𝐶 , 𝑌, and 𝜓 data are as well used to determine the free 

stream velocity components 𝑢𝑃  and 𝑣𝑃  (See Section 3.1.2) for the UA purposes in Sec-

tion 5.2.  For this, sway velocity 𝑉𝑃 and yaw rate 𝑟 are calculated from the 𝑌 and 𝜓 data, 

respectively, from which 𝑢𝑃  and 𝑣𝑃  at a field point (𝑥,𝑦) are evaluated along with the 𝑈𝐶  

and 𝜓 data as per the following equations  

 

 𝑢𝑃 = 𝑈𝐶 cos 𝜓 + 𝑉𝑃 sin 𝜓 − 𝑟 ⋅ 𝑑𝑦      (3.5a)  

 𝑣𝑃 = −𝑈𝐶 sin 𝜓 + 𝑉𝑃 cos 𝜓 + 𝑟 ⋅ 𝑑𝑥      (3.5b)  

respectively, derived in Section 3.1.2. 

First, the mean carriage speed 𝑈𝐶  is calculated from the 𝑈𝐶𝑘,𝑙
 data as 

 

 𝑈𝐶 =      𝑈𝐶𝑘,𝑙
𝐿
𝑙=1  𝐿  𝐾

𝑘=1  𝐾       (3.22)  

where the inner averaging (for index 𝑙) corresponds to the mean carriage speed of each 

𝑘th
 carriage run, and the outer averaging (for index 𝑘) corresponds to the mean of the all 

𝐾 carriage runs.  



49 
 

 

4
9
 

Next, the 𝑉𝑃 and 𝑟 values at each PMM phase position 𝛾 are evaluated as per the 

equations (3.3a) and (3.3b) in Section 3.1.2, respectively, and by using the relation 𝛾 = 

𝜔𝑡 as 

 

 𝑉𝑃 = −𝑌0𝜔 cos 𝛾        (3.23)  

 𝑟 = 𝜓0𝜔 sin 𝛾         (3.24)  

where, 𝜔 = 2𝜋𝑓𝑃𝑀𝑀  is the cyclic PMM frequency, and 𝑌0 and 𝜓0 are the mean values of 

𝑌0𝑘
 in (3.14) and 𝜓0𝑘

 in (3.15), respectively, such that  

 

 𝑌0 =   𝑌0𝑘
𝐾
𝑘=1  𝐾         (3.25)  

 𝜓0 =   𝜓0𝑘
𝐾
𝑘=1  𝐾         (3.26)  

The phase position 𝛾 in (3.23) and (3.24) can be calculated similarly as (3.13) such that 

 

 𝛾 = arctan  
𝑌 𝑌0 

𝜓 𝜓0 
         (3.27)  

where 𝑌0 and 𝜓0 are from (3.25) and (3.26), respectively.  Lastly, the mean heading angle 

𝜓 is as well by phase-sorting and re-indexing the 𝜓𝑘,𝑙  data as 𝜓𝑚,𝑛  and by averaging as 

 

 𝑌 =   𝑌𝑚,𝑛
𝑀
𝑚=1  𝑀         (3.28)  

 𝜓 =   𝜓𝑚,𝑛
𝑀
𝑚=1  𝑀         (3.29)  

for each 𝑛th
 phase-group.   
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Figure 3-7 Data flow chart for data acquisition and reduction. 

3.6 Measurement Systems and Calibration Procedures 

3.6.1 Carriage Speed 

Carriage speed is measured with an IIHR-designed and built speed circuit.  The 

operating principle is integer pulse counting at a wheel-mounted encoder.  The hardware 

consists of an 8000-count optical encoder, carriage wheel, sprocket pair and chain, ana-

log-digital (AD) converter, and PC.  Linear resolution of the encoder, sprocket pair and 
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chain, and wheel assembly is 0.15 mm/pulse.  The speed circuit is periodically bench-

calibrated to determine and adjust the frequency input/voltage output transfer function. 

3.6.2 6-componet loadcell 

Three forces and three moments are measured with an Izumi six-component 

strain-gage type loadcell, six Izumi amplifiers, 16-channel AD converter and PC.  Maxi-

mum force and moment ranges are 500 N for Fx, Fy, Fz and 50 N-m, 50 N-m, 200 N-m 

for Mx, My, Mz, respectively.  During the tests, the loadcell is calibrated internally at the 

amplifiers periodically.  After the tests, the loadcell is statically calibrated on a test stand 

using standard weights.   

 

  

Figure 3-8 Izumi six-component load cell (left) and Izumi amplifiers (right). 

3.6.3 Motion Tracker 

Ship model motions are measured using a Krypton Electronic Engineering Rodym 

DMM motion tracker.  The Rodym DMM is a camera-based measurement system that 

triangulates the position of a target in 3D space for contactless measurement and evalua-

tion of 6DOF motions.  The hardware consists of a camera module comprising three 

fixed CCD cameras, target with 1-256 light-emitting diodes (LED‟s), camera control unit, 
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hand-held probe with six LED‟s, and PC.  Krypton software is used for system calibra-

tion, and data acquisition and reduction.   

 

 

Figure 3-9 Krypton Electronic Engineering Rodym DMM motion tracker. 

The camera module measurement volume is determined by the overlapping field 

of views of the three CCD cameras.  The measurement volume is 17 m
3
, pyramidal-

shaped with a ±30 viewing angle, and divided into three accuracy zones: (1) 1.5-3.0 m 

distance from camera module, zone #1; (2) 3.0-5.0 m distance from camera module, zone 

#2; and (3) 5.0-6.0 m distance from camera module, zone #3.  Performance assessment 

results for the Rodym DMM using standard coordinate metrology procedures (ISO 

10360-II, VDI 2617) are published by Krypton in a camera verification report as ±0.1 

mm, ±0.2 mm, ±0.3 mm in zones #1, #2, #3, respectively.   

A target with one or more affixed LED‟s is calibrated with the camera module and hand-

held probe.  6DOF ascii data is reported at various data rates (dependent on the number 

of target LED‟s) from the camera controller on six analog channels.  A seventh analog 

channel is used to report visibility of the target during the tests to ensure an unobstructed 

view between the camera module and target as the ship model moves through its trajecto-

ry. 
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3.6.4 Stereo PIV 

The stereo PIV is a LaVision Inc. custom-designed and built measurement system 

(Fig. 3-10).  It consists of a 120 mJ Nd:Yag laser, submerged lightsheet generator, two 

1600x1200 pixel cross-correlation cameras fitted with 50 mm f/1.8 lenses, and computer 

and software for data acquisition and reduction of PIV recordings.  The lenses are 

equipped with motors for automatic remote focusing and aperture adjustments.  The cam-

era bodies are equipped with motors for automatic remote Scheimpflug angle adjust-

ments.   

 

 

 

Figure 3-10 LaVision Stereo PIV System. 
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Both cameras are arranged asymmetrically in submerged enclosures downstream of the 

lightsheet to minimize wave and flowfield effects of the enclosures at the measurement 

area.  The laser, lightsheet generator, and camera enclosures are assembled on a 

lightweight matrix of aluminum extrusions for adjustability and rigidity.  The SPIV sys-

tem is calibrated in situ by submerging and fixing a two-tier LaVision calibration plate in 

the plane of the lightsheet where both camera field of views overlap.  Single images from 

each camera are used to create a mapping function of the plate markers which is used lat-

er to reconstruct 3D velocity vectors from particle image pairs.  The original calibration 

is refined iteratively with a self-calibration procedure to account for translational or rota-

tional misalignment of the calibration plate in the lightsheet plane. 

3.7 Data Acquisition Procedures 

3.7.1 Forces and Moments 

3.7.1.1 Data Acquisition Setup 

The forces and moment experimental setup is as shown in Fig. 3-6 (c) and (d).  

For the fixed-model condition cases (Fig. 3-6c), the yaw platter supports a 4-m strong-

back, rigid post, load cell, fixed mount, and ship model and restrains all translations and 

rotations of the model.  Sinkage and trim is set at the fixed mount for 𝐹𝑋𝜍𝜏  condition 

cases at Fr = 0.28.  For the free-model condition cases (Fig. 3-6d), the yaw platter sup-

ports the loadcell, 1.5-m strongback, three balances that enable pitch, heave, and roll 

(fixed or free) motions and restrains surge, sway, yaw motions.  Roll motion is enabled or 

disabled with spherical or one-degree-of-freedom connection bearings, respectively, at 

the fore and aft balances.  In both fixed and free cases, model 5512 is mounted on the 

tank centerline at its design waterline (except for fixed tests with sinkage and trim) and 

either towed from 𝑧 = 0.01m (fixed) or 𝑧 = 0.0m (free).  Force and moment data cables 

are run to six onboard amplifiers.  For measuring sway position, a linear potentiometer is 
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fixed to the PMM carriage frame and linked to the sway box with wire loop, two pulley 

wheels, and bracket.  For measuring yaw position, a rotational potentiometer is fixed in-

side the sway box and linked to the yaw platter with a wire loop.  Data lines connect both 

potentiometers to amplifiers aboard the drive carriage. 

The Krypton camera module is mounted backward-facing from the rear of the 

drive carriage for an unobstructed view of the LED target.  The target is mounted near the 

bow and over the models centerline such that the LED‟s face the camera module.  The 

targets position places it within zone #1 of the measurement volume.  Axial (xLCG = -

593 mm) and vertical (zLCG = 213 mm) measurements from the target center to the LCG 

are made to enable the Krypton software to shift local measurements at the targets origin 

to the LCG of model 5512.  This shift is setup in software and occurs synchronously as 

data is acquired.  6DOF ascii motion data is reported from the camera controller at 40 Hz.  

Analog data lines from the loadcell, motion tracker, PMM potentiometers, and carriage 

speed circuit are run to the drive carriage to an onboard 16-channel AD card and PC. 

3.7.1.2 Data Acquisition Procedures 

First, at-rest reference voltages are measured for all instruments.  Then, the PMM 

is activated and ten seconds elapse to allow enough time for the motion to reach a steady 

rate.  Next, the carriage is started and accelerates through 10 m to a constant speed.  Data 

acquisition commences after traveling another 10 m which allows the unsteady free sur-

face to develop and reach a state where it is not in transition.  Data acquisition occurs at 

100 Hz / channel for 30, 20, 10 seconds, respectively, for cases where Fr = 0.138, 0.28, 

0.41, respectively.  For static drift tests, the PMM remains inactive during the carriage 

run, however, all other procedures above are followed. 
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3.7.2 Phase-Averaged Flowfield 

3.7.2.1 Data Acquisition Setup 

The phase-averaged flowfield experimental setup is shown in Fig. 3-11.  Model 

5512 is ballasted to its dynamic sinkage and trim for Fr = 0.28 and mounted on the tank 

centerline in the fixed condition.  The PMM scotch yoke is adjusted for a 327.2 mm sway 

amplitude and a maximum heading angle of 10.2°.  PMM potentiometers are incorpo-

rated in the sway carriage and yaw linkage to track the model maneuvers.  Potentiometer 

cabling is run to onboard amplifiers.  The SPIV system is assembled on an automated 

two-axis (y, z) traverse which slides on the 4 m strongback underneath the PMM carriage 

in the x-coordinate.  The laser and lightsheet optics are arranged to deliver a vertical 

lightsheet in the (y, z) crossplane.   

 

 

 

Figure 3-11 Experimental setup for the SPIV flow measurement tests. 
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Standoff distance between the lightsheet generator and the measurement area cen-

ter is 553.91 mm (Fig 3-12).  The cameras are arranged with equal standoff distances be-

tween the enclosures and the measurement area (643.96 mm), 33 of separation between 

cameras, and a 22 angle between camera #1 and the tank axis to provide clearance with 

the model and avoid an extremely shallow angle between camera #2 and the cross plane.  

A minimum separation angle of 30 between cameras is maintained to ensure good mea-

surement quality.   

 

 

Figure 3-12 Overhead view of the Stereo PIV System. 

Power, video, and trigger cables are routed through the strongback to the PIV 

computer onboard the drive carriage.  The laser power supplies ride aboard the PMM car-

riage.  A single umbilical for coolant and electronics cables links the power supplies and 

the laser head.  Laser trigger lines also run through the strongback to the drive carriage 
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PIV computer.  The SPIV computer is equipped with frame grabbers, a programmable 

timing unit, a TTL/IO board, and an 8-channel AD board capable of synchronously ac-

quiring analog voltages and PIV recordings.  An IIHR-designed and -built PIV synchro-

nizer is used to provide equally-spaced trigger pulses to the SPIV computer in order to 

acquire PIV recordings at presettable, repeatable phase angles in the pure yaw maneuver.  

This is achieved as the synchronizer monitors the analog output from the PMM sway po-

tentiometer.  When a predetermined voltage corresponding to 45° on the rising side of the 

sway curve is reached, the synchronizer emits a burst of 32 TTL‟s, each having a 200 

sec pulse width and a time between triggers of 233 ms.  Since the pure yaw motion fre-

quency is f = 0.134 Hz, this enables a SPIV recording every 11.25° equally spaced 

through one PMM period.  The process is then repeated on subsequent PMM cycles. 

3.7.2.2 Data Acquisition Procedures 

First, the PMM is activated and ten seconds elapse to allow enough time for the 

motion to reach a steady rate.  A digital oscilloscope monitors the sway carriage analog 

voltage output and the synchronizer triggers.  When they are synched-up, the carriage is 

started and accelerates through 10 m to a constant speed.  Data acquisition commences 

after traveling another 10 m which allows the unsteady free surface and flowfield to de-

velop and reach a state where they are not in transition.  Data acquisition occurs at 4.288 

Hz for 19 sec enabling 80-90 SPIV recordings or about 2.5 recordings per each of the 32 

phases in the PMM cycle.   

At least 100 carriage runs are performed for a given measurement area position to 

obtain enough recordings at each phase to achieve convergence of the data.  Convergence 

is monitored as the data is acquired and data acquisition is typically stopped when the 

residual in the velocities drops by two orders of magnitude (Section 4.2).  Data acquisi-

tion is completed at several overlapping zones at each x-station in order to piece together 
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a complete picture of the region of interest.  Four or five zones are used at each x-station 

to cover the region of interest. 

3.8 Data Reduction Procedures 

3.8.1 Forces and Moment 

Data is processed in batches with a FORTRAN program on a Windows PC.  

Groups of zero-point and carriage run raw data files are read.  Analog voltages are scaled 

to engineering units with the calibration coefficients and the zero-point correction is 

computed.  For the static drift tests, average values of force and moment are computed 

from the time histories.  For the dynamic tests, the prime frequency of the motion is com-

puted with a fast-Fourier transform (FFT), followed by computation of a 6
th

-order FS ex-

pansion of the forces and moment.  Additionally, the mount-mass effect is computed and 

subtracted from the dynamic data.  For the free-model condition cases, the 6DOF motion 

of the ship model is analyzed as per the forces and moment harmonic analysis.  It is im-

portant to note that that 𝑣𝑃𝑀𝑀 , 𝑣 𝑃𝑀𝑀 , 𝑟𝑃𝑀𝑀 , 𝑟 𝑃𝑀𝑀  are not computed with equations (3.1), 

respectively, but are derived by differentiating potentiometer-measured values of 𝑦𝑃𝑀𝑀  

and 𝜓.  All periodic data is expressed and output through one PMM cycle.  Finally, the 

hydrodynamic derivatives are computed as per presented in Section 2 as the last data re-

duction step. 

3.8.2 Phase-Averaged Flowfield 

SPIV recordings are processed with LaVision DaVis v7.1 software in batch 

processes.  First, the raw images are rotated and mirrored.  Then the correlations are 

completed with one pass using 64 x 64 pixel interrogation windows followed by two 

passes using 32 x 32 pixel interrogation windows.  Fifty percent overlap is used in the 

horizontal and vertical directions on all correlation passes.  A high-accuracy Whitaker 

reconstruction of the vectors is used in the final pass.  Vectors are range filtered using 
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median values of 0.65, -0.065, 0.065 for (U, V, W), respectively, and bands of ±0.65.  A 

median filter follows, removing vectors if their magnitude is greater than two times the 

rms value of their neighboring vectors.  Spurious vectors are not replaced with interpo-

lated values, and blank spots in the measurement area are not filled.  The vector fields 

and analog voltages (Sanshin sway and yaw and Krypton sway and yaw) are exported 

and organized according to zone number and carriage run.  Then, a FORTRAN program 

is used to complete the phase-averaging part of the data reduction.  Vectors from each 

carriage run are non-dimensionalized with the measured carriage speeds.  Then, the vec-

tor fields are sorted into their respective phase groups by analyzing the sway and yaw 

analog voltage levels associated with each SPIV recording.  When the phase-sorting is 

complete, the phase averaged velocities and Reynolds stresses are computed.  The solu-

tion for the complete region of interest is stitched together from the multiple zones at the 

x-station.  An averaging technique will be used in the overlapping regions of the multiple 

zones.
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CHAPTER 4 STATISTICAL CONVERGENCE 

4.1 Forces and Moment and Motions Data 

Single records of forces and moment and motions data for static and dynamic PMM 

tests are analyzed and statistical convergence of data are estimated.  Herein single record 

implies a set of data acquired during individual carriage runs.  Analysis begins with clas-

sifications of data into either deterministic or random data where further into either peri-

odic or transient for the former category and into either stationary or non-stationary for 

the latter category.  The term „deterministic‟ implies that data can be described explicitly 

by a mathematical relationship, on the other hand, the term „random‟ means that data 

cannot be described by explicit mathematical relationship, instead, by means of probabili-

ty statements and/or statistical averages (Bendat 1966, pp. 2).  A practical decision 

whether or not data are deterministic or random, as per Bendat, is usually based on the 

ability to reproduce the data by controlled experiments.  Accordingly, herein for PMM 

applications, only the time mean values of static drift test data and the harmonics of dy-

namic tests data are classified as deterministic, while all the other components of data 

including transient are considered as random.  Once deterministic part of data is decided, 

the stationarity of the random part of data is of interest since only stationary data are 

guaranteed to converge.  Stationarity of data is tested by using nonparametric (distribu-

tion-free) statistical procedures such as the „run test‟ and „trend test‟.  Next, statistical 

convergence of the time mean values of static drift test data is estimated based on the 

convergence of confidence interval of the mean values.  Typically, data samples contain-

ing narrow-banded sinusoid components or transient components may not be distributed 

normally, thus confidence interval is estimated using the Tchebycheff inequality for un-

known distributions rather than the Student-t for normal distributions.  Statistical conver-

gence, however, may not be applicable for dynamic tests data since usually two or three 

periods of data are available due to limited length of IIHR towing tank facility.   
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4.1.1 Time History of data 

Typical examples of time history and Fast Fourier Transform (FFT) of data are 

shown in Fig. 4-1 for static drift test.  Data includes carriage speed (UC), drift angle (), 

forces (Fx, Fy), moment (Mz), and motions (zmm, , ).  Of those variables, UC, , and  

are the controlled (input) parameters set at the desired values 1.531 m/s, -10, and 0, re-

spectively, whereas Fx, Fy, Mz, zmm, and  are the results (output) of the test.  Data are 

sampled at a rate of 100Hz (i.e. t = 0.01 sec) for a time-period of T = 20 sec correspond-

ing to UCT/L  10 where L = 3.148 m is the model length.  Data acquisition commences 

after carriage acceleration and UC nearly constant, which takes about 3  4 L.  For FFT, 

total N = 1,024 data are selected from the time history of each variable, between t = 5  

15 sec, which gives a frequency step f = 1/Nt  0.1 Hz in the FFT.  Time histories are 

shown for one case out of 12 repeat tests at the same conditions, whereas the FFT results 

are shown for all the 12 cases emphasizing the repeatability of measurement.  FFT data as 

well include two different  cases (0 and -20) for possible hydrodynamic effects on the 

results, which may or may not increase with , particularly in the frequency domain.   

For UC shown in Fig. 4-1 (a), time history exhibits random fluctuations of which 

root-mean-square (rms) value is 0.008 m/s (about 0.5% of the mean UC = 1.514 m/s).  

Dominant frequency of the random fluctuation is between 1  2.5 Hz from the FFT that 

as well reveals the underlying long-period oscillations of data with frequencies between 

0.1  0.6 Hz, otherwise seemingly white noise.  Drift angle  shown in Fig. 4-1 (b) also 

exhibits long-period oscillations with an amplitude 0.06 (about 0.6% of the mean  = -

10.1) and dominant frequency between 0.1 – 0.3 Hz from the FFT otherwise white 

noise.  Roll angle  shown in Fig. 4-1 (c) is almost random fluctuation with an rms value 

0.02 (about 36% of the mean  = -0.05) and dominant frequencies 1.2 and 2 Hz maybe 

coherent with those for UC.  Possible sources for long period oscillations of UC can be 

carriage speed control-loop feedback or non-perfectly straight rail alignments, and the 

sources for random fluctuations of UC can be mechanical vibrations due to the irregular 
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surfaces of the carriage wheels and/or rails.  Which may cause the long period oscilla-

tions and/or high frequency fluctuations in  and , too.  Deviations of the mean values 

of those variables from the initial set-up values, -10 and 0, respectively, can be attri-

buted in part to the model mount flexibility and in part to model asymmetry.  Note that 

although not shown, mean  value grows with , -0.004 and -0.07 at  = 0 and -20, 

respectively. 

Responses in forces and moment and motions to the aforementioned input para-

meters, UC, , and , are shown in Fig. 4-1 (d) – (h) for Fx, Fy, Mz, zmm, and .  From time 

histories, Fx, Fy, and Mz are random fluctuations with rms values 3.4 N, 3.3 N, and 3.4 

Nm (32%, 12%, and 8% of the mean values -10.7 N, -28.1 N, and -43.4 Nm), respective-

ly.  From FFT, those random fluctuations are narrow banded, in general between 2 – 10 

Hz with sharp peaks typically near at 3, 4, 5, and 10 Hz due mainly to mechanical vibra-

tions as will be identified latter.  On the other hand, heave and pitch motions zmm and  

time histories shown in Fig. 4-1 (g) and (h) are random fluctuations superposed on appar-

ently transient oscillations.  The random fluctuations are with rms values 0.5 mm and 

0.01 (5% of mean zmm = 8.9 mm and 9% of mean  = -0.153) respectively.  The tran-

sient oscillations are typically damped oscillations that can be written in a mathematic 

form as Ae
-at

cos(2ftrt).  The oscillation amplitude A is 1.13 mm and 0.09 (13% of mean 

zmm and 59% of mean ) respectively, however, subject to random depending on the time 

point where data sampling commences.  The damping coefficient a = 0.08 sec
-1

 and the 

oscillation frequency ftr = 0.255 Hz are the same for both zmm and .  Although not 

shown, in general A increases with  whereas a and ftr are nearly constant.  Those tran-

sient oscillations are due to start-up transient such that ftr is far from zmm and  natural 

frequency f3 = f5 = 1.2 Hz estimated from hydrostatic restoring forces (Irvine et al. 2008).  

The heave natural frequency f3 is clearly seen from the FFT for zmm shown in Fig. 4-1 (g) 

while the pitch natural frequency f5 is less distinctive from the FFT for  shown in Fig. 4-

1 (h).  Note that it is not clear if the similar or same peak frequencies of UC, i.e. near 0.2 
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Hz and 1.2 Hz form Fig. 4-1 (a), are coincidence or there may exist interactions between 

towing speed and model motions.   

Dynamic test time history and FFT are shown in Fig. 4-2 similarly as for static 

drift test.  Shown at the left column are the time histories of pure sway test data for one 

case out of 12 repeat tests at max = 10 condition.  Carriage speed UC, sway trajectory y, 

and heading angle  shown in (a) – (c) are the controlled (input) parameters for pure 

sway test.  The overall trend of UC (set at 1.531 m/s) is similar as for static drift test dis-

cussed previously.  Sway trajectory y = A sin(2fPMMt) is a forced sinusoidal oscillation 

with A = 0.317 m (about 0.1 L) and fPMM = 0.134 Hz.  Heading angle  is set at zero but 

exhibits an oscillation with amplitude 0.06 and almost out of phase with y.  Although not 

shown, roll angle  is also set at zero and shows an oscillation with amplitude 0.1 and 

out of phase with y.  Forces and moment Fx, Fy, and Mz in (d) – (f) are random fluctua-

tions with rms values 4.0 N, 4.7 N, and 2.3 Nm (54%, 4%, and 3% of the dynamic range 

7.4 N, 114.4 N, and 92.7 Nm) respectively, over-riding the harmonic oscillations with 

fPMM as the fundamental frequency.  Heave zmm and pitch  motions in (g) and (h) are 

mixtures of harmonic oscillation, transient oscillation, and random fluctuations.  Harmon-

ic oscillations are with fPMM as the fundamental frequency.  Transient oscillations may be 

similar as for static drift test, however, it is difficult to identify them from the signal as 

the transient oscillation frequency ftr = 0.255 Hz is close to the dominant harmonic (the 

2
nd

 order harmonic) frequency 2fPMM = 0.268 Hz for both variables.  Random fluctuations 

are with rms values 0.4 mm and 0.015 (7% of mean zmm = 5.6 mm and 10% of mean  = 

-0.164) respectively.  For dynamic test data, the harmonic oscillation component of each 

variable data is classified as deterministic and other components including transient oscil-

lations and random fluctuations as random data, designated with a „*‟ symbol such that 

 

x
*
 = x(t) – xFS(t)         (4.1)  
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where x can be any dynamic test variable (except for UC) and xFS is the harmonic compo-

nent of x evaluated using a Fourier Series (FS) expansion of x with fPMM as the fundamen-

tal frequency.  Note that UC is independent of fPMM and not expanded with FS.  Note also 

for zmm and  that xFS can include the transient oscillation component of the variable data 

when ftr  nfPMM for any integer number of n.  At the right column of Fig. 4-2, shown are 

the FFT results of x
*
 for all types of dynamic test including pure sway, pure yaw, and 

yaw and drift tests, which are the UA cases of each test with 12 repeat tests.  In general 

the FFT results for each type of dynamic tests are similar each other, and as well similar 

with those for static drift test shown in Fig. 4-1.  For UC in (a), same discussions can be 

make as for static drift test.  For y and  in (b) and (c), two peak frequencies in the FFT 

are observed near at 3fPMM and 5fPMM but with very small amplitudes, usually much less 

than 0.1% of the range of the variables.  For Fx, Fy, and Mz in (d) – (f), peak frequencies 

are usually near 3, 4, 5, 7, and 10 Hz similarly as static drift data.  FFT‟s for zmm and  

shown in (g) and (h) are almost same as those for static drift except for relatively smaller 

amplitudes at the frequency range between 0.1 – 0.3 Hz as ftr  2fPMM for all cases. 

A separate set of tests were carried out identifying the sources of peak frequencies 

of the forces and moment data.  Test was done first without the model and only the load-

cell was installed to the PMM carriage that is connect to the driving carriage.  Tests in-

cluded total 11 cases arranged into five groups (A, B, C, D, and E) as summarized in Ta-

ble 4-1.  Model was not installed for Groups A, B, C, and D whereas installed for Group 

E but in air to avoid any possible hydrodynamic effects.  Tests were stationary in surge 

direction for Groups A, B, and C with UC = 0 whereas in towing motion for Groups D 

and E with UC = 1.531 m/s (with two repeat tests for Group E).  The PMM motor was 

turned on for all test groups rotating with one of the three cyclic frequencies fe = 0.01, 

0.96, or 0.134 Hz to excite the load-cell.  Group A emphasizes the natural frequencies of 

the PMM system including the load-cell by minimizing any possible external noise 

sources but fe.  Groups B and C are intended to include the effects of mechanical vibra-
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tions from the Scotch Yoke system for PMM.  Groups D and E are to include mechanical 

vibrations of the PMM system from such as non-perfectly regular surfaces of the rails 

and/or wheels of carriages.  The FFT results of the test are shown in Fig. 4-3, for which 

the harmonics of the excitation frequency fe up to the 6
th

 order were filtered out from the 

signals using the equation (4.1).  From Fig. 4-3 (a) – (f), the responses are at very specific 

frequencies near 5 and 7 Hz.  From Fig. 4-3 (g) – (l), as the carriages are running, many 

of peak frequencies appear roughly between 2 – 10 Hz with sharp peaks near at 3, 4, 5, 7, 

and 10 Hz.  Consequently, test results suggest that the sources of the 5 and 7Hz are the 

natural frequencies of the load-cell, the PMM carriage, or combined, and the sources of 

the 3, 4, and 10 Hz are from the mechanical vibration.  However, more study is needed to 

determine whether a portion may be due to hydrodynamic sources such as flow turbu-

lence, flow separation instabilities, and/or, vortex breakdown.   

4.1.2 Stationarity Test 

The time history data are tested for stationarity by using the two non-parametric 

statistical procedures known as „Run test‟ and „Trend test‟ (Bendat 1966, pp. 219 - 223).  

Four important assumptions made for the stationarity tests are: 1) If the data of interest 

are stationary, then the statistical properties computed for each sequence of short time 

intervals will not vary significantly from on time interval to the next; 2) Verification of 

weak stationarity (time invariance of the mean value and autocorrelation function) will be 

acceptable; 3) The sample record of the data to be investigated is very long compared to 

the random fluctuations of the data time history; 4) If the mean square value (or variance) 

of the data of interest is stationary, then the autocorrelation function for the data is also 

stationary.  Some important features of the non-parametric (or distribution-free) proce-

dures which do not assume a specific distribution for the random data are: 1) The fre-

quency bandwidth of the data is not required; 2) The exact averaging time used to meas-

ure the mean and mean square values is not required; 3) It is not necessary for the data to 
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be completely random.  Two non-parametric procedures „Run test‟ and „Trend test‟ are 

briefly summarized from Bendat (1966, pp. 156 – 159) as follows. 

Run test:  Consider a sequence of N observations of a random variable x where each ob-

servation is classified into one of two mutually exclusive categories, which may be identi-

fied simply by plus (+) or minus (-).  The simplest example would be a sequence measured 

values xi, i = 1, 2, 3, …, N, with a mean value 𝑥 , where each observation is xi  𝑥  (+) or xi < 

𝑥  (–).  A run is defined as a sequence of identical observations that are followed or pre-

ceded by a different observation or no observation at all.  For example; ++ (1), – (2), ++ 

(3), – (4), +++ (5), – (6), + (7), – – (8), + (9), – – (10), + (11), – – – (12).  In this example 

there are r = 12 runs in the sequence of N = 20 observations.  The number of runs which 

occur in a sequence of observations gives an indication as to whether or not results are 

independent random observations of the same random variable.  Specifically, if a se-

quence of N observations are independent observations of the same random variable, 

that is, the probability of a (+) or (-) result does not change from one observation to the 

next, then the sampling distribution for the number of runs in the sequence is a random 

variable r with a mean value and variance as follows. 

 𝜇𝑟 =
𝑁

2
+ 1         (4.2) 

 𝜍𝑟
2 =

𝑁 𝑁−2 

4 𝑁−1 
         (4.3)  

Trend test:  Consider a sequence of N observations of a random variable x, where the ob-

servations are denoted by xi, i = 1, 2, 3, …, N.  Now, count the number of times that xi > xj 

for i < j.  Each such inequality is called a reverse arrangement.  The total number of re-

verse arrangements is denoted by A.  A general definition for A is as follows.  From the 

set of observations x1, x2, …, xN, define 

 𝑕𝑖𝑗 =  
1    𝑖𝑓 𝑥𝑖 > 𝑥𝑗  
0    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

         (4.4) 

Then 

 𝐴 =  𝐴𝑖
𝑁−1
𝑖=1          (4.5) 

where 

 𝐴𝑖 =  𝑕𝑖𝑗
𝑁
𝑗=𝑖+1         (4.6) 

If the sequence of N observations are independent observations of the same random va-

riable, then the number of reverse arrangements is a random variable A with a mean 

and variance as follows. 
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 𝜇𝐴 =
𝑁 𝑁−1 

4
         (4.7) 

 𝜍𝐴
2 =

𝑁 2𝑁+5  𝑁−1 

72
        (4.8) 

In general, the trend test is more powerful than the run test for detecting monotonic 

trends in a sequence of observations, however, not powerful for detecting fluctuating 

trends. 

For stationarity tests the time histories of static drift test and pure sway test data 

shown in Figs. 4-1 and 4-2 are divided into N = 20 equal time intervals with an interval 

size of 100 data per each interval (corresponding to 1 sec), where the data in each interval 

may be considered independent.  Note for pure sway data (and for all dynamic tests data) 

that stationarity tests are applied only for the random component of data 𝑥∗ defined in 

equation (4.1).  Once proved the stationarity of its random part, then the dynamic data is 

referred herein as stationary.  Next, a mean value (𝑥 1, 𝑥 2, 𝑥 3, … ,𝑥 𝑁) and mean square 

value (𝑥1
2   , 𝑥2

2   , 𝑥3
2   , …, 𝑥𝑁

2    ) for each interval are computed and aligned in time sequence as  

shown in Fig. 4-4.  It is hypothesized that the sequence of 𝑥  and the sequence of 𝑥2    are 

each independent sample values of a random variable with a true mean value and mean 

square value, respectively.  If this hypothesis is true, the variations in the sequence of 

sampled values will be random and display no trends.  Hence, the number of runs in the 

sequence will be as expected for a sequence of independent random observations of the 

random variable.  Moreover, the number of reverse arrangements in the sequence will be 

as expected for a sequence of independent random observations of the same variable.  If 

the number of runs or reverse arrangements is significantly different from the expected 

number, the hypothesis of stationarity would be rejected.   

Run and Trend tests results are presented in Table 4-2 for static drift and pure 

sway tests data, respectively.  Both tests were performed at the 5% level of significance.  

Then, the acceptance region8 is 6  r  15 for the run test and 64  A  125 for the trend 

                                                 

8 The acceptance region can be read from a statistics tables (e.g. Bendat 1966, pp. 170 – 171) or 

calculated as follows.  
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test, respectively, for N = 20.  From Table 4-2, r and A values of the mean square 𝑥2    for 

all variables are within the acceptance regions of run test and trend test, indicating there 

is no evidence of an underlying trend.  However, r and A values of the mean 𝑥  value for 

some variables are outside the acceptance regions, indicating possible non-stationarity of 

those variables.  For static drift data, only 𝛽 fails the run test (r = 5 for 𝑥 ) whereas 𝑈𝐶 , 𝜙, 

and 𝐹𝑦  fail the trend test (A = 145, 127, and 133 for 𝑥 , respectively).  For pure sway data, 

𝐹𝑥 , 𝐹𝑦 , and 𝑧𝑚𝑚  fail the run test (r = 16, 5, and 4 for 𝑥 , respectively) whereas 𝑈𝐶 , 𝑦, and 

𝑧𝑚𝑚  fail the trend test (A = 136, 126, and 129 for 𝑥 , respectively).  When the tests are 

performed for collections of data from the 12 repeat tests, however, the average r and A 

values show that UC, , and  fail the tests and the other variables Fx, Fy, Mz, zmm, and  

are all stationary in an average sense.  Nonetheless, the average r and A values for 𝛽 (r = 

5) and 𝜙 (A = 130, 126) are not significantly different from the acceptance regions such 

that can be considered as accepted if lower the level of significance of test to 1% of 

which acceptance region is 5  r  16 for the run test and 59  A  130 for the trend test, 

respectively.  UC fails both the run test (r =5) and the trend test (A = 143, 140) revealing a 

strong evidence of an underlying trend.  The underlying trend in UC can be easily seen 

from Fig. 10 (a) where a step-wise decrease in the interval mean value of UC is observed 

near at the 12
th

 interval and as well from Figs. 4-1 (a) and 4-2 (a) where apparent de-

crease of UC in the time histories neat at t = 12 sec.  This decrease of UC is considered as 

due to the lack in electric power for driving two carriages, the main driving carriage and 

the PMM carriage, at the same time.  However, the amount of change of UC is fairly 

                                                                                                                                                 

 

(r,A + z1-/2r,A)  r, A  (r,A + z/2r,A) 

 

where  = 0.05 and z/2 = –z1-/2 = 1.96 for 5% level of significance and r, r, A, A are 

given in equations (4.2), (4.3), (4.7), (4.8), respectively.  Note that the limit value of the accep-

tance region should be rounded down to an integer number. 
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small (usually 0.6  0.7% of mean UC) such that the stationarity of other variables is not 

affected significantly or at least not noticeable.   

4.1.3 Statistical Convergence 

Convergence of a random data being measured as time history can be defined 

such that the result of data, e.g. the mean value, does not change as acquiring more and 

more data.  The Law of Large Numbers (e.g., Feller, 1968) guarantees that for any ran-

dom data, x, the sample mean converges to an expected value (the true mean of x) when 

an infinite number of data is available.  However, the number of data collectable from 

practical situations is in general limited to a finite number N, hence the extent of differ-

ence between the true mean x and the sample mean 𝑥  of the N data is of interest.  Here-

in, the difference is estimated using a statistical concept of confidence interval for 𝑥  with 

a certain probability.  When the limit of interval, d, is smaller than a predetermined (or 

desired) value as increasing the sample size N, then the variable x is said to be „statistical-

ly converged‟ and d is defined as the „statistical convergence error‟ in 𝑥 .   

Confidence interval of 𝑥  is usually estimated by assuming a normal distribution of 

the random variable x and subsequently by assuming the Student-t distribution of 𝑥 , 

which is the underlying basic concept of typical uncertainty analysis procedures estimat-

ing the precision limit.  The normal distribution assumption is justified by virtue of the 

central limit theorem for the precision limit of which random variable is the mean of each 

x time histories from a collection (ensemble) of repeated tests at the same conditions.  In 

general, however, a normal distribution assumption is not justified for a single record of 

time history data that may contain narrow band sinusoid components and/or transient 

components as discussed previously for time histories of the PMM test data.  In such a 

case a more generous and robust inequality, the Tchebycheff inequality, may be used es-

timating the confidence interval for any variable x without knowing the exact distribu-
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tion.  The Tchebycheff inequality can be written in probability statement as follows 

(Bendat 1966, pp. 62). 

 

Prob   𝑥 − 𝜇𝑥  ≤ 𝑐 ⋅
𝜍𝑥

 𝑁
 ≥ 1 −

1

𝑐2       (4.9) 

where x and x is the true mean and standard deviation of x, respectively, 𝑥  is the sample 

mean and N is the sample size of the x time history, and c can be any positive real num-

ber.  The meaning of Tchebycheff inequality is that the probability for the true mean to 

fall within an interval (𝑥  – d, 𝑥  + d) where d = cx/ 𝑁 is larger than p = 1 – 1/c
2
 regard-

less of underlying distribution of x.  In other words, the absolute difference between the 

true mean and the sample mean would be smaller than d with a confidence of 100p per-

cent, for example, 95% for c = 4.5.  A difficulty in applications of the inequality (9), 

however, arise from the fact that the true standard deviation x value is unknown for the 

most of practical cases.  Thus, herein the sample standard deviation sx is used as a best 

estimator of x for practical application purposes such that an approximate confidence 

interval 𝑑  and the statistical convergence error Esc(%) are defined as follows. 

 

𝑑 ≡ 𝑐 ⋅
𝑠𝑥

 𝑁
         (4.10) 

𝐸𝑠𝑐 % ≡
𝑑 

𝑥 
=

𝑐

 𝑁
⋅
𝑠𝑥

𝑥 
× 100        (4.11) 

where N is the sample size, 𝑥  and sx are the sample mean and standard deviation, respec-

tively, and c = 4.5 for a 95% confidence.  Note that 𝑑  is equivalent to the confidence in-

terval for a normal distribution when N > 10 and c = t = 2.0 in (10), which has the same 

95% confidence level.   

Knowing the normality of data is important to estimate the convergence as it al-

lows one to use the Student t instead of the c in (11) along with the justification for the 

use of sample standard deviation.  Normality of data is tested using the chi-square good-
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ness-of-fit test (Bendat 1966, pp. 146).  For the test, data are grouped into K class inter-

vals determined by using the „minimum optimum number of class‟ for a sample size of N 

(Williams, C.A., Jr., 1950), which gives   

 

Χ2 =  
 𝑓𝑖−𝐹𝑖 

2

𝐹𝑖

𝐾
𝑖=1          (4.12)  

where 𝑓𝑖  and 𝐹𝑖  are the observed frequency and the expected frequency in the ith class 

interval, respectively.  The acceptance region for a hypothesis that the data of interest is 

normal is  

 

Χ2 ≤ 𝜒𝑛;𝛼
2           (4.13) 

where 𝜒𝑛;𝛼
2  is the 𝜒2 value for a degree of freedom n = K – 3 and for an  level of signi-

ficance of the test.  If the sample value of Χ2 is greater than 𝜒𝑛;𝛼
2 , the normality hypothe-

sis is rejected.   

In Fig. 4-5, shown are the sample distributions of the static drift UC, , , Fx, Fy, 

Mz, zmm, and  data collected from 12 repeat tests (designated with symbols 1  9, A, B, 

and C in the figure) with compared to theoretical standard normal distribution.  The Χ2    

values shown in the figure are the average Χ2 values tested for each of the 12 repeat cas-

es.  An interval size K = 39 is used for the sample size N = 2,000 and the chi-square tests 

are done at the 5% level of significance ( = 0.05), which gives 𝜒36;0.05
2  = 51.0.  Test re-

sult is fail for all variables as Χ2 values are larger than 𝜒36;0.05
2 , whereas relatively not 

significantly for Fx, Fy ,and Mz (Χ2    = 60.5, 72.1, and 119.8, respectively) showing their 

probability density functions (pdf‟s) close to a normal distribution in Fig. 4-5 (d) – (f).  

The Χ2    values for zmm, , and  (121.5, 139.0, and 145.5,) are relatively moderately and 

those for UC, and  (471.8 and 1737.3) are significantly larger than 𝜒36;0.05
2 , respectively, 

showing moderate and significant discrepancies of pdf from a normal distribution as 
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shown in Fig. 4-5 (g), (c), (h), respectively and in Fig. 4-5 (a) and (b), respectively, re-

spectively.   

Running mean 𝑥 (N) and standard deviation sx(N) values are shown in Fig. 4-6 

(left column) for static drift test data x = UC, , , Fx, Fy, Mz, zmm, and   of which time 

histories are shown in Fig. 4-1.   The 𝑥 (N) and sx(N) are the sample mean and sample 

standard deviation values for a subset of data with a sample size N increasing from 1 to 

2,000 (in time-wise from t = 0.01 to 20.0 sec) by continuously adding more and more da-

ta to the sample.  In Fig. 4-6, the 𝑥 (N) and sx(N) are normalized with their final values, 

i.e. values at N = 2,000, designated as 𝑥 *(N) and sx
*
(N), respectively, emphasizing the 

convergence of those values.  In general, both 𝑥 *(N) and sx
*
(N) at first oscillate and then 

converge to their final values, a unity, as N increasing.  The statistical convergence error 

Esc(%) values of those variables are as well shown in Fig. 4-6 (right column), evaluated 

as per equation (4-11) using the 𝑥 (N) and sx(N) values at each N.  Shown in the figure are 

the Esc(%) values using two c values, c = 2.0 and c = 4.5, providing a 75% and a 95% 

confidence in 𝑑 , respectively, from the Tchebycheff inequality.  Summarized in Table 4-

3 are the confidence interval (𝑥 *(N) – 𝑑 ∗, 𝑥 *(N) + 𝑑 ∗) values at N = 1,000, where 𝑑 ∗ is the 

normalized 𝑑  value similarly as for 𝑥 *(N), and the Esc(%) values at N = 2,000, which are 

the average values of 12 repeat tests.  Discussions for the results follow. 

From the left column of Fig. 4-6, the convergence of 𝑥 *(N) can be categorized in-

to three types according to the trend of sx
*
(N) with N after the initial oscillation phase; 

almost const (Type I), decreasing (Type II), or increasing (Type III) with N, respectively.  

Variables Fx, Fy, and Mz shown in Fig. 4-6 (d), (e), and (f) correspond to Type I, of which 

sample distributions were close to a normal distribution as discussed previously. 

Confidence interval of those variables evaluated at N = 1,000 (shown as dashed lines, 

green for c = 2.0 and red for c = 4.5) well include the future 𝑥 *(N) values up to N = 2,000 

even with c = 2.0.  Variables zmm and  shown in Fig. 4-6 (g) and (h) correspond to Type 

II, which are the variables contain transient components in their data time histories.  Con-
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fidence interval of those variables evaluated at N = 1,000 for the c = 4.5 case contains the 

future 𝑥 *(N) but not for the c = 2.0 case.  Variables UC, , and  shown in Fig. 4-6 (a), 

(b), and (c) correspond to Type III, which are the variables of which dominant frequen-

cies in data time history are low near at 0.1  0.2 Hz.  Confidence interval of those va-

riables evaluated at N = 1,000 does not contain future 𝑥 *(N) even for the c = 4.5 case.  

For the Type I or II data, the sample standard deviation sx is either constant or decreasing 

as the sample size N is increasing.  The true standard deviation x is expected to be simi-

lar with or smaller than the sample standard deviation, which may justify the use of sx in 

equation (4-10) instead of x.  For a pure sine wave, for example, of which x = 1/ 2 is 

known, the ratio sx/x  1.04 after about one cycle and sx/x < 1.01 after about four 

cycles.  For the Type III data, however, the use of sx instead of x is not justified, possibly 

the data sampling time might not be long enough to include more than four cycles of the 

long period (low frequency) oscillation of data.   

  From the right column of Fig. 4-6, the statistical convergence error Esc(%) typi-

cally decrease with N either fast or gradually.  The rate of decrease of Esc(%) with N seem 

to be with regardless of the type of convergence discussed above, rather related to the ra-

tio sx/𝑥  value summarized Table 4-3.  For UC and  shown in Fig. 4-6 (a) and (b), the ra-

tio sx/𝑥  = 0.006 and 0.003, respectively, is so small that Esc(%) becomes immediately 

smaller than 0.2% and 0.1%, respectively.  For Fy, Mz, and zmm shown in Fig. 4-6 (e), (f), 

and (g), the ratio sx/𝑥  = 0.11, 0.08, and 0.07, respectively, is moderate small and Esc(%) 

value becomes smaller than 1% after N  400 (UCt/L  2) for c = 2.0 and after N  1,400 

(UCt/L  7) for c = 4.5 except for Fy for the latter case.  For , Fx, and  shown in Fig. 4-

6 (c), (d), and (h), the ratio sx/𝑥  = 0.36, 0.30, and 0.25, respectively, is relatively larger 

than other variables and Esc(%) value is larger than 1% even at N = 2,000 for both c = 2.0 

and c = 4.5 cases. 

Consequently, three factors play important roles for statistical convergence of da-

ta, which are the normality, the trend of sample standard deviation, and the ratio of stan-
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dard deviation to the mean value of the data, respectively.  When data are normal or near-

ly normal (such as Fx, Fy, or Mz), the statistical convergence error Esc(%) can be eva-

luated using the confidence interval 𝑑 evaluated with the Student t = 2.0 for a 95% confi-

dence level, similarly as for typical uncertainty analysis procedures estimating the preci-

sion limit, which is equivalent to using 𝑑  in equation (4-10) with c = 2.0.  However, when 

data are not normal the used of Student t may underestimate the convergence error more 

than two times at the same level of confidence (e.g. for 95%, c/t = 4.5/2.0 = 2.25), and the 

distribution-free Tchebycheff inequality should be used estimating the confidence inter-

val.  More specifically, when data are not normal but the sample standard deviation sx is 

almost constant or decreasing with N (such as zmm or ) the use of sx in the Tchebycheff 

inequality is justified and the Esc(%) can be estimated using the confidence interval 𝑑  in 

equation (4-10) with c = 4.5 for a 95% confidence level.  When data are not normal and 

the sx is increasing with N (such as UC, , or ), however, the used of sx in the Tcheby-

cheff inequality is not justified and the Esc(%) may not be estimated properly.  Lastly, the 

statistical convergence of data is also dependent on the ratio sx/𝑥 ; data converge fast 

when the ratio sx/𝑥  is small (such as UC or ), gradually for moderate sx/𝑥  values (such as 

Fy, Mz, or zmm), and rather slowly for larger sx/𝑥  values (such as , Fx, or ), respectively. 
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Table 4-1 Noise Test Conditions. 

Group Model UC (m/s) 2Smm (mm) max () fe (Hz) 

A Not Installed 0 0 0 0.010, 0.096, 0.134 

B Not Installed 0 317 0 0.010, 0.096, 0.134 

C Not Installed 0 318 14.2 0.010, 0.096, 0.134 
D Not Installed 1.531 317 0 0.134 

E Installed (in air) 1.531 327 10.2 0.134 

 

 

Table 4-2 Tests for Stationarity.  

 Run Test, 𝑟  Trend Test, 𝐴 

 †(6  𝑟  15 for 𝑁 = 20)  †(64  𝐴  125 for 𝑁 = 20) 

 Static drift Pure sway  Static drift Pure sway 

Var. 𝑥  𝑥2    𝑥  𝑥2     𝑥  𝑥2    𝑥  𝑥2    

𝑈𝐶 6 (5) 11 (10) 6 (5) 12 (12)  145 (143) 104 (104) 136 (140) 116 (104) 

𝛽 or 𝑦  5 (5) 12(11) 9 (9) 6 (8)  82(82) 71(89) 126 (105) 101 (95) 

𝜙 7 (6) 9 (10) 9 (7) 6 (9)  127 (130) 78 (96) 121 (126) 68 (90) 

𝐹𝑥  12 (12) 10 (10) 16 (13) 10 (11)  108 (103) 100 (100) 92 (102) 76 (92) 

𝐹𝑦  8 (8) 12 (9) 5 (7) 6 (9)  133 (114) 76 (87) 67 (76) 82 (89) 

𝑀𝑧  6 (8) 10 (9) 11 (9) 13 (10)  121 (113) 106 (103) 90 (92) 103 (96) 

𝑧𝑚𝑚  10 (10) 12 (12) 4 (7) 11 (10)  95 (106) 86 (103) 129 (116) 71 (83) 

𝜃 11 (11) 14 (11) 10 (10) 9 (9)  102 (101) 108 (122) 100 (103) 77 (71) 

† Acceptance region at the 5% level of significance   
 (  ): Average value for 12 repeat tests;  

Red: Outside the acceptance region. 

 

 

Table 4-3 Statistical Convergence of Data (Averages for 12 repeat tests).  

Var. 

x 

Normality 

Χ2     

†Confidence interval 𝑑  at N = 1,000 Esc(%) at N = 2,000 

c = 2.0 c = 4.5 
sx/𝑥  c = 2.0 c = 4.5 

𝑥 * – 𝑑 * 𝑥 * + 𝑑 * 𝑥 * – 𝑑 * 𝑥 * + 𝑑 * 

UC 471.8 1.002 1.003 1.002 1.003 0.006 0.03 0.06 

 1737.3 1.001 1.001 1.001 1.002 0.003 0.01 0.03 

 139.0 0.924 0.966 0.898 0.992 0.36 1.6 3.6 

Fx 60.5 0.977 1.015 0.953 1.039 0.30 1.3 3.0 

Fy 72.1 0.990 1.004 0.982 1.012 0.11 0.5 1.1 
Mz 119.8 0.993 1.002 0.987 1.008 0.08 0.3 0.8 

zmm 121.5 1.000 1.010 0.994 1.016 0.07 0.3 0.8 

 145.5 0.959 0.997 0.936 1.020 0.25 1.1 2.5 

†The cases for which the confidence interval contains the final value 𝑥 * = 1.0 are colored in green, otherwise in red.  
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 Time history (static drift test at  = -10; single record)  FFT (static drift test; collections of runs) 

(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

 (d) 

 

 

 

(e) 

 

 

 

(f) 

 

 

 

(g) 

 

 

 

(h) 

 

 

 

Figure 4-1 Time history (left) and FFT(right) of static drift test data: (a) UC, (b) , (c) , 
(d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) .  Tests are for FRz mount condition 
and at Fr = 0.280.   
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 Time history (pure sway test; single record)  FFT (all dynamic tests; collections of runs) 

(a) 

 

 

 

(b) 
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Figure 4-2 Time history (left) and FFT (right) of dynamic tests data: (a) UC, (b) y, (c) , 
(d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) .  Tests are for FRz mount condition 
and at Fr = 0.280.  
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 Group A: No model, UC = 0, Smm = 0, max = 0  Group B, C: No model, UC = 0, Smm  0, max  0 

(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

 
    

 Group D: No model, UC  0, Smm  0, max  0  Group E: Model in air, UC  0, Smm  0, max  0 

(g) 

 

(j) 

 

(h) 

 

(k) 

 

(i) 

 

(l) 

 

Figure 4-3 PMM noise test results: FFT for Fx, Fy, and Mz.  Groups A, B, and C show 
noise sources for 5 and 7 Hz (natural frequencies of the load-cell) and Groups 
D and E for 3, 4, and 10 Hz (mechanical vibrations due to carriage speed), re-
spectively.  
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Figure 4-4 Tests for stationarity: Normalized interval mean (𝑥 𝑖) and mean square (𝑥𝑖
2   ) 

values for (a) UC, (b)  or y, (c) , (d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) .  
Red: 𝑥 𝑖 ; green: 𝑥𝑖

2   , which are normalized such that z(yi) = (yi – m)/s where yi = 
𝑥 𝑖  or 𝑥𝑖

2    and m and s are the mean and standard deviation of yi for N = 20, re-
spectively.   
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Figure 4-5 Probability density functions of the static drift test data for (a) UC, (b) , (c) , 
(d) Fx, (e) Fy, (f) Mz, (g) zmm, and (h) , respectively.  Χ2    is the average Χ2 
value of for 12 repeat tests.  The acceptance region for a normality is Χ2  
𝜒𝑛:𝛼

2  = 51.0 for n = 36 and  = 0.05.  
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 Running mean  Convergence 

(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

(d) 

 

 

 

 (e) 

 

 

 

(f) 

 

 

 

(g) 

 

 

 

(h) 

 

 

 

Figure 4-6 Normalized running mean 𝑥 *(N) and running standard deviation sx
*
(N) (left 

column) and statistical convergence error Esc(%) (right column) of (a) UC, (b) 
, (c) Fx, (d) Fy, (e) Mz, (f) zmm, (g) , and (h)  (Static drift test).  
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4.2 Phase-Averaged Flow Field Data 

Statistical convergence of phase-averaged velocities (𝑈, 𝑉, 𝑊) and Reynolds 

stresses (𝑢𝑢, 𝑣𝑣, 𝑤𝑤) are estimated based on the convergence of confidence interval of 

the variables.  Let 𝑥 be instantaneous velocities from 𝑁 independent measurements, 𝑥 at a 

given phase may be a stationary random variable of which statistical properties such as 

mean and variance values do not vary with time as the sample size 𝑁 becomes large.  Of 

interest herein is determining 𝑁 where the mean and variance of the variable (i.e. the 

phased-averaged velocity and Reynolds stress, respectively) converge within a certain 

statistical confidence level, or vice versa estimating a confidence interval of the variable 

for a given 𝑁.  For present study the confidence level are set at 95%. 

The mean and variance of a sample of 𝑁 independent observations from a random 

variable 𝑥 are calculated as 

 

𝑥 =
1

𝑁
 𝑥𝑖

𝑁
𝑖=1           (4.14) 

𝑠2 =
1

𝑁−1
  𝑥𝑖 − 𝑥  2𝑁

𝑖=1         (4.15)  

respectively.  Assume 𝑥 is normally distributed with a mean value of 𝜇𝑥  and a variance of 

𝜍𝑥
2.  Then, the confidence interval can be established for the mean values 𝜇𝑥  based upon 

sample values 𝑥  and 𝑠 as follows (Bendat 1966). 

 

  𝑥 −
𝑠⋅𝑡𝑛

 𝑁
 ≤ 𝜇𝑥 <  𝑥 +

𝑠⋅𝑡𝑛

 𝑁
        (4.16) 

where 𝑡𝑛  is the 95% point of the Student 𝑡 distribution with 𝑛 = 𝑁 − 1 degree of free-

dom.  Which states “the true mean value 𝜇𝑥  falls within the noted interval with a confi-

dence of 95%.”  In other words, the difference between the true and the sample mean 

would be  
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−
𝑠𝑡𝑛

 𝑁
≤  𝜇𝑥 − 𝑥  <

𝑠𝑡𝑛

 𝑁
       (4.17) 

with a confidence of 95% for the sample size 𝑁.  Then, the interval limit 𝑑 = 𝑠𝑡𝑛  𝑁  

can be used for defining the statistical convergence error for 𝑥  such that 

 

𝐸 ≡
𝑑

𝑥𝑟𝑒𝑓
=

𝑡𝑛

 𝑁
⋅  

𝑠

𝑥𝑟𝑒𝑓
         (4.18) 

indicating that the mean value of 𝑥 (phase-averaged velocity) with 𝑁 samples (PIV im-

ages) can has an error 𝐸 of 𝑥𝑟𝑒𝑓  with a 95% confidence.  Where, 𝑥𝑟𝑒𝑓  can be any refer-

ence value for 𝑥 such as the phase-averaged velocities 𝑈, 𝑉, 𝑊, or the carriage towing 

speed 𝑈𝐶 .  From (4.18), the convergence error 𝐸 is inversely proportional to the square 

root of sample size 𝑁 and proportional to the standard deviation 𝑠 of 𝑥, i.e., the turbu-

lence intensity of the flow.  If one expects a certain level of 𝐸 for a mean velocity with 

known turbulent intensity, i.e. 𝑠 𝑥𝑟𝑒𝑓 , then, the number of PIV images, i.e. 𝑁, can be es-

timated using the equation (4.18) as 

 

𝑁 =
4

𝐸2 ⋅  
𝑠

𝑥𝑟𝑒𝑓
 

2

         (4.19) 

by approximating 𝑡𝑛 ≈ 2 for 𝑁 >> 10. 

The variance 𝜍𝑥
2 for a normally distributed random variable 𝑥 follows a 𝜒2 distri-

bution, in contrast to the mean value 𝜇𝑥  following the Student 𝑡 distribution as discussed 

above.  Then, the confidence interval for the variance 𝜍𝑥
2 based upon a sample variance 

𝑠2 from a sample of size 𝑁 is (Bendat 1966) 

 

 
𝑛 𝑠2

𝜒𝑛 ;0.025
2 ≤ 𝜍𝑥

2 <
𝑛 𝑠2

𝜒𝑛 ;0.975
2         (4.20) 



85 
 

 

8
5
 

where 𝜒𝑛;0.025
2  and 𝜒𝑛;0.975

2  are the 2.5% and 97.5% points, respectively, of the 𝜒2 distri-

bution with 𝑛 = 𝑁 − 1 degree of freedom.  Subsequently, the difference between the true 

variance 𝜍𝑥
2 and the sample variance 𝑠2 falls within an interval 

 

−𝑑𝐿 ≤ 𝜍𝑥
2 − 𝑠2 < 𝑑𝑈         (4.21) 

with a 95% confidence, where the upper limit 𝑑𝑈  and the lower limit 𝑑𝐿 are 

 

𝑑𝑈 =
𝑛 𝑠2

𝜒𝑛 ;0.975
2 − 𝑠2         (4.22) 

𝑑𝐿 = 𝑠2 −
𝑛 𝑠2

𝜒𝑛 ;0.025
2          (4.23) 

Note that as the 𝜒2 distribution is non-symmetric for 𝑛 > 2, the upper and lower limits of 

the interval has difference values and the statistical convergence error 𝐸𝑈  and 𝐸𝐿, respec-

tively, is defined separately as follow. 

 

𝐸𝑈 ≡
𝑑𝑈

𝑠𝑟𝑒𝑓
2 =  

𝑛 

𝜒𝑛 ;0.975
2 − 1 ⋅

𝑠2

𝑠𝑟𝑒𝑓
2        (4.24)  

𝐸𝐿 ≡
𝑑𝐿

𝑠𝑟𝑒𝑓
2 =  1 −

𝑛 

𝜒0.025
2  ⋅

𝑠2

𝑠𝑟𝑒𝑓
2         (4.25) 

where, 𝑠𝑟𝑒𝑓
2  can by any reference variance value for the random variable 𝑥 such as the 

phase-averaged Reynolds stresses 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, or the turbulent kinetic energy 𝑘.  

Typical examples of 𝐸, 𝐸𝑈 , and 𝐸𝐿 values versus the sample size 𝑁 are shown in 

Fig. 4-7 as charts for several practical cases of the 𝑠 𝑥𝑟𝑒𝑓  and 𝑠2 𝑠𝑟𝑒𝑓
2  values.  The error 

values for an example flow field shown in Fig. 4-8 will be estimated by using the charts 

and the number of samples 𝑁 necessary for a desired error levels.  The example flow 

field shown in Fig. 4-8 (a) and (b) are the mean axial velocity 𝑈 and the turbulent kinetic 

energy 𝑘 = 1

2
 𝑢𝑢 + 𝑣𝑣 + 𝑤𝑤  at the nominal wake region (x/L = 0.935) of the DTMB 

5512 model in steady straight towing condition at Fr = 0.280.  The mean velocity 𝑈 and 
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the turbulent velocity fluctuations 𝑢, 𝑣, 𝑤 are normalized with the model towing speed 

𝑈𝐶  = 1.531 m/s, respectively.  The total number of PIV images used for the mean is 

𝑁𝑡𝑜𝑡𝑎𝑙  = 2,250 collected from a set of 30 carriage runs (75 images per each run).  The ef-

fective number of data at the point A in Fig. 4-8 is 𝑁 = 1,720 by excluding the null vec-

tors due to insufficient PIV particle density at the point and by rejecting spurious vectors 

from the PIV image correlations process.  Typically 𝑁 is close to 𝑁𝑡𝑜𝑡𝑎𝑙  at the outer flow 

regions and less than 𝑁𝑡𝑜𝑡𝑎𝑙  inside the boundary layer or at spots where the turbulent in-

tensity is high.  At Point A, measured are the root-mean-square 𝑢 = 0.09 (i.e. 𝑠 of 𝑈) and 

the axial component of Reynolds stress 𝑢𝑢 = 0.0075 (i.e. 𝑠2 of 𝑈), thus 𝑠 𝑥𝑟𝑒𝑓  = 0.09 

and 𝑠2 𝑠𝑟𝑒𝑓
2  = 1.1 when 𝑥𝑟𝑒𝑓  = 𝑈𝐶  and 𝑠𝑟𝑒𝑓

2  = 0.007 (the range of 𝑘), respectively, are 

used.  From the charts in Fig. 4-7, then, the expected 𝐸 for 𝑈 is about 0.4% of 𝑈𝐶  and 𝐸𝑈  

for 𝑢𝑢 is about 8% of 𝑘 at 𝑁  1,700, respectively.  For the latter case, if 𝐸𝑈  less than 1% 

is desired, 𝑁 > 10
5
 is necessary.  Note from Fig. 4-7 (b) that 𝐸𝑈  is always larger than 𝐸𝐿 

and both have similar values as 𝑁 increase, thus 𝐸𝑈  can be considered as the representing 

𝐸 for statistical convergence of the Reynolds stresses. 

The actual 𝑁 = 1,720 samples of 𝑈, 𝑉, and 𝑊 data measured at the point A of the 

previous example flow field are shown in Fig. 4-9, along with the statistics of the data 

and their convergence errors.  The sample 𝑈𝑖 , 𝑉𝑖 , 𝑁𝑖  data shown in Fig. 4-9 (a) are appar-

ently stationary and random of which mean and variance values are 𝑥  = 0.543, -0.023, 

0.059, respectively, and 𝑠2 = 0.0075, 0.0035, 0.0024, respectively.  When data are nor-

malized as 𝑧 =  𝑥 − 𝑥  𝑠 , all variables exhibit a standard normal distribution, shown in 

Fig. 4-9 (b), as assumed.  The probability density functions 𝑝 𝑥  in the figure for 𝑈, 𝑉, 

and 𝑊 are obtained by pooling the data sample into 𝐾 = 35 equally spaced intervals and 

counting the frequency of data at each interval classes divided by 𝑁.  The minimum op-

timum number 𝐾 of class intervals was used as suggested for Chi-Square Goodness-of-

Fit test (Williams 1950).  Time histories of the mean values 𝑥  and variance 𝑠2 of the data 

using the equations (4-14) and (4-15) are shown in Fig. 4-9 (c) and (d), designated as 𝑥 𝑁  
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and 𝑠𝑁
2 , respectively, as increasing the number of data sample 𝑁 from 2 to 1,720.  For 

each 𝑁, the variance 𝑠𝑁
2  is re-calculated using a new 𝑥 𝑁 value accounting for the newly 

added data sample 𝑥𝑁  into the previous mean 𝑥 𝑁−1, for which the following recursive 

expressions are useful when 𝑁 is large. 

 

𝑥 𝑁 =
1

𝑁
  𝑁 − 1 𝑥 𝑁−1 + 𝑥𝑁         (4.26) 

𝑠𝑁
2 =  

𝑁−2

𝑁−1
 𝑠𝑁−1

2 +  
𝑁

𝑁−1
  𝑥 𝑁−1

2 − 𝑥 𝑁
2  +  

1

𝑁−1
  𝑥𝑁

2 − 𝑥 𝑁−1
2     (4.27) 

for 𝑁  2.  As shown in Fig. 4-9 (c) and (d), the 𝑥 𝑁  converges fast for all variables typi-

cally for 𝑁 < 100 whereas the 𝑠𝑁
2  first fluctuates large for 𝑁 < 500 and converges slowly 

as 𝑁 increases, demonstrating the stationary of the variables as assumed.   Shown in Fig. 

4-9 (e) are the 𝐸 for 𝑈, 𝑉, 𝑊 as per (4-18) and in Fig. 4-9 (f) are the 𝐸𝑈  for 𝑢𝑢, 𝑣𝑣, 𝑤𝑤 

as per (4-24), respectively.  In the equations, the values of 𝑡𝑛  and 𝜒𝑛;0.975
2  at each 

𝑛 = 𝑁 − 1 can be found from typical textbooks on Statistics (e.g. Bendat 1966, pp. 162 

and 163).  The 𝑠 and 𝑠2 in the equations are evaluated by using the  𝑠𝑁
2  and 𝑠𝑁

2  as per (4-

27) at each 𝑁, respectively.  Used as 𝑥𝑟𝑒𝑓  and 𝑠𝑟𝑒𝑓
2  are the same 𝑈𝐶  and 𝑘 used at the pre-

vious paragraph.  From Fig. 4-9 (e) and (f), the 𝐸 and 𝐸𝑈  exhibit similar curve shapes as 

those shown in Fig. 4-7 (a) and (b) at the corresponding 𝑠 𝑥𝑟𝑒𝑓  (0.09, 0.06, 0.05 for 𝑈, 𝑉, 

𝑊, respectively) and 𝑠2 𝑠𝑟𝑒𝑓
2  (1.1, 0.5, 0.4 for 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, respectively), respectively.  

From Fig. 4-9 (e) and (f), at 𝑁 = 1720, 𝐸 = 0.4% for 𝑈 and 𝐸𝑈  = 8% for 𝑢𝑢 are the same 

as the chart readings from Fig. 4-7 (a) and (b), respectively, proving the validity of the 

method.  The 𝐸‟s for 𝑉 and 𝑊 are smaller than for 𝑈, about 0.3%, respectively, and the 

𝐸𝑈‟s for 𝑣𝑣 and 𝑤𝑤 are also smaller than for 𝑢𝑢, 4% and 3%, respectively, as well agree 

with the chart readings.   

The application of the method to phase-averaged PMM PIV measurement is 

shown in Fig. 19.  Shown in the figure are the phased-averaged (a) mean axial velocity 𝑈 

and (b) turbulent kinetic energy 𝑘 of the same model for the previous example case but in 
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a forced dynamic pure yaw motion.  The measurement location is at the same x/L = 0.935 

as for previous example flow case, whereas shifted in lateral direction more to the star-

board side of the model.  Selected for a presentation case out of the 32 phase groups of 

the PMM PIV measurements is the 180 case where the flow structure is largest at the 

port side thus slower convergences (larger convergence error) of the mean flow variable 

values are expected.  Total 100 carriage runs were made to sample 𝑁𝑡𝑜𝑡𝑎𝑙  = 250 PIV im-

ages collected from 2.5 PMM cycles per each run.  As shown in Fig. 4-10, the flow field 

becomes more complex than the steady towing case shown in Fig. 4-8 due to the forced 

oscillatory PMM motions of the model, accordingly stronger turbulence of the flow with 

about two times larger range of turbulent kinetic energy,  𝑘  = 0.014.  To see more global 

trend of the convergence, the flow field points are grouped into three categories: Group A 

(0 < 𝑘  𝑘    0.1), Group B (0.1 < 𝑘  𝑘    0.5), and Group C (0.5 < 𝑘  𝑘    1.0), 

representing the regions where fast, moderate, and slow convergence is expected, respec-

tively.  In Table 4-4, presented are the ranges and average values of the effective number 

of PIV images 𝑁, turbulence intensity  𝑘 (approximately corresponds to the average of 

𝑢, 𝑣, and 𝑤), the normalized turbulent kinetic energy 𝑘  𝑘  , and the convergence errors 

𝐸 and 𝐸𝑈  for the Groups A, B, and C, respectively.  The average effective PIV image 

numbers 𝑁 = 235, 210, and 177 respectively for each group corresponds to 94%, 84%, 

71% of 𝑁𝑡𝑜𝑡𝑎𝑙 , respectively, due to the same reasons as explained previously for the 

steady flow case.  The  𝑘 and 𝑘  𝑘   correspond to the statistical convergence parameters 

𝑠 𝑥𝑟𝑒𝑓  and 𝑠2 𝑠𝑟𝑒𝑓
2 , respectively, which can be used for the chart (Fig. 4-7) readings 

along with 𝑁 estimating the convergence errors.  The ranges and average values of 𝐸 and 

𝐸𝑈  presented in the table are for all phase-averaged mean velocities 𝑈, 𝑉, 𝑊 and Rey-

nolds stresses 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, respectively.  In spite of relatively smaller sample number, 𝑁 

 200 (for the steady towing case 𝑁  2,000), 𝐸 for the mean velocities is usually smaller 

than 1% of 𝑈𝐶 , at best about 2% for Group C, and 𝐸𝑈  for the mean Reynolds stresses is 

also satisfactory less than 10% of  𝑘  in average.  However, 𝐸𝑈  can be significantly large 
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up to 36% at the region where 𝑘  𝑘    1.0 (upper left corner of Fig. 4-10) and the num-

ber of PIV images required to reduce 𝐸𝑈  to 10% is 𝑁  1,000 from Fig. 4-7, which re-

quires more than 400 times of carriage runs.    

From the above two example flow cases, it is shown that the statistical conver-

gence of PIV measured mean velocities and Reynolds stresses can be estimated using the 

confidence intervals of the mean and variance values by assuming those variables are sta-

tionary and random following the normal distribution.  From the first example flow, 

steady straight towing condition, where a large number of data (𝑁  2,000) is available, 

revealed that the instantaneous velocity data are stationary random variables following a 

normal distribution as assumed and accordingly their mean values follow Student 𝑡 dis-

tribution and variance values 𝜒2 distribution.  From the second example flow, forced os-

cillatory PMM motions, even with relatively small number of data (𝑁  200), statistical 

convergence errors 𝐸 and 𝐸𝑈  values are fairly small, usually less than 1% of 𝑈𝐶  and 10% 

of  𝑘 , for the phase-averaged velocities and Reynolds stresses, respectively.  Those sta-

tistical convergence errors indicate that the true mean and variance values may differ 

from the sample mean and variance values by the amount of 𝐸 and 𝐸𝑈 , respectively, with 

a 95% confidence.  However, the term „true mean‟ should be distinguished from the term 

„true value‟ as the former value may biased from the latter value, if exists, due to syste-

matic errors which can be identified by calibrating the PIV system to a known standard.  

In the uncertainty analysis (UA) contexture, then, the convergence error can be consi-

dered as the precision limit at the „1
st
-order replication-level‟ (Coleman and Steel 1999 

and Moffat 1982, 1985, and 1988) as all the PIV system remain the same as sample after 

sample is tested.  Thus the „true value‟ relative to the measurement values can be esti-

mated at the „Nth-order replication-level‟ including the random errors together with the 

systematic errors, which will be further discussed at the Section 4 „Uncertainty Analysis‟.  

Lastly, estimating the „1
st
-order replication-level‟ precision limits of the mean Reynolds 

stresses, it should be noted that the typical UA procedures (assuming Student 𝑡 distribu-
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tion of data) can underestimate the precision limit significantly as the Reynolds stress da-

ta actually follow the 𝜒2 distribution which converges much slower than the Student 𝑡 

distribution. 
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Table 4-4 Statistical convergence of Phase-averaged velocity and Reynolds stress. 

Group A B C 

𝑁  62  251 (235) 106  243 (210) 107  232 (177) 

 𝑘  0.02  0.04 (0.03) 0.04  0.08 (0.06) 0.08  0.12 (0.09) 

𝑘  𝑘    0.02  0.1 (0.06) 0.1  0.5 (0.25) 0.5  1.0 (0.62) 

𝐸 (% 𝑈𝐶) 0.1  0.8 (0.3) 0.2  1.4 (0.6) 0.5  2.4 (1.1) 

𝐸𝑈  (%  𝑘 ) 0.1  3.5 (0.9) 0.5  15.0 (3.8) 2.3  35.9 (10.4) 

(  ) : average value;  𝑘  is the range of 𝑘. 
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(a) (b) 

  

Figure 4-7 Statistical convergence errors of (a) the mean 𝑥  and (b) variance 𝑠2 for statio-
nary random variable 𝑥.  

(a) (b) 

  

Figure 4-8 Example PIV flow field data: Contours of (a) mean axial velocity 𝑈 and (b) 
mean turbulent kinetic energy 𝑘 of DTMB 5512 model in steady straight tow-
ing at Fr = 0.280 condition.  Measurement location is at x/L = 0.935, near the 
center plane of the model (port side).  The total number of PIV images used 
for averaging 𝑁𝑡𝑜𝑡𝑎𝑙  = 2,250 and the effective number 𝑁 = 1,720 at Point A. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4-9 Flow data and statistics for Point A of the example flow: (a) instantaneous ve-
locities 𝑈𝑖 , 𝑉𝑖 , 𝑊𝑖 , (b) standard normal probability density function 𝑝 𝑥 , (c) 
running mean 𝑥 𝑁 , (d) running variance 𝑠𝑁

2 , (e) 𝐸 for 𝑈, 𝑉, 𝑊, and (f) 𝐸𝑈  for 
𝑢𝑢, 𝑣𝑣, 𝑤𝑤, respectively.  
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Figure 4-10 Example PMM PIV flow field data: Contours of phase-averaged (left) axial 
velocity 𝑈 and (right) turbulent kinetic energy 𝑘 of DTMB 5512 model in 
pure yaw motion ( = 180) at Fr = 0.280.  Measurement location is at x/L = 
0.935, near the keel of the model.  The total number of PIV images 𝑁𝑡𝑜𝑡𝑎𝑙  = 
254.  
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CHAPTER 5 UNCERTAINTY ANALYSIS 

5.1 UA for Forces and Moment and Motions 

The purpose is to develop an uncertainty analysis (UA) procedure for planar mo-

tion mechanism (PMM) tests measurements including forces and moment and motions.  

The approach follows errors/uncertainties definitions, systematic/random categorizations, 

and large sample size/normal distribution 95% level of confidence assumptions, as pro-

vided by the AIAA (1999), ANSI/ASME (1998), and AGARD (1994) standard and 

guidelines.  The present UA procedure is for a model scale towing tank PMM test for an 

un-appended model ship except bilge keels (i.e. without shafts, struts, propellers, and 

rudders) which is mounted free to heave and pitch, but fixed in roll.  Bias and precision 

limits and total uncertainties for multiple runs are estimated for the non-dimensional 

forces and moment and motions in model scale for four types of PMM tests (static drift, 

pure yaw, pure sway, and yaw and drift).  Other PMM tests, such as static rudder, static 

drift and rudder, static drift and heel, dynamic yaw and rudder, dynamic yaw and drift 

and rudder, are not considered.  This procedure does not provide UA for hydrodynamic 

derivatives derived from the forces and moment data or their effect on the full scale ma-

neuvering simulations.   

Limitations of present UA procedures are listed as follows:  The effect of data 

conditioning such as filtering or fairing, for example, Fourier Series (FS) reconstructions 

for the measured forces /moment and motions is not counted in this UA procedure. This 

procedure assumes that the measured forces/moment is the sum of those from all 

forces/moment gauges used for the case of multiple gauge system, and that the inertia 

forces/moment from parts for model installation are subtracted from the total measured 

forces and moments if the parts are suspended from the loadcells.  This procedure also 

assumes that the model ship is free to heave and pitch, and fixed in roll.  The effect of 

deviations from the upright position such as roll or heel angle is not considered in this 
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procedure.  Finally, carriage speed is assumed to be constant, so the effect of acceleration 

caused by fluctuating carriage speed during runs is not considered.   

Present UA procedure is developed in an international collaboration between the 

IIHR-Hydroscience & Engineering (IIHR, USA), Force Technology (FORCE, Denmark), 

Instituto Nazionale per Studi ed Esperienze di Architettura Navale (INSEAN, Italy), and 

the 24
th

 – 25
th

 International Towing Tank Conference (ITTC) Maneuvering Committee 

(MC).  The collaboration includes overlapping tests using the same model geometry for 

comparisons of the results and for identifications of possible facility biases and scale ef-

fects.  The basis of the UA procedure was first developed by FORCE (Simonsen 2004), 

followed by an application to INSEAN (Benedetti et al. 2006), and extended herein by 

including the definitions of the asymmetry bias and the facility bias as presented at the 

following sections.   

The procedure has been accepted by the 25
th

 ITTC (2008) as an ITTC Recom-

mended Procedure and Guidelines (7.5-02-06.04 Uncertainty Analysis: Forces and mo-

ment; Example for Planar Motion Mechanism Test).  For which the proposed procedure 

was reviewed by the Specialist Committee on Uncertainty Analysis (SCUA) of the 25
th

 

ITTC.  The review included comments on ten (10) topics: 1) Jitter Method, 2) Assump-

tions, 3) Model Length, 4) Drift Angle, 5) Mass Uncertainty, 6) Force, 7) Calibration and 

Acquisition, 8) Water Density and Temperature, 9) Precision limit, and 10) Carriage 

speed.  The comments focus on the traceability of error estimations to the known uncer-

tainty such as NIST (National Institute of Standards and Technology) standards and as 

well on suggestions of alternative approaches that seem to follow more closely the ISO 

GUM (1995) and/or the US Guide (1997).  In general, the comments can be grouped into 

three categories: (A) comments which lead to constructive improvements in the proposed 

procedure; (B) comments regarding insufficient descriptions in the proposed procedure; 

and (C) conceptual differences between AIAA/ASME and ISO/US Guide UA approach-

es.  Topics 1), 3), 5), and 6) are considered as type (A) which are helpful for improving 
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the proposed procedure.  Topics 2), 4) and 8) are considered as type (B) for which de-

scriptions in the proposed procedure are insufficient and need to be revised based on the 

comments.  Lastly, topics 7), 9), and 10) are considered as type (C) which may arise from 

differences between AIAA/ASME and ISO/US Guide UA approaches.  Accordingly, 

herein the UA procedure was corrected for and/or added supplementary descriptions as 

per most of the editorial and technical comments, except for type (C) comments for 

which the proposed procedures based on the AIAA/ASME were retained.  In general, dif-

ferences between the AIAA/ASME and ISO/US Guide UA are usually conceptual and 

the final UA results do not differ significantly (Coleman and Steel, 1999).  Nonetheless, 

as a new version of UA standard, the ASME PTC 19.1-2005 (2005) was released by the 

ASME, where more of harmonization between the two approaches was made, the type 

(C) comments can also be achieved for the next revision of the present PMM UA proce-

dures by following the new ASME standards. 

The organization is as follows:  Definitions and estimation procedures for bias 

and precision limits and total uncertainty are provided in sections 5.1.1, 5.1.2, and 5.1.3, 

respectively, and UA results are discussed in section 5.1.4.  A conceptual, data asymme-

try bias is defined and evaluated in sections 5.1.5.  Next, the UA results from three facili-

ties data are compared in Section 5.1.6.  Another conceptual, facility bias is defined and 

evaluated in Section 5.1.7.   

5.1.1 Bias limits  

For the forces and moment data, 𝑋, 𝑌, and 𝑁, the DRE‟s (3.7) and (3.8) for the 

dynamic tests and static drift test, respectively, can be rewritten in functional forms as  

 

r 𝑥 = r 𝐿, 𝑇, 𝑥𝐺 , 𝑦𝐺 , 𝑚, 𝐼𝑧 , 𝜌, 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , 𝑟 , 𝐹      (5.1) 

and  

r 𝑥 = r 𝐿, 𝑇, 𝜌, 𝑈𝐶 , 𝐹         (5.2) 
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respectively, where the result r can be 𝑋, 𝑌, or 𝑁, and the symbol 𝐹 represents the forces 

and moment 𝐹𝑥 , 𝐹𝑦 , or 𝑀𝑧 , respectively.  For the motion data, the DRE (3.9) for 𝑧 is re-

written in a functional form as 

 

𝑧 𝑥 = 𝑧 𝑧𝑚𝑚 , 𝐿          (5.3) 

However, DRE‟s are not used for 𝜃 and 𝜙 data.  From the DRE‟s (5.1) and (5.2), the er-

ror propagation equations can be written as  

 

𝐵r
2 = 𝜃𝐿

2𝐵𝐿
2 + 𝜃𝑇

2𝐵𝑇
2 + 𝜃𝑥𝐺

2 𝐵𝑥𝐺
2 + 𝜃𝑦𝐺

2 𝐵𝑦𝐺
2 + 𝜃𝑚

2 𝐵𝑚
2 + 𝜃𝐼𝑧

2 𝐵𝐼𝑧
2 + 𝜃𝜌

2𝐵𝜌
2 +  

         𝜃𝑢
2𝐵𝑢

2 + 𝜃𝑣
2𝐵𝑣

2 + 𝜃𝑟
2𝐵𝑟

2 + 𝜃𝑢 
2𝐵𝑢 

2 + 𝜃𝑣 
2𝐵𝑣 

2 + 𝜃𝑟 
2𝐵𝑟 

2 + 𝜃𝐹
2𝐵𝐹

2   (5.4) 

and 

𝐵r
2 = 𝜃𝐿

2𝐵𝐿
2 + 𝜃𝑇

2𝐵𝑇
2 + 𝜃𝜌

2𝐵𝜌
2 + 𝜃𝑈𝐶

2 𝐵𝑈𝐶

2 + 𝜃𝐹
2𝐵𝐹

2     (5.5) 

for dynamic tests and static drift test, respectively.  Of the element biases in (5.4), the bi-

as limits for motion parameters, 𝐵𝑢 , 𝐵𝑣, 𝐵𝑟 , 𝐵𝑢 , 𝐵𝑣 , and 𝐵𝑟  , are through their own error 

propagation equations from the DRE‟s (5.2) as:  

 

𝐵𝑢
2 = 𝜃𝑈𝐶

2 𝐵𝑈𝐶

2 + 𝜃𝜓
2𝐵𝜓

2 + 𝜃𝑣𝑃𝑀𝑀
2 𝐵𝑣𝑃𝑀𝑀

2      (5.6a) 

𝐵𝑣
2 = 𝜃𝑈𝐶

2 𝐵𝑈𝐶

2 + 𝜃𝜓
2𝐵𝜓

2 + 𝜃𝑣𝑃𝑀𝑀
2 𝐵𝑣𝑃𝑀𝑀

2      (5.6b) 

𝐵𝑟
2 = 𝐵𝑟𝑃𝑀𝑀

2          (5.6c) 

𝐵𝑢 
2 = 𝜃𝑈𝐶

2 𝐵𝑈𝐶

2 + 𝜃𝜓
2𝐵𝜓

2 + 𝜃𝑟
2𝐵𝑟

2 + 𝜃𝑣𝑃𝑀𝑀
2 𝐵𝑣𝑃𝑀𝑀

2 + 𝜃𝑣 𝑃𝑀𝑀

2 𝐵𝑣 𝑃𝑀𝑀

2   (5.6d) 

𝐵𝑣 
2 = 𝜃𝑈𝐶

2 𝐵𝑈𝐶

2 + 𝜃𝜓
2𝐵𝜓

2 + 𝜃𝑟
2𝐵𝑟

2 + 𝜃𝑣𝑃𝑀𝑀
2 𝐵𝑣𝑃𝑀𝑀

2 + 𝜃𝑣 𝑃𝑀𝑀

2 𝐵𝑣 𝑃𝑀𝑀

2   (5.6e) 

𝐵𝑟 
2 = 𝐵𝑟 𝑃𝑀𝑀

2          (5.6f) 
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Further element biases, 𝐵𝑣𝑃𝑀𝑀
, 𝐵𝑣 𝑃𝑀𝑀

, 𝐵𝜓 , 𝐵𝑟𝑃𝑀𝑀
, 𝐵𝑟 𝑃𝑀𝑀

 in (5.6) are again through their 

own DRE‟s in (3.1) as: 

 

𝐵𝑣𝑃𝑀𝑀
2 = 𝜃N

2𝐵N
2 + 𝜃𝑆𝑚𝑚

2 𝐵𝑆𝑚𝑚

2 + 𝜃𝑡
2𝐵𝑡

2     (5.7a) 

𝐵𝑣 𝑃𝑀𝑀

2 = 𝜃N
2𝐵N

2 + 𝜃𝑆𝑚𝑚

2 𝐵𝑆𝑚𝑚

2 + 𝜃𝑡
2𝐵𝑡

2     (5.7b) 

𝐵𝜓
2 = 𝜃𝜓𝑚𝑎𝑥

2 𝐵𝜓𝑚𝑎𝑥

2 + 𝜃N
2𝐵N

2 + 𝜃𝑡
2𝐵𝑡

2 + 𝜃𝛽
2𝐵𝛽

2     (5.7c) 

𝐵𝑟𝑃𝑀𝑀
2 = 𝜃𝜓𝑚𝑎𝑥

2 𝐵𝜓𝑚𝑎𝑥

2 + 𝜃N
2𝐵N

2 + 𝜃𝑡
2𝐵𝑡

2     (5.7d) 

𝐵𝑟 𝑃𝑀𝑀

2 = 𝜃𝜓𝑚𝑎𝑥

2 𝐵𝜓𝑚𝑎𝑥

2 + 𝜃N
2𝐵N

2 + 𝜃𝑡
2𝐵𝑡

2     (5.7e) 

Thus, the biases of the motion parameters are from five elemental biases, 𝐵𝑆𝑚𝑚
, 𝐵N , 𝐵𝑡 , 

𝐵𝛽 , and  𝐵𝜓𝑚𝑎𝑥
, through (5.7) and then (5.6) with 𝐵𝑈𝐶

.  Next for the motion data, the er-

ror propagation equations are written as 

 

𝐵𝑧
2 = 𝜃𝑧𝑚𝑚

2 𝐵𝑧𝑚𝑚
2 + 𝜃𝐿

2𝐵𝐿
2       (5.8a) 

𝐵𝜃 = 𝐵𝜃          (5.8b) 

𝐵𝜙 = 𝐵𝜙          (5.8c) 

The sensitivity coefficients, 𝜃‟s, in (5.4) – (5.8) are evaluated analytically by differentiat-

ing the DRE‟s with respect to each variable of interest, 𝑥, such that 

 

𝜃𝑥 =
𝜕r

𝜕𝑥
         (5.9) 

where r is the DRE variable.  For a reference, the 𝜃‟s for (5.4) and (5.5) are summarized 

in Tables 5-1 and 5-2 for dynamic and static tests, respectively.  Note that the sensitivity 

coefficients can also be evaluated numerically by using, for example, a „Jitter method‟ 

(Moffat 1982 and Coleman and Steele 1999).  The estimations of the fifteen element bias 

limits, 𝐵𝐿, 𝐵𝑇, 𝐵𝑥𝐺
, 𝐵𝑦𝐺

, 𝐵𝑚 , 𝐵𝐼𝑧 , 𝐵𝜌 , 𝐵𝑈𝐶
, 𝐵𝑢 , 𝐵𝑣, 𝐵𝑟 , 𝐵𝑢 , 𝐵𝑣 , 𝐵𝑟 , and 𝐵𝐹, are as per Si-
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mon et al. (2004), and the estimations of biases for the motion data, 𝐵𝑧𝑚𝑚
, 𝐵𝜃 , and 𝐵𝜙  are 

also presented. 

Global variables (𝐿, 𝑇, 𝑥𝐺 , 𝑦𝐺 , 𝑚, 𝐼𝑧 , 𝜌): 𝐵𝐿 is from the model manufacturing ac-

curacy ±1 mm in all coordinates.  Model 5512 was manufactured at NSWC (Naval Sur-

face Warfare Center) of US Navy and underwent a laser-scan for the exterior surface 

geometry.  Result confirmed the manufacturing accuracy.  𝐵𝑇 is the RSS of two uncorre-

lated element biases, 𝐵𝑇,1 and 𝐵𝑇,2.  𝐵𝑇,1 is from the precisions of the draft-markers on 

the model surface, estimated at 0.1 mm, and 𝐵𝑇,2 is from the model ballasting accuracy 

with respect to the draft markers, 1 mm, from a tape measurement.  𝐵𝑥𝐺
 is the RSS of two 

uncorrelated element biases, 𝐵𝑥𝐺 ,1 and  𝐵𝑥𝐺 ,2.  𝐵𝑥𝐺 ,1 is the deviation of actual model cen-

ter of gravity (COG) from its designed position, 5 mm, from empirical estimations based 

on model manufacturing.  𝐵𝑥𝐺 ,2 is the model installation error, estimated at 2 mm based 

on the installation accuracies.  𝐵𝑦𝐺
 is the RSS of two elemental biases, 𝐵𝑦𝐺 ,1 = 2 mm and 

𝐵𝑦𝐺 ,2 = 1 mm, similarly as per 𝐵𝑥𝐺
.  𝐵𝑚  is the RSS of individual mass component mea-

surement error 𝐵𝑚 𝑖
 such that 𝐵𝑚

2  =  𝐵𝑚 𝑖

2
𝑖 .  The element mass components (See Section 

3.2) are measured with two types of commercial strain-gauge type scales.  These are a 

Virtual Measurement & Control Inc. VW-321-S-30 Bench Scale and a Masterline MLG-

500 Hanging Crane Scale, with 30 Kg and 227 Kg of maximum capacities, respectively, 

and with 0.023 Kg and 0.045 Kg reading accuracies, respectively.  𝐵𝐼𝑧  is from the sepa-

rate measurements of 𝐼𝑧 .  𝐵𝜌  is from the ITTC 1963 density-temperature formula for fresh 

water, 𝜌 T  = 999.784 + 0.0638T - 0.00865T2 + 0.0000631T3.  The error propagation 

equation for 𝜌 can be written as 𝐵𝜌
2 =  𝜕𝜌 𝜕T  2𝐵T

2 where 𝐵T is the errors in water tem-

perature T reading.  Water temperature is measured with a resistive-type probe and signal 

conditioner, at a water-depth corresponding to model mid-draft.  The temperature sensor 

and probe is an Omega Engineering Inc. DP465 model, specified with the probe accuracy 

as 𝐵T = ±0.2C.  The uncertainties in the density formula were assumed as negligible.   
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Carriage speed: 𝐵𝑈𝐶
 is evaluated end-to-end by calibrating 𝑈𝐶  with respect to the 

reference speed, 𝑈ref = Δ𝐿 Δ𝑡 .  The reference speed is achieved by measuring the travel-

time Δ𝑡 for a known distance Δ𝐿.  Then, 𝐵𝑈𝐶
 is defined as 

 

𝐵𝑈𝐶

2 = 𝐵𝑈𝐶 ,ref
2 + 𝐵𝑈𝐶 ,fit

2         (5.10) 

where the 𝐵𝑈𝐶 ,ref  is from the accuracy of 𝑈ref  and the 𝐵𝑈𝐶 ,fit  is from scatter in the 𝑈𝐶  ca-

libration data set in relation to a linear least-squares regression curve fit.  𝐵𝑈𝐶 ,ref  is by ap-

plying the error propagation equation to 𝑈ref  such that  

 

𝐵𝑈𝐶 ,ref
2 = 𝜃Δ𝐿

2 𝐵Δ𝐿
2 + 𝜃Δ𝑡

2 𝐵Δ𝑡
2         (5.11) 

where 𝜃Δ𝐿 = 𝜕𝑈ref 𝜕Δ𝐿  and 𝜃Δ𝑡 = 𝜕𝑈ref 𝜕Δ𝑡 , and 𝐵Δ𝐿 = 0.005 m from the errors in 

tape measure of Δ𝐿 and 𝐵Δ𝑡  = 0.0001 sec from the 𝑈𝐶  sampling time interval 0.001 sec.  

𝐵𝑈𝐶 ,fit  is evaluated as 2 × 𝑆𝐸𝐸 where the standard estimate of error (SEE) is from Cole-

man and Steele (1999) as, 

 

𝐵𝑈𝐶 ,fit = 2 ⋅ 𝑆𝐸𝐸 = 2 ⋅    𝑌𝑖−𝑌𝑖
′  

2

M−2

M
𝑖=1       (5.12) 

where 𝑌𝑖  is the measured 𝑈𝐶  during the calibration, 𝑌𝑖
′  is from the regression equation, 

and M is the number of data in the calibration.  Calibration was done for three 𝑈ref ‟s, 

0.754, 1.531, and 2.241 m/s, with three repeat tests.  Results revealed that 𝐵𝑈𝐶 ,fit  (0.010 

m/s) is predominant over 𝐵𝑈𝐶 ,ref  (0.0014 m/s). 

Motion parameters: 𝐵𝑢 , 𝐵𝑣, 𝐵𝑟 , 𝐵𝑢 , 𝐵𝑣 , 𝐵𝑟   are from elemental biases, 𝐵𝑆𝑚𝑚
, 𝐵N , 

𝐵𝑡 , 𝐵𝛽 ,  𝐵𝜓𝑚𝑎𝑥
 and 𝐵𝑈𝐶

 through the error propagation equations (5.7) and (5.6).  𝐵𝑈𝐶
 is as 

per above.  𝐵𝑆𝑚𝑚
 is from the sway crank amplitude setting uncertainty, 0.5 mm.  𝐵N  is 

the uncertainty in PMM motion frequency, 0.0006 rpm, and 𝐵𝑡  is the uncertainty in data-



 

 

102 

1
0
2
 

sampling timescale, 0.001 sec, both determined empirically.  𝐵𝛽  is the RSS of two uncor-

related elemental errors such that  

 

𝐵𝛽
2 = 𝐵𝛽,align

2 + 𝐵𝛽,drift
2         (5.13) 

where 𝐵𝛽,align  is from the errors in the initial model-installation with respect to straight 

towing direction and 𝐵𝛽,drift  is from the errors in setting the model at designated drift an-

gles.  The model alignment procedure consists of two steps, first the alignment of the 

strong-back with respect to towing direction and then alignment of the model ship with 

respect to the strong-back centerline.  For the first step, the strong-back is aligned to the 

carriage towing direction guided by a laser-beam with its source fixed at the towing tank 

ceiling.  For this, first the laser-beam is adjusted to point to the forward-end-center-point 

(Cfwd) of strong-back, and the carriage is driven forward until the laser-beam hits the rear-

end of strong-back.  Then, the distance between the rear-end-center-point (Crear) of 

strong-back and the laser-beam, 𝑑, is measured, and then the orientation of strong-back is 

adjusted to compensate approximately a half 𝑑.  The procedure is repeated until 𝑑 be-

comes fairly smaller than the laser-beam diameter.  For the second step, two plumb-bob 

strings are hanging from the Cfwd and Crear, and the model center-line is aligned with the 

plumb-bob strings within a tolerance, 𝜖.  By assuming the two procedures are uncorre-

lated,  

 

𝐵𝛽,𝑎𝑙𝑖𝑔𝑛
2 =  arctan

𝑑

𝐷
 

2

+  arctan
𝜖

𝐷
 

2

      (5.14) 

where 𝐷 is the distance between Cfwd and Crear, i.e. the strong-back length.  𝐵𝛽,align  was 

evaluated as 0.03 for 𝑑 = 2 mm corresponding to the laser-beam diameter, 𝜖 = 1mm, and 

𝐷 = 4 m.  Next, 𝐵𝛽,drift  is attained end-to-end by calibrating the 𝛽 readings with respect 

to reference angles.  The reference drift angle 𝛽ref  is achieved by measuring the travel-

distance, 𝐶, of a fixed-point at the model while it is rotated from straight-heading to a 
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designated 𝛽 angle position, and measuring the distance, 𝑅, between the point and the 

rotation pivot (See Fig. 5-1), such that 𝛽ref  = arccos 1 − 𝐶2 2𝑅2  .   

Subsequently, 𝐵𝛽,drift  is defined as the RSS of 𝐵𝛽,drift ,ref  and 𝐵𝛽,drift ,fit  similarly as 𝐵𝑈𝐶
 

in (5.10),  

 

𝐵𝛽,drift
2 = 𝐵𝛽,drift ,ref

2 + 𝐵𝛽,drift ,fit
2        (5.15) 

𝐵𝛽,drift ,ref  is the uncertainty in 𝛽ref  defined as 𝐵𝛽,drift ,ref
2 = 𝜃𝐶

2𝐵𝐶
2 + 𝜃𝑅

2𝐵𝑅
2, where 𝜃𝐶 =

𝜕𝛽ref 𝜕𝐶  and 𝜃𝑅 = 𝜕𝛽ref 𝜕𝑅  and 𝐵𝐶 and 𝐵𝑅 are the biases in 𝐶 and 𝑅 measurements.  

𝐵𝛽,drift ,fit = 2 ⋅ 𝑆𝐸𝐸, similarly as per (5.12) for 𝑌 = 𝛽 and 𝑌′ = 𝛽re f.  From a calibration 

for twelve 𝛽ref  values (M = 12) between ±12, 𝐵𝛽,drift  was evaluated as 0.22 as per 

(5.15) and with 𝐵𝐶 = 𝐵𝑅 = 1 mm.  Lastly, 𝐵𝜓max
 is the same as 𝐵𝛽,drift . 

Forces and moment: 𝐵𝐹 is from uncertainties in 1) force/moment gauges calibra-

tion, 2) model motions from the pre-described PMM motions, and 3) data-sampling time-

scales.  The uncertainties 1) is common for dynamic and static test data and is composed 

of two element biases 𝐵𝐹,ref  and 𝐵𝐹,fit .  The uncertainties 2) differ for dynamic and static 

test; 𝐵𝐹,𝑢 , 𝐵𝐹,𝑢 , 𝐵𝐹,𝑣, 𝐵𝐹,𝑣 , 𝐵𝐹,𝑟 , and 𝐵𝐹,𝑟  for the former and 𝐵𝐹,𝛽  and 𝐵𝐹,align  for the lat-

ter.  The uncertainty 3) is only for dynamic test data, 𝐵𝐹,𝑡 .  Accordingly, 𝐵𝐹 is the RSS of 

those element biases as  

 

𝐵𝐹
2 = 𝐵𝐹,ref

2 + 𝐵𝐹,fit
2 + 𝐵𝐹,𝑢

2 +𝐵𝐹,𝑢 
2 + 𝐵𝐹,𝑣

2 + 𝐵𝐹,𝑣 
2 + 𝐵𝐹,𝑟

2 + 𝐵𝐹,𝑟 
2 + 𝐵𝐹,𝑡

2  (5.16) 

for dynamic tests and 

 

𝐵𝐹
2 = 𝐵𝐹,ref

2 + 𝐵𝐹,fit
2 + 𝐵𝐹,align

2 + 𝐵𝐹,𝛽
2       (5.17) 

for static drift test, respectively.   

𝐵𝐹,ref  is the uncertainty in the reference force or moment, 𝐹ref , for gauges calibra-

tions, i.e., the accuracy of calibration standard weights 𝑊.  In that, 𝐹ref = 𝑊 for force-
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gauge calibrations, and 𝐹ref = 𝑊 × 𝐿 for moment-gauge calibrations, respectively, where 

𝐿 is the moment-arm.  When calibrations are repeated for several 𝑊‟s, then 𝐵𝐹,ref  is the 

RSS of the individual standard weight uncertainty 𝐵𝑊𝑖
 such that  

 

𝐵𝐹,ref
2  =  𝐵𝑊𝑖

2
𝑖           (5.18)  

for 𝐹 = 𝐹𝑥  and 𝐹 = 𝐹𝑦 , and  

 

𝐵𝐹,ref
2 =   𝜃𝑊𝑖

2 𝐵𝑊𝑖

2 + 𝜃𝐿
2𝐵𝐿

2 𝑖        (5.19) 

for 𝐹 = 𝑀𝑧 , where 𝑊𝑖  is the individual standard weight, 𝜃𝑊𝑖
= 𝜕𝐹ref 𝜕𝑊𝑖  and 𝜃𝐿 =

𝜕𝐹ref 𝜕𝐿  as per (5.9) for 𝜒 = 𝐹ref , and 𝐵𝑊𝑖
 and 𝐵𝐿 are the errors in the standard weight 

and the moment arm dimension, respectively.  Calibration was done with ASTM Class 4 

standard weights with a 0.002% tolerance, from which 𝐵𝐹,ref  was rated at 0.002% of the 

full-scale for 𝐹𝑥  and 𝐹𝑦  gauges (50 N), and 0.014% for 𝑀𝑧  gauge (200 Nm).   

𝐵𝐹,fit  is from the scatter in the calibration data set in relation to a linear least-

squares regression curve fit, i.e., the volt-to-force conversion error of the force/moment 

gauges.  In general, 𝐵𝐹,fit  exhibits dependency on the magnitude of 𝐹 applied, rather than 

a fixed-amount such as 2 ⋅ 𝑆𝐸𝐸, and is fitted to a linear function of 𝐹 as  

 

𝐵𝐹,fit = 𝑎 𝐹 + 𝑏         (5.20) 

For this, the differences between the measured and applied forces, i.e., Δ𝐹 =  𝐹 – 𝐹ref  , 

during the calibration are linear-curve-fitted as Δ𝐹95% = 𝑎 𝐹ref   + 𝑏 to evaluate the coef-

ficients 𝑎 and 𝑏 in (5.20).  The Δ𝐹95% is defined as  

 

Δ𝐹95% = Δ𝐹    + 𝑃Δ𝐹              (5.21) 

where Δ𝐹     is the mean Δ𝐹 from the M repeat measurements for each 𝑊𝑖  and 𝑃Δ𝐹     is the 

precision limit of the Δ𝐹 measurements as per (5.26) for r = Δ𝐹 shown in the following 
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Section 5.1.2.  Statistically, for M ≥ 10, the true Δ𝐹 falls within ±Δ𝐹95% in 95 out of 100 

cases.  Calibrations were repeated twelve times for each 𝑊𝑖  (M = 12), and 𝐵𝐹,fit  was rated 

at 0.3%, 0.4%, and 0.3% of full-scales of the 𝐹𝑥 , 𝐹𝑦 , and 𝑀𝑧  gauges, respectively.  For the 

calibration, the 𝑔 value of 9.8031 m/s
2
 based on the local latitude of Iowa City, Iowa, 

USA (Halliday & Resnick 1981) was used and the local buoyancy was assumed as neg-

ligible.   

𝐵𝐹,align  and 𝐵𝐹,𝛽  for static drift test data are the biases of 𝐹 from 𝐵𝛽,align  in (5.14) 

and 𝐵𝛽,drift  in (5.15), respectively, defined as  

 

𝐵𝐹,align
2 = 𝜃𝛽

2𝐵𝛽,align
2          (5.22) 

𝐵𝐹,𝛽
2 = 𝜃𝛽

2𝐵𝛽,drift
2          (5.23) 

where the sensitivities 𝜃𝛽 = 𝜕𝐹 𝜕𝛽  was evaluated by curve-fitting the static drift 𝐹 data 

as polynomial functions of 𝛽.   

𝐵𝐹,𝑢 , 𝐵𝐹,𝑣, 𝐵𝐹,𝑟 , 𝐵𝐹,𝑢 , 𝐵𝐹,𝑣 , and 𝐵𝐹,𝑟  are the errors in 𝐹 due to the uncertainties in 

the motion parameters, 𝐵𝑢 , 𝐵𝑣, 𝐵𝑟 , 𝐵𝑢 , 𝐵𝑣 , and 𝐵𝑟 , respectively, and are defined as 

 

𝐵𝐹,𝑥
2 = 𝜃𝑥

2𝐵𝑥
2         (5.24) 

for 𝑥 = 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , 𝑟 , 𝑡, respectively, where 𝜃𝑥 = 𝜕𝐹 𝜕𝑥  and 𝐵𝑥 ‟s are the same as (5.6).  

Without the DRE for 𝐹, derivatives 𝜕𝐹 𝜕𝑥 ‟s are approximated by modeling the meas-

ured forces and moment 𝐹 time-histories as polynomial functions of motion parameters, 

𝐹 , such that 𝜕𝐹 𝜕𝑥   𝜕𝐹 𝜕𝑥 .  The model functions 𝐹  for each dynamic test are summa-

rized in Table 5-3, where the coefficients, 𝐴‟s, 𝐵‟s, and 𝐶‟s of 𝐹  are determined by ap-

plying a least-squares-error method for multiple variables.  For the implementation, a 

singular-value-decomposition (SVD) method was used solving the least-square matrix, 

and several coefficients such as 𝐴𝑟 , 𝐴𝑟𝑟 , 𝐴𝑢 , 𝐵𝑟 , 𝐵𝑢 , 𝐵𝑟 , 𝐶𝑟 , 𝐶𝑢 , and 𝐶𝑟  for the pure sway 

𝐹  are set to zero to avoid singular matrices. 
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𝐵𝐹,𝑡  is the error due to uncertainties of the data sampling time scale 𝐵𝑡 , written as 

 

𝐵𝐹,𝑡
2 = 𝜃𝑡

2𝐵𝑡
2          (5.25) 

where 𝜃𝑡 = 𝜕𝐹 𝜕𝑡  was evaluated by differentiating numerically the time-histories of 𝐹, 

and 𝐵𝑡  is the uncertainties in the data-sampling timescale. 

Motion data: Of the four element biases in (8) for the motion data, 𝐵𝐿 is the same 

as presented above and 𝐵𝑧𝑚𝑚
, 𝐵𝜃 , and 𝐵𝜙  are from the measurement errors of the Kryp-

ton motion tracker.  As per the Krypton camera verification report, a value of ±0.1 mm is 

used for 𝐵𝑧𝑚𝑚
 since the target is in zone #1 of the camera module field of view (See Sec-

tion 3.7.2).  Biases for pitch and roll data 𝐵𝜃  and 𝐵𝜙 , respectively, are 0.04 for both 

from the previous UA results (Irvine et al. 2008). 

5.1.2 Precision limits 

The precision limits are determined from 12 repeat tests.  The datasets are spaced 

in time at least 12 minutes between tests to minimize flow disturbances from previous 

runs, while spanning over a time period, usually one day, that is large relative to time 

scales of the factors that influence variability of the measurements. The same model ship, 

PMM motion generator, loadcell, and motion tracker are used for repeat tests due to limi-

tations of time and experiment resources.  The model is not dismounted and re-installed 

during the repeat tests. However, the PMM motion control parameters, such as drift an-

gle, sway crank amplitude, or maximum heading angle settings are changed between 

tests.  The precision limits are computed with the standard multiple-test equation 

 

𝑃r =
𝑡𝑆r 

 M
         (5.26)  

for r = 𝑋, 𝑌, 𝑁, 𝑧, 𝜃, and 𝜙, where t = 2 is the coverage factor for 95% confidence level 

and M = 12 is the number of repeat tests.  𝑆r  is the standard deviation defined as 
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𝑆r =   
 r𝑘−r  

M−1

M
𝑘=1  

1

2
                      (5.27) 

and 

r =
1

𝑀
 r𝑘

M
𝑘=1          (5.28) 

where, r𝑘  is 𝑋, 𝑌, 𝑁, 𝑧, 𝜃, or 𝜙 of the k
th

 run.   

5.1.3 Total Uncertainty limits 

The total uncertainty for the average result is the RSS of 𝐵r  and 𝑃r . 

 

𝑈r
2 = 𝐵r

2 + 𝑃r
2         (5.29) 

A conceptual asymmetry bias 𝐵𝑎𝑠𝑦𝑚  is defined if data asymmetry with respect to the 𝑥𝑧-

plane is larger than 𝑈r  estimations, as following: 

 

𝑈𝑇1

2 = 𝑈r
2 + 𝐵𝑎𝑠𝑦𝑚

2          (5.30) 

Another conceptual facility bias 𝐵𝐹𝐵  is defined if the difference of each facility data from 

the facility mean is larger than  𝑈𝑇1
, as following: 

 

𝑈𝑇2

2 = 𝑈𝑇1

2 + 𝐵𝐹𝐵
2          (5.31) 

Definitions, estimation procedures, and estimation results of the 𝐵𝑎𝑠𝑦𝑚  and 𝐵𝐹𝐵  are pro-

vided in sections 5.1.5 and 5.1.7, respectively. 

5.1.4 UA Results and Discussions 

UA results for the elemental biases 𝐵𝐿𝑃𝑃
, 𝐵𝑇𝑚 , 𝐵𝑥𝐺

, 𝐵𝑦𝐺
, 𝐵𝑚 , 𝐵𝐼𝑧 , 𝐵𝜌 , 𝐵𝑈𝐶

, 𝐵𝑢 , 𝐵𝑣, 

𝐵𝑟 , 𝐵𝑢 , 𝐵𝑣 , 𝐵𝑟 , and 𝐵𝐹 in (5.4) and (5.5) are presented first with identifications of the 

primary error sources, and then, the total bias 𝐵r  and precision 𝑃r  limits and their contri-
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butions to total uncertainty 𝑈r  are presented.  For the dynamic test data, the period-mean 

values of uncertainty limits,  𝐵 ,  𝑃 , and  𝑈 , are defined as 

 

 𝐵, 𝑃, 𝑈 =
1

𝑇
  𝐵, 𝑃, 𝑈 𝑑𝑡

𝑇

0
         (5.32) 

where 𝑇 is the PMM motion period.  Note for static drift and pure yaw data that, pre-

sented herein are the average values for three Fr cases otherwise mentioned, and also for 

static drift data that, the  𝐵 ,  𝑃 , and  𝑈  values are the same as 𝐵, 𝑃, and 𝑈 values, re-

spectively.  Typically, the uncertainty limits 𝐵, 𝑃, and 𝑈 are presented in %𝐷 values, 

where 𝐷 is defined in different ways according to the characteristics of the variable 

and/or according to specific type of the test.  For anti-symmetry variables (𝑣, 𝑣 , 𝑟, 𝑟 , 

𝑣𝑃𝑀𝑀 , 𝑣 𝑃𝑀𝑀 , 𝜓, 𝑟𝑃𝑀𝑀 , 𝑟 𝑃𝑀𝑀 , 𝐹𝑦 , 𝑀𝑧 , 𝑌, 𝑁, and 𝜙), 𝐷 is defined as the dynamic range of 

the variable, and for symmetry variables (𝑢, 𝐹𝑥 , 𝑋, 𝑧, and 𝜃), 𝐷 is the period-mean value 

of the variable with defined similarly as (5.32). 

Global variables and carriage speed: 𝐵𝐿𝑃𝑃
, 𝐵𝑇𝑚 , 𝐵𝑥𝐺

, 𝐵𝑦𝐺
, 𝐵𝑚 , 𝐵𝐼𝑧 , 𝐵𝜌 , and 𝐵𝑈𝐶

 

are presented in Table 5-4 and compared with their nominal values (𝐷).  Typically, 𝐵 

values are fairly smaller than 𝐷.  𝐵𝐿𝑃𝑃
is 0.07% of 𝐿𝑃𝑃 .  𝐵𝑇𝑚  is 0.7% of 𝑇𝑚 .  𝐵𝑥𝐺

 is 31.3% 

of 𝑥𝐺 .  𝐵𝑦𝐺
 = 2 mm.  𝐵𝑚  is 0.1% of 𝑚 for both of the free- and fixed-model cases.  𝐵𝐼𝑧  is 

about 4% of 𝐼𝑧  for both the free- and fixed-model cases.  𝐵𝜌  is negligibly small 0.004% of 

𝜌 at T = 20C.  𝐵𝑈𝐶
 is 1.4%, 0.7%, and 0.5% of 𝑈𝐶  for Fr = 0.138, 0.280, and 0.410, re-

spectively.   

Motion parameters:  𝐵𝑣𝑃𝑀𝑀
, 𝐵𝑣 𝑃𝑀𝑀

, 𝐵𝜓 , 𝐵𝑟𝑃𝑀𝑀
, and 𝐵𝑟 𝑃𝑀𝑀

 are presented in Table 

5-5 for pure sway, pure yaw, and yaw and drift tests at Fr = 0.280, where at the top part 

of the table 𝐵𝑆𝑚𝑚
, 𝐵N , 𝐵𝑡 , 𝐵𝛽 , and 𝐵𝜓max

 are also summarized.  In general,  𝐵𝑣𝑃𝑀𝑀
 , 

 𝐵𝑣 𝑃𝑀𝑀
 ,  𝐵𝜓  ,  𝐵𝑟𝑃𝑀𝑀

 , and  𝐵𝑟 𝑃𝑀𝑀
  values are all less than 1% of their own 𝐷 values 

except for a few cases where 𝐷 values are negligibly small.  𝐵𝑣𝑃𝑀𝑀
 and 𝐵𝑣 𝑃𝑀𝑀

 are mostly 
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from 𝐵𝑆𝑚𝑚
, about 93%.  𝐵𝜓  is from both 𝐵𝛽  and 𝐵𝜓max

, about 67% and 33%, respective-

ly.  𝐵𝑟𝑃𝑀 𝑀
 and 𝐵𝑟 𝑃𝑀𝑀

 are from 𝐵𝜓max
, almost 100%. 

𝐵𝑢 , 𝐵𝑣, 𝐵𝑟 , 𝐵𝑢 , 𝐵𝑣 , and 𝐵𝑟  are presented at the lower part of Table 5-5.   𝐵𝑢  is 

0.7% for all test types, and mostly (99%) contributed from 𝐵𝑈𝐶
.   𝐵𝑣  is about 2% except 

for PY where 𝐷 value is negligibly small, and mostly (96%) contributed from 𝐵𝜓  that is 

from 𝐵𝛽  and 𝐵𝜓max
.   𝐵𝑟  is 0.7% except for PS where 𝐷  value is negligibly small, and is 

the same as  𝐵𝑟𝑃𝑀𝑀
  that is from 𝐵𝜓max

.   𝐵𝑢   is about 1% except for pure sway where 

again 𝐷 is negligible, and mainly contributed from 𝐵𝑈𝐶
, 𝐵𝜓 , and 𝐵𝑟𝑃𝑀𝑀

 for pure sway, 

pure yaw, and yaw and drift, respectively, 63%, 84%, and 87%, respectively, which are 

again from 𝐵𝛽  and 𝐵𝜓𝑚𝑎𝑥
.   𝐵𝑣   is about 4% and mainly contributed from 𝐵𝑈𝐶

 and 𝐵𝑣 𝑃𝑀𝑀
 

where the latter is from 𝐵𝑆𝑚𝑚
.   𝐵𝑟   is 0.7% except for PS for which 𝐷 is negligible, and 

is the same as  𝐵𝑟 𝑃𝑀𝑀
  that is from 𝐵𝜓𝑚𝑎𝑥

.   

Forces and moment:  𝐵𝐹‟s are presented in Table 5-6 including contributions of 

the element biases.  For static drift, 𝐵𝐹 is about 1%, 3%, and 3%, in averages for three Fr 

cases for 𝐹𝑥 , 𝐹𝑦 , and 𝑀𝑧 , respectively, and mainly contributed from 𝐵𝐹,𝛽 , 76%, 97%, and 

96%, respectively.  For dynamic test,  𝐵𝐹  values are about 1% in general and the main 

contributors are different by the test type and by the variable.  For pure sway, 𝐵𝐹,𝑣 is the 

primary bias contributing about 95%.  For pure yaw, 𝐵𝐹,𝑟  is the common primary bias for 

𝐹𝑥 , 𝐹𝑦 , and 𝑀𝑧 , contributing 17%, 96%, and 67%, respectively, and 𝐵𝐹,fit  and 𝐵𝐹,𝑣  are al-

so main biases for 𝐹𝑥 , contributing 32% and 34%, and 𝐵𝐹,𝑟  for 𝑀𝑧 , contributing 34%, in 

averages for three Fr cases.  For yaw and drift, 𝐵𝐹,𝑢  is the primary bias for 𝐹𝑥  and 𝐵𝐹,𝑣 is 

for 𝐹𝑦  and 𝑀𝑧 , contributing about 57%, and 𝐵𝐹,𝑟  is the common primary bias contributing 

about 31%.     

Total Bias Limits 𝐵r‟s are summarized in Table 5-7 including the contributions of 

individual element biases.  In general, the primary biases vary by the variable and by the 

test type.  For static drift, 𝐵𝑈𝐶
 and 𝐵𝐹 are the common primary biases for 𝑋, 𝑌, and 𝑁 da-

ta, where 𝐵𝑇 is also large for 𝑋.  For pure sway, the primary bias is 𝐵𝑢  for 𝑋 and 𝐵𝐹 for 𝑌 
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and 𝑁, respectively.  For pure yaw, 𝐵𝑢  is the primary bias for 𝑋, 𝐵𝐹 is the primary and 𝐵𝑟  

is the secondary bias and for 𝑌, and 𝐵𝐹 is the primary and 𝐵𝑢  is the secondary bias and 

𝐵𝐼𝑧  is also large for 𝑁.  For yaw and drift, 𝐵𝑢  is the primary and 𝐵𝐹 is the secondary bias 

for 𝑋, and 𝐵𝐹 is the primary and 𝐵𝑢  is the secondary bias for both 𝑌 and 𝑁, and 𝐵𝐼𝑧  is al-

so large for 𝑁.  The primary biases for static drift and pure yaw data exhibit 𝐹𝑟 trends.  

For static drift, the contribution of 𝐵𝑈𝐶
 decreases with 𝐹𝑟, whereas 𝐵𝑇 and 𝐵𝐹 show the 

opposite trend.  For pure yaw, in general, the trend varies by the variable:  the contribu-

tion of 𝐵𝑢  decreases with 𝐹𝑟 for 𝑋;  the contribution of 𝐵𝑟  is almost constant with Fr, 

whereas that of 𝐵𝐹 increases with Fr for 𝑌;  the contribution of 𝐵𝑢  is decreasing and that 

of 𝐵𝐹 is increasing with Fr for 𝑁, respectively.   

The sources of the primary biases and their propagations were traced back 

through Tables 5-7, 5-6, and 5-5 and then 5-4, summarized in Table 5-8.  For static drift, 

𝐵𝑈𝐶
 and 𝐵𝐹 are the common primary biases for 𝐵𝑋 , 𝐵𝑌, and 𝐵𝑁, where the former is di-

rectly from 𝑈𝐶  and the latter is from 𝛽 propagated through 𝐵𝐹,𝛽 .  For dynamic tests, 𝐵𝑢  is 

the primary bias of 𝐵𝑋 , commonly for pure sway, pure yaw, and yaw and drift tests, and 

is propagated from 𝑈𝐶  through 𝐵𝑈𝐶
.  On the other hand, 𝐵𝐹 is the primary bias for both 

𝐵𝑌 and 𝐵𝑁, but from different sources propagated through different paths; from 𝛽 and 

𝜓𝑚𝑎𝑥  for pure sway through 𝐵𝜓 , 𝐵𝑣, and then 𝐵𝐹,𝑣, from 𝜓𝑚𝑎𝑥  for pure yaw through 

𝐵𝑟𝑃𝑀𝑀
, 𝐵𝑟 , and then 𝐵𝐹,𝑟 , and from 𝛽 and 𝜓𝑚𝑎𝑥  for yaw and drift test through 𝐵𝜓 /𝐵𝑟𝑃𝑀𝑀

, 

𝐵𝑣/𝐵𝑟 , and then 𝐵𝐹,𝑣/𝐵𝐹,𝑟 , respectively.  Consequently, 𝑈𝐶  is the primary bias source for 

𝑋 and 𝛽 and 𝜓𝑚𝑎𝑥  are for 𝑌 and 𝑁, suggesting that improvement of carriage speed (𝑈𝐶) 

control is important for 𝑋 and precise angle-setting for 𝛽 and 𝜓max  is important for 𝑌 and 

𝑁 to reduce the bias errors. 

The overall UA results are summarized in Table 5-9 including the total bias 𝐵r  

and precision 𝑃r  limits and their contributions to the total uncertainty 𝑈r .  Herein,  𝐵r , 

 𝑃r , and  𝑈r  values (𝐵r , 𝑃r , and 𝑈r  values for static drift) are presented in % 𝐷, in the 

order of 𝑋, 𝑌, and 𝑁, and in averages for three Fr cases for static drift and pure yaw.  In 
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general, uncertainties are larger for dynamic test data than static drift data, and larger for 

𝑋 data than 𝑌 and 𝑁.  For static drift, 𝐵r  is predominant, contributing to 𝑈r  about 87%, 

93%, 91%, respectively, and 𝑃r  is relatively small, contributing to 𝑈r  about 13%, 8%, 9%, 

respectively, indicating most DRE variable results are highly repeatable.  𝑈r  is about 2%, 

4%, 3%, respectively, reasonably small but comparatively larger than resistance test un-

certainty 𝑈𝐶𝑇  = 1% of 𝐶𝑇  (Longo et al. 2005).  Additional error sources for static drift, 

such as 𝐵𝛽 , may explain the higher uncertainty level than the resistance test result.  For 

dynamic tests, in general  𝐵r  is dominant for 𝑌 and 𝑁, contributing  to  𝑈r  about: 63% 

and 94% for pure sway; 67% and 89% for pure yaw; and 80% and 92% for yaw and drift, 

whereas  𝑃r  is dominant for 𝑋, contributing to   𝑈r  about 75% for pure sway, 70% for  

pure yaw, and 71% for yaw and drift.   𝑈r  is about: 5%, 2%, 2%, respectively, for pure 

sway, similar with static drift; 8%, 5%, 1%, respectively, for pure yaw, usually larger 

than static drift and pure sway, and tends to decrease with Fr in general; and 7%, 4%, 2%, 

respectively, larger than static drift and pure sway but similar with pure yaw. 

  The UA results for motion data 𝑧 and 𝜃 are also presented in Table 5-9.  For 𝑧, 

 𝑈r  is about 6%, 5%, 8%, and 3% for static drift, pure sway, pure yaw, and yaw and 

drift, where usually  𝑃r  is predominant over 80% for all tests.  For 𝜃,  𝑈r  is about 81%, 

28%, 29%, and 15%, respectively, where  𝐵r  is predominant over 80% in general. 

5.1.5 Asymmetry Bias 

Static drift test 𝑋, 𝑌, 𝑁, 𝑧 and 𝜃 are presented in Fig. 5-2 for both positive and 

negative 𝛽 ranges.  Contrary to expectations, test results show large asymmetry of data 

between positive and negative 𝛽.  The asymmetry of 𝑋 is more apparent and seemingly 

larger than the 𝑈r  limits estimated with (5.29) shown at 𝛽 = -10.  Similar asymmetry is 

observed from the motion data, although seemingly better symmetry.  With the drift an-

gle bias 𝐵𝐹,𝛽  and the model ship alignment bias 𝐵𝐹,𝑎𝑙𝑖𝑔𝑛  accounted previously in the UA 

procedures in Section 3.1, further errors such as model fabrication error and/or initial 
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heeling of the model, probably from imperfect weight ballasting, maybe possible reasons 

for the asymmetry.   

In order to quantify the asymmetry of data r = 𝑋, 𝑌,𝑁, 𝑧, and 𝜃, data asymmetry 

Δr𝑎𝑠𝑦𝑚  is defined as  

 

Δ𝑎𝑠𝑦𝑚 =  r+ − r− r𝑚         (5.33) 

where r+ is the value at positive 𝛽, r− is at negative 𝛽 with proper sign changes for anti-

symmetric variables such as 𝑌 and 𝑁, and r𝑚  is the average of r+ and r−.  At Fr = 0.280, 

Δ𝑎𝑠𝑦𝑚  is about 20% for 𝑋 at 𝛽 = 10, which is significantly larger than the total uncer-

tainty width 2𝑈r  = 4.3% of 𝑟m , and Δ𝑎𝑠𝑦𝑚  increases up to 40 % at 𝛽 = 20.  Whereas 

Δ𝑎𝑠𝑦𝑚  for 𝑌 and 𝑁 exhibit an opposite trend; decreasing with 𝛽, and within the 2𝑈r  at 𝛽 

= 10.  Due to the lack of solid explanations for those data asymmetry, the mean value r𝑚  

is taken as the representing data, and the amount of data asymmetry is added to the total 

uncertainty 𝑈r  defined as a conceptual bias 𝐵𝑎𝑠𝑦𝑚  as  

𝐵𝑎𝑠𝑦𝑚
2  = 𝐷𝑎𝑠𝑦𝑚

2 − 𝑈r
2         (5.34) 

if 𝐷𝑎𝑠𝑦𝑚 > 𝑈r , whereas 𝐵𝑎𝑠𝑦𝑚  equals zero if 𝐷𝑎𝑠𝑦𝑚 ≤ 𝑈r .  Here, 𝐷𝑎𝑠𝑦𝑚  is the difference 

between r and r𝑚  such that 

 

𝐷𝑎𝑠𝑦𝑚  =  r − r𝑚           (5.35) 

Subsequently, the total uncertainty 𝑈𝑇1
 is defined as per equation (30).   

Defining asymmetry of dynamic test data, however, may not be as straightforward 

as for static drift test data.  Nonetheless, the use of symmetry and anti-symmetry charac-

teristics of the dynamic test variables can be a possible approach.  The time-histories of 

the dynamic test data are shown in Figure 5-3 for pure sway, pure yaw, and yaw and drift 

tests, respectively.  For pure sway data, as an example, the odd-order harmonics of the 

symmetric variables such as 𝑋, 𝑧, and 𝜃 and the even-order harmonics of the anti-
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symmetric variables such as 𝑌 and 𝑁 are not expected from their Fourier-Series (FS) ex-

pansions since the pure sway motions are symmetric with respect to the model towing 

direction.  These symmetry considerations are also true for pure yaw test, but are not ap-

propriate for yaw and drift test due to its asymmetric motion (Fig. 4d).  Hence, 𝐷𝑎𝑠𝑦𝑚  in 

equation (5.35) can be redefined for pure sway and pure yaw data as  

 

𝐷𝑎𝑠𝑦𝑚  =  r − rFS           (5.36) 

where rFS  is the corrected data by dropping the odd- or even-order FS harmonics accord-

ing to their symmetry- or anti-symmetry characteristics of the variable, respectively.  

Then, 𝐵𝑎𝑠𝑦𝑚  for pure sway and pure yaw data are defined as per the equations (5.34).   

Evaluation results are summarized in Table 5-10, including  𝐷𝑎𝑠𝑦𝑚  ,  𝑈r , 

 𝐵𝑎𝑠𝑦𝑚  , and  𝑈𝑇1
  values, defined similarly as (5.32), presented in % of 𝐷rm  value.  𝐷rm  

is the absolute value of 𝑟m  for static drift, whereas for pure sway and pure yaw, 𝐷rm  is the 

absolute period-mean value of 𝑋, 𝑧, and 𝜃 and the dynamic range of rFS  for 𝑌 and 𝑁.  

Herein, the results are presented in the order of 𝑋, 𝑌, 𝑁, 𝑧, and 𝜃 data and in averages of 

the three Fr cases for static drift and pure yaw.  In general, 𝐵𝑎𝑠𝑦𝑚   is large for 𝑋 com-

pared to those for 𝑌 and 𝑁, and also large for 𝑧 and 𝜃.  For static drift data, 𝐵𝑎𝑠𝑦𝑚  is 8%, 

0%, 0%, 4%, 114%, respectively, where the value for 𝑋 is considerably larger than the 𝑈r  

estimation, 2%.  By including the 𝐵𝑎𝑠𝑦𝑚 , the total uncertainty 𝑈𝑇1
 values are evaluated as 

9%, 4%, 3%, 8%, and 126%, respectively.  For pure sway,  𝐵𝑎𝑠𝑦𝑚   is 6%, 5%, 0%, 12%, 

and 0%, respectively, with  𝑈𝑇1
  10%, 5%, 2%, 14%, and 28%, respectively.  For pure 

yaw,  𝐵𝑎𝑠𝑦𝑚   is 5%, 2%, 1%, 30%, and 24%, respectively, with  𝑈𝑇1
  10%, 7%, 2%, 

32%, 57%, respectively. 

5.1.6 UA Comparisons between Facilities 

UA results for three facilities data, IIHR, FORCE, and INSEAN, are compared.  

The facilities have different dimensions (L×B×D), 100m×3.048m×3.048m, 
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240m×12m×4.4m, and 500m×12.5m×6.5m, respectively, and different model size, 

3.048m, 4.002m, and 5.720m, respectively.  Results are summarized in Table 5-11, in-

cluding the contributions of bias 𝐵r
2 and precision 𝑃r

2 limits presented in % 𝑈r
2 and the 

total uncertainty 𝑈r  presented in %  r  values.  The  r  is defined as the 𝑋, 𝑌, or 𝑁 value 

at 𝛽 = 10 for static drift, the value at 𝑣 = 𝑣𝑚𝑎𝑥  for pure sway, and 𝑟 = 𝑟𝑚𝑎𝑥  for both 

pure yaw and yaw and drift, respectively.  Herein the results are presented in the order of 

IIHR, FORCE, and INSEAN, and in averages for all variables and Fr cases where appli-

cable, otherwise mentioned.  In general, 𝐵r  is predominant, 90%, 69%, and 97% for static 

drift, respectively, and 67%, 95%, and 66% for dynamic tests, respectively, whereas 𝑃r  is 

dominant or both 𝐵r  and 𝑃r  are large for several cases such as the dynamic tests 𝑋 for 

IIHR, static drift 𝑁 for FORCE, and pure yaw 𝑁 for INSEAN.  Static drift 𝑈r  is small, 

3% for all facilities data, whereas dynamic test 𝑈r  is relatively larger than static drift, 5%, 

2%, and 2% for pure sway, respectively, 10%, 6%, and 4% for pure yaw, respectively, 

and 5%, 4%, and 3% for yaw and drift, respectively. 

The 𝑈r  (%  r ) values are compared between facilities data observing the data 

trends with the model length and with Fr.  First, 𝑈r  values are plotted in Fig. 5-4 against 

the model length, scaled with the smallest value, i.e., L = 1.0, 1.3, and 1.9, for IIHR, 

FORCE, and INSEAN, respectively.  Although data exhibit scatters, mean values show 

trends with model length.  Static drift mean values in Fig. 5-4 (a) are almost independent 

of model length, 3.1%, 3.3%, and 28%, respectively, whereas mean values of dynamic 

tests in Fig. 5-4 (b) decrease with model length, 8.3%, 4.8%, and 3.2%, respectively.  

Next, static drift and pure yaw 𝑈r  values are plotted in Fig. 5-5 (a) and (b), respectively, 

against Fr numbers, 0.138, 0.280, and 0.410.  Again, the 𝑈r  values show scatters, while 

the mean values exhibit a rather clear Fr trend; decreasing with Fr, 4.3%, 2.6%, and 2.3% 

for static drift, and 11.3%, 4.6%, and 4.2% for pure yaw. 

The asymmetry bias 𝐵𝑎𝑠𝑦𝑚  is evaluated for FORCE and INSEAN data, and the 

 𝑈r ,  𝐵𝑎𝑠𝑦𝑚  , and  𝑈𝑇1
  values are presented in % 𝐷𝑟𝑚  similarly as defined in Section 
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5.1.5, summarized in Table 5-12.  Results are presented herein in the order of 𝑋, 𝑌, and 

𝑁, and for static drift and pure yaw data in averages of all Fr cases.  The  𝐵𝑎𝑠𝑦𝑚   values 

are evaluated as, for static drift 1%, 0%, and 1% for FORCE, respectively, and 8%, 0%, 

and 0% for INSEAN, respectively; for pure sway 0%, 0%, and 0% for FORCE, respec-

tively, and 11%, 0%, and 0% for INSEAN, respectively; and for pure yaw 0%, 0%, and 

1% for FORCE, and 6%, 2%, and 0% for INSEAN, respectively.  The overall mean 

 𝐵𝑎𝑠𝑦𝑚   values are small for FORCE facility data, 0%, 0%, and 1%, respectively, but rel-

atively large for INSEAN, 8%, 1%, and 0%, respectively, where the INSEAN exhibit 

similar  𝐵𝑎𝑠𝑦𝑚   values as IIHR, 7%, 2%, and 0%, respectively, as previously shown in 

Table 5-10.  For IIHR and INSEAN, the  𝐵𝑎𝑠𝑦𝑚   values for 𝑋 data are evaluated as larger 

than the total uncertainty limits  𝑈r  values, 5% and 2%, respectively, and are combined 

into  𝑈𝑇1
  as per (30), 10% and 9%, respectively. 

5.1.7 Facility Bias 

UA results show reasonable uncertainty levels in general, nevertheless for several 

cases, deviations of data from the facility-mean value, r , exceed the total uncertainty es-

timations for each facility data, particularly for many cases for 𝑋.  Those deviations of 

the data are considered to be from using different model size, different model manufac-

tures, different towing tank dimensions, different water properties such as density, differ-

ent towing carriage driving mechanisms, different PMM generators, different measure-

ment systems, and so on, which cannot be accounted for each individual facility UA pro-

cedures.  The facility biases or certification intervals of facilities are estimated using the 

M×N-order testing method as per Stern et al. (2005).  The method is a statistical approach 

for assessing probabilistic confidence intervals with the mean facility data as reference 

values for M facilities with N repeat tests (N-order level testing) under the assumptions of 

normal distribution for the sample population 𝑋𝑖 , 95% confidence level, M ≥ 10, and N 
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≥ 10.  Herein, M = 3 and N = 12 are used.  Although the number of facilities, M = 3, is 

minimal, the results show usefulness of the approach as discussed by Stern. 

For the mean facility data Χ , where Χ is either 𝑋, 𝑌, or 𝑁 of individual facility N-

order test, the uncertainty 𝑈Χ  in Χ  is the RSS of the bias limit 𝐵Χ  and the precision limit 

𝑃Χ , which are the average RSS‟s of the M bias limits 𝐵Χ𝑖
 and M precision limits 𝑃Χ𝑖

, re-

spectively.  The subscript 𝑖 represents each facility data.  Comparing the difference 𝐷𝑖  = 

Χ𝑖 − Χ  with its uncertainty 𝑈𝐷𝑖

2  = 𝑈Χ𝑖

2 + 𝑈Χ 
2, if the absolute value of 𝐷𝑖  is less than 𝑈𝐷𝑖

 

i.e.,  𝐷𝑖  ≤ 𝑈𝐷𝑖
, then the individual facility is certified at interval 𝑈𝐷𝑖

, whereas if  𝐷𝑖 >

𝑈𝐷𝑖
 then the facility bias 𝐵𝐹𝐵𝑖

 which is defined as 

 

𝐵𝐹𝐵𝑖

2 = 𝐷𝑖
2 − 𝑈𝐷𝑖

2         (5.37) 

with total uncertainty 𝑈𝑇2
 as per equation (5.31).  Interval certification provides addition-

al confidence in measurements accuracy for certified facilities since it validates Χ𝑖  and 

accounts for 𝑈Χ  in assessing the level of certification, and an improved estimate 𝑈𝑇2
 for 

noncertified facilities accounting for facility biases.   

𝐵𝐹𝐵  is evaluated at 𝛽 = 10 for static drift test, whereas for dynamic tests 𝐵𝐹𝐵  is 

evaluated at 𝑣 = 𝑣𝑚𝑎𝑥  for pure sway and 𝑟 = 𝑟𝑚𝑎𝑥  for pure yaw and yaw and drift, re-

spectively.  Evaluation results of 𝐵𝐹𝐵  is summarized in Table 5-13 for IIHR data includ-

ing 𝑈X ,  𝐷𝑖  , 𝑈𝐷𝑖
, and 𝑈𝑇2

, and in Table 5-14 for FORCE and INSEAN data including 

 𝐷𝑖 , 𝑈𝐷𝑖
, and 𝑈𝑇2

, respectively, with all data presented in %  X   values.  Herein, results 

are presented in the order of 𝑋, 𝑌, and 𝑁 and in averages for Fr cases where applicable.  

For static drift, 𝐵𝐹𝐵  is about 0%, 0%, and 1% for IIHR, respectively, about 0%, 1%, and 

1% for FORCE, respectively, and about 3%, 4%, and 3% for INSEAN, respectively.  Ac-

cordingly, IIHR and FORCE data are certified within certificate interval 𝑈𝐷𝑖
 about 11%, 

4%, and 4% for IIHR, respectively, and about 8%, 3%, and 3% for FORCE, respectively, 

whereas 𝑈𝑇2
 for INSEAN data is estimated at about 11%, 5%, and 5%, respectively, in-
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creased from the 𝑈X  estimates about 9%, 3%, and 3%, respectively, by including the 𝐵𝐹𝐵 .  

For dynamic test data, in general, most of IIHR data are certified but with relatively large 

certificate intervals 𝑈𝐷 about 3%  30%, whereas FORCE and INSEAN data for several 

cases are uncertified with facility biases 𝐵𝐹𝐵  about 2%  7%. 
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Table 5-1 Sensitivity coefficients of the bias limits for dynamic tests. 

𝜃 𝐵𝑋   𝐵𝑌  𝐵𝑁  

𝜃𝐿  
−2 𝐹𝑥+𝑚 𝑢 −𝑟𝑣−𝑥𝐺𝑟2−𝑦𝐺𝑟   

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

−2 𝐹𝑦 +𝑚 𝑣 +𝑟𝑢−𝑦𝐺𝑟2+𝑥𝐺𝑟   

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

−4 𝑀𝑧+𝐼𝑧𝑟 +𝑚 𝑥𝐺 𝑣 +𝑟𝑢  −𝑦𝐺 𝑢 −𝑟𝑣   

𝜌 𝑢2+𝑣2 𝐿3𝑇
  

𝜃𝑇  
−2 𝐹𝑥+𝑚 𝑢 −𝑟𝑣−𝑥𝐺𝑟2−𝑦𝐺𝑟   

𝜌 𝑢2+𝑣2 𝐿𝑇2   
−2 𝐹𝑦 +𝑚 𝑣 +𝑟𝑢−𝑦𝐺𝑟2+𝑥𝐺𝑟   

𝜌 𝑢2+𝑣2 𝐿𝑇2   
−2 𝑀𝑧+𝐼𝑧𝑟 +𝑚 𝑥𝐺 𝑣 +𝑟𝑢  −𝑦𝐺 𝑢 −𝑟𝑣   

𝜌 𝑢2+𝑣2 𝐿2𝑇2   

𝜃𝑥𝐺
 

−2𝑚𝑟2

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2𝑚𝑟 

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2𝑚 𝑣 +𝑟𝑢  

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝑦𝐺
 

−2𝑚𝑟 

𝜌 𝑢2+𝑣2 𝐿𝑇
  

−2𝑚𝑟2

𝜌 𝑢2+𝑣2 𝐿𝑇
  

−2𝑚 𝑢 −𝑟𝑣 

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝑚  
2 𝑢 −𝑟𝑣−𝑥𝐺𝑟2−𝑦𝐺𝑟  

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2 𝑣 +𝑟𝑢−𝑦𝐺𝑟2+𝑥𝐺𝑟  

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2 𝑥𝐺 𝑣 +𝑟𝑢  −𝑦𝐺 𝑢 −𝑟𝑣  

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝐼𝑧  - - 
2𝑟 

𝜌 𝑢2+𝑣2 𝐿𝑃𝑃
2 𝑇𝑚

  

𝜃𝜌  
−2 𝐹𝑥+𝑚 𝑢 −𝑟𝑣−𝑥𝐺𝑟2−𝑦𝐺𝑟   

𝜌2 𝑢2+𝑣2 𝐿𝑇
  

−2 𝐹𝑦 +𝑚 𝑣 +𝑟𝑢−𝑦𝐺𝑟2+𝑥𝐺𝑟   

𝜌2 𝑢2+𝑣2 𝐿𝑇
  

−2 𝑀𝑧+𝐼𝑧𝑟 +𝑚 𝑥𝐺 𝑣 +𝑟𝑢  −𝑦𝐺 𝑢 −𝑟𝑣   

𝜌2 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝑢  
−4𝑢 𝐹𝑥+𝑚 𝑢 −𝑟𝑣−𝑥𝐺𝑟2−𝑦𝐺𝑟   

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2

𝜌 𝑢2+𝑣2 𝐿𝑇
 𝑚𝑟 −

2𝑢 𝐹𝑦 +𝑚 𝑣 +𝑟𝑢−𝑦𝐺𝑟2+𝑥𝐺𝑟   

 𝑢2+𝑟2 
   

2

𝜌 𝑢2+𝑣2 𝐿2𝑇
 𝑚𝑥𝐺𝑟 −

2𝑢 𝑀𝑧+𝐼𝑧𝑟 +𝑚 𝑥𝐺 𝑣 +𝑟𝑢  −𝑦𝐺 𝑢 −𝑟𝑣   

 𝑢2+𝑟2 
   

𝜃𝑣  
2

𝜌 𝑢2+𝑣2 𝐿𝑇
 −𝑚𝑟 −

2𝑣 𝐹𝑥+𝑚 𝑢 −𝑟𝑣−𝑥𝐺𝑟2−𝑦𝐺𝑟   

 𝑢2+𝑣2 
   

4𝑣 𝐹𝑦 +𝑚 𝑣 +𝑟𝑢−𝑦𝐺𝑟2+𝑥𝐺𝑟   

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2

𝜌 𝑢2+𝑣2 𝐿2𝑇
 𝑚𝑦𝐺𝑟 −

2𝑣 𝑀𝑧+𝐼𝑧𝑟 +𝑚 𝑥𝐺 𝑣 +𝑟𝑢  −𝑦𝐺 𝑢 −𝑟𝑣   

 𝑢2+𝑟2 
   

𝜃𝑟  
−2𝑚 𝑣+2𝑥𝐺𝑟 

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2𝑚 𝑢−2𝑦𝐺𝑟 

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2 𝑥𝐺𝑢+𝑦𝐺𝑣 

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝑢  
2𝑚

𝜌 𝑢2+𝑣2 𝐿𝑇
  - 

−2𝑚𝑦𝐺

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝑣  - 
2𝑚

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2𝑚𝑥𝐺

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝑟  
−2𝑚𝑦𝐺

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2𝑚𝑥𝐺

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2𝐼𝑧

𝜌 𝑢2+𝑣2 𝐿2𝑇
  

𝜃𝐹  
2

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2

𝜌 𝑢2+𝑣2 𝐿𝑇
  

2

𝜌 𝑢2+𝑣2 𝐿2𝑇
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Table 5-2.  Sensitivity coefficients of the bias limits for static drift test. 

𝜃 𝐵𝑋  𝐵𝑌 𝐵𝑁 

𝜃𝐿𝑃𝑃
 

−2𝐹𝑥

𝜌𝑈𝐶
2𝐿2𝑇

  
−2𝐹𝑦

𝜌𝑈𝐶
2𝐿2𝑇

  
−2𝑀𝑧

𝜌𝑈𝐶
2𝐿3𝑇

  

𝜃𝑇𝑚  
−2𝐹𝑥

𝜌𝑈𝐶
2𝐿𝑇2  

−2𝐹𝑦

𝜌𝑈𝐶
2𝐿𝑇2

  
−2𝑀𝑧

𝜌𝑈𝐶
2𝐿2𝑇2  

𝜃𝜌  
−2𝐹𝑥

𝜌2𝑈𝐶
2𝐿𝑇

  
−2𝐹𝑦

𝜌2𝑈𝐶
2𝐿𝑇

  
−2𝑀𝑧

𝜌𝑈𝐶
2𝐿2𝑇

  

𝜃𝑈𝐶
 

−4𝐹𝑥

𝜌𝑈𝐶
3𝐿𝑇

  
−4𝐹𝑦

𝜌𝑈𝐶
3𝐿𝑇

  
−4𝑀𝑧

𝜌𝑈𝐶
3𝐿2𝑇

  

𝜃𝐹  
2

𝜌𝑈𝐶
2𝐿𝑇

  
2

𝜌𝑈𝐶
2𝐿𝑇

  
2

𝜌𝑈𝐶
2𝐿2𝑇

  

 

Table 5-3.  Polynomial models for measured force/moment, 𝐹 . 

Pure sway: 

𝐹 𝑥 = 𝐴0 + 𝐴𝑢𝑢 + 𝐴𝑣𝑣 + 𝐴𝑟𝑟 + 𝐴𝑣𝑣𝑣
2 + 𝐴𝑢 𝑢 + 𝐴𝑣 𝑣 + 𝐴𝑟 𝑟   

𝐹 𝑦 = 𝐵0 + 𝐵𝑢𝑢 + 𝐵𝑣𝑣 + 𝐵𝑟𝑟 + 𝐵𝑣 𝑣 𝑣 𝑣 + 𝐵𝑢 𝑢 + 𝐵𝑣 𝑣 + 𝐵𝑟 𝑟   

𝑀 𝑧 = 𝐶0 + 𝐶𝑢𝑢 + 𝐶𝑣𝑣 + 𝐶𝑟𝑟 + 𝐶𝑣 𝑣 𝑣 𝑣 + 𝐶𝑢 𝑢 + 𝐶𝑣 𝑣 + 𝐶𝑟 𝑟   

Pure yaw: 

𝐹 𝑥 = 𝐴0 + 𝐴𝑢𝑢 + 𝐴𝑣𝑣 + 𝐴𝑟𝑟 + 𝐴𝑟𝑟 𝑟
2  +  𝐴𝑢 𝑢  + 𝐴𝑣 𝑣  + 𝐴𝑟 𝑟   

𝐹 𝑦 = 𝐵0 + 𝐵𝑢𝑢 + 𝐵𝑣𝑣 + 𝐵𝑟𝑟 + 𝐵𝑟𝑟𝑟 𝑟
3 + 𝐵𝑢 𝑢  + 𝐵𝑣 𝑣  + 𝐵𝑟 𝑟   

𝑀 𝑧 = 𝐶0 + 𝐶𝑢𝑢 + 𝐶𝑣𝑣 + 𝐶𝑟𝑟 + 𝐶𝑟𝑟𝑟 𝑟
3 + 𝐶𝑢 𝑢  + 𝐶𝑣 𝑣  + 𝐶𝑟 𝑟   

Yaw and drift: 

𝐹 𝑥 = 𝐴0 + 𝐴𝑢𝑢 + 𝐴𝑣𝑣 + 𝐴𝑟𝑟 + 𝐴𝑢𝑢𝑢
2 + 𝐴𝑣𝑣𝑣

2 + 𝐴𝑟𝑟𝑟
2+ 𝐴𝑢𝑣𝑢𝑣  + 𝐴𝑢 𝑢  + 𝐴𝑣 𝑣  + 𝐴𝑟 𝑟   

𝐹 𝑦 = 𝐵0 + 𝐵𝑢𝑢 + 𝐵𝑣𝑣 + 𝐵𝑟𝑟 + 𝐵𝑣 𝑣 𝑣 𝑣  + 𝐵𝑢𝑣𝑢𝑣 + 𝐵𝑣 𝑟 𝑣 𝑟  + 𝐵𝑟 𝑣 𝑟 𝑣  + 𝐵𝑟𝑟𝑟 𝑟
3 + 𝐵𝑣𝑟𝑟 𝑣𝑟

2 + 𝐵𝑟𝑣𝑣𝑟𝑣
2  

         + 𝐵𝑢 𝑢  + 𝐵𝑣 𝑣  + 𝐵𝑟 𝑟   

𝑀 𝑧 = 𝐶0 + 𝐶𝑢𝑢 + 𝐶𝑣𝑣 + 𝐶𝑟𝑟 + 𝐶𝑣 𝑣 𝑣 𝑣  + 𝐶𝑢𝑣𝑢𝑣 + 𝐶𝑣 𝑟 𝑣 𝑟  + 𝐶𝑟 𝑣 𝑟 𝑣  + 𝐶𝑟𝑟𝑟 𝑟
3 + 𝐶𝑣𝑟𝑟𝑣𝑟

2 + 𝐶𝑟𝑣𝑣𝑟𝑣
2  

         + 𝐶𝑢 𝑢  + 𝐶𝑣 𝑣  + 𝐶𝑟 𝑟   

 

Table 5-4 Bias limits of global variables. 

Var. (𝑥) 
𝐿 

(m) 
𝑇 

(m) 
𝑥𝐺  
(m) 

𝑦𝐺  
(m) 

𝑚 
(Kg) 

𝐼𝑧  

(Kgm2) 

𝜌 
(Kg/m3) 

𝑈𝐶 
(m/s) 

𝐷𝑥  3.048 0.132 0.016 0.0 82.55 (83.35) 49.79 (44.48) 998.1 2.241 

𝐵𝑥  0.002 0.001 0.005 0.002 0.11 (0.08) 1.84 (1.89) 0.041 0.010 

%𝐷𝑥  0.07 0.7 31.3 - 0.1 (0.1) 3.7 (4.2) 0.004 0.5 

               (  ): values for fixed conditions. 
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Table 5-5 Bias limits of PMM motion parameters for dynamic tests (𝐹𝑟 = 0.280). 

Var.  

(𝜒) 
Unit Test type 𝐷𝜒  

 𝐵𝜒   

(%𝐷𝜒 ) 

𝑥 
𝑆𝑚𝑚  
(mm) 

N 
(rpm) 

𝑡 
(sec) 

𝛽 

() 

𝜓max  

() 

𝐷𝑥  250 15 0.01 30 30 

𝐵𝑥  0.5 0.0006 0.001 0.22 0.22 

%𝐷𝑥  0.2 0.0 10.0 0.7 0.7 

Elemental bias 𝐵𝑥  contributions  
 𝜃𝑥

2𝐵𝑥
2 

 𝐵𝜒
2 

 (%) 

𝑣𝑃𝑀𝑀  (m/s) 

Pure sway 0.5359 0.1  92.7 0.8 6.6 - - 

Pure yaw 0.5529 0.1  92.2 0.8 7.0 - - 

Yaw & drift 0.5558 0.1  92.2 0.8 7.0 - - 

𝑣 𝑃𝑀𝑀  (m/s2) 

Pure sway 0.4512 0.1  92.6 0.8 6.6 - - 

Pure yaw 0.4646 0.1  92.1 0.9 7.0 - - 

Yaw & drift 0.4671 0.1  92.1 0.9 7.0 - - 

𝜓 () 

Pure sway 0.1 222.1  - 0.0 0.0 67.0 33.0 

Pure yaw 20.4 1.3  - 0.0 0.1 67.0 32.9 

Yaw & drift 20.4 1.3  - 0.0 0.2 66.9 32.9 

𝑟𝑃𝑀𝑀  (rad/s) 

Pure sway 0.0032 63.3  - 0.0 0.0 - 100.0 

Pure yaw 0.3005 0.7  - 0.0 0.2 - 99.8 

Yaw & drift 0.3007 0.7  - 0.1 0.6 - 99.3 

𝑟 𝑃𝑀𝑀  (rad/s2) 

Pure sway 0.0056 30.9  - 0.0 0.0 - 100.0 

Pure yaw 0.2545 0.7  - 0.0 0.2 - 99.8 

Yaw & drift 0.2526 0.7  - 0.1 0.6 - 99.3 

Var.  

(X) 
Unit Test type 𝐷X  

 𝐵X  

(%𝐷X ) 

Elemental bias 𝐵𝑥  contributions 
 𝜃𝜒

2𝐵𝜒
2 

 𝐵X
2 

 (%) 

𝑈𝐶 𝑣𝑃𝑀𝑀   𝑣 𝑃𝑀𝑀  𝜓 𝑟𝑃𝑀𝑀  𝑟 𝑃𝑀𝑀  

𝑢 (m/s) 

Pure sway 1.5177† 0.7 99.1 0.0 - 0.9 - - 

Pure yaw 1.5397† 0.7 100.0 0.0 - 0.0 - - 

Yaw & drift 1.5151† 0.7 98.4 0.0 - 1.6 - - 

𝑣 (m/s) 

Pure sway 0.5382 1.3 0.0 0.7 - 99.3 - - 

Pure yaw 0.0090 81.6 3.0 0.7 - 96.4 - - 
Yaw & drift 0.2672† 2.8 8.2 0.6 - 91.1 - - 

𝑟 (rad/s) 

Pure sway 0.0032 63.3 - - - - 100.0 - 

Pure yaw 0.3005 0.7 - - - - 100.0 - 
Yaw & drift 0.3007 0.7 - - - - 100.0 - 

𝑢  (m/s2) 

Pure sway 0.0006 115.0 0.0 0.0 0.0 83.5 16.5 - 

Pure yaw 0.0423 0.3 63.2 16.9 17.1 2.6 0.2 - 
Yaw & drift 0.0418 1.4 10.1 0.6 2.5 0.1 86.6 - 

𝑣  (m/s2) 

Pure sway 0.4539 0.1 0.0 0.0 100.0 0.0 0.0 - 

Pure yaw 0.0161 6.8 80.8 0.0 18.9 0.3 0.0 - 
Yaw & drift 0.0196 5.6 77.4 0.0 18.1 4.5 0.0 - 

𝑟  (rad/s2) 

Pure sway 0.0056 30.9 - - - - - 100.0 

Pure yaw 0.2545 0.7 - - - - - 100.0 

Yaw & drift 0.2526 0.7 - - - - - 100.0 

    † period mean values;  - not applicable.   
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Table 5-6 Bias limits of measured forces and moment (𝐵𝐹).  

Test 𝐹 Unit 𝐹𝑟 𝐷𝐹 
 𝐵𝐹  

(%𝐷𝐹) 

Elemental bias 𝐵𝐹,𝑥  contribution 
 𝐵𝐹,𝑥

2  

 𝐵𝐹
2 

  %  

𝛽 align ref fit 𝑢 𝑣 𝑟 𝑢  𝑣  𝑟  𝑡 

Static 

drift 
𝐹𝑥  (N) 0.138 2.4 0.5 47.4 0.9 0.7 51.0 - - - - - - - 

  0.280 10.9 1.1 91.8 1.7 0.0 6.5 - - - - - - - 

  0.410 32.5 0.8 88.0 1.6 0.0 10.4 - - - - - - - 

𝐹𝑦  (N) 0.138 6.1 2.8 97.9 1.8 0.0 0.3 - - - - - - - 

  0.280 28.5 2.9 97.0 1.8 0.0 1.2 - - - - - - - 

  0.410 69.3 3.5 97.2 1.8 0.0 1.0 - - - - - - - 

𝑀𝑧  (Nm) 0.138 8.7 2.6 95.2 1.7 1.5 1.5 - - - - - - - 

  0.280 44.1 2.5 96.8 1.8 0.1 1.4 - - - - - - - 

  0.410 108.5 3.1 97.3 1.8 0.0 0.9 - - - - - - - 

Pure 

sway 
𝐹𝑥  (N) 0.280 11.50 0.7 - - 0.0 12.9 0.5 86.4 0.0 0.0 0.1 0.0 0.0 

𝐹𝑦  (N)  86.08 1.0 - - 0.0 1.3 0.0 97.8 0.0 0.0 0.8 0.0 0.1 

𝑀𝑧  (Nm)  94.46 1.4 - - 0.0 0.5 0.0 99.4 0.0 0.0 0.0 0.0 0.0 

Pure 

yaw 
𝐹𝑥  (N) 0.138 2.13 0.8 - - 0.3 23.0 0.0 32.5 12.8 5.9 25.3 0.2 0.0 

  0.280 9.00 0.6 - - 0.0 19.1 0.0 0.0 11.8 1.8 67.0 0.1 0.1 

  0.410 27.49 0.4 - - 0.0 53.7 0.0 3.7 27.0 5.0 9.8 0.0 0.7 

𝐹𝑦  (N) 0.138 11.19 0.8 - - 0.0 0.4 0.0 0.0 96.2 0.0 0.1 3.2 0.0 

  0.280 54.36 0.7 - - 0.0 2.0 0.0 0.1 96.4 0.0 1.1 0.3 0.1 

  0.410 118.49 0.8 - - 0.0 1.7 0.0 0.1 95.9 0.0 0.6 1.4 0.3 

𝑀𝑧  (Nm) 0.138 10.25 0.9 - - 8.7 1.8 0.0 0.0 53.2 0.0 0.0 36.2 0.0 

  0.280 47.67 0.8 - - 0.6 2.0 0.0 0.0 72.7 0.0 0.7 24.0 0.1 
  0.410 131.07 0.9 - - 0.1 1.3 0.0 0.1 74.7 0.0 0.1 23.4 0.3 

Yaw 

& 
drift 

𝐹𝑥  (N) 0.280 10.23 1.5 - - 0.0 4.0 55.5 1.3 29.2 8.5 1.2 0.2 0.1 

𝐹𝑦  (N)  67.48 1.2 - - 0.0 3.0 0.0 54.8 38.6 0.0 3.2 0.3 0.1 

𝑀𝑧  (Nm)  66.37 1.4 - - 0.1 2.8 3.1 62.1 24.7 0.0 3.5 3.8 0.0 

-  not applicable. 
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Table 5-7 Total bias limits of non-dimensional forces and moment (𝐵r).  

Test r Fr 

Elemental bias 𝐵𝑥  contributions 
 𝜃𝑥

2𝐵𝑥
2 

 𝐵r
2 

  %  

𝐿 𝑇 𝑥𝐺  𝑦𝐺  𝑚 𝐼𝑧  𝜌 𝑢† 𝑣 𝑟 𝑢  𝑣  𝑟  𝐹 

Static drift 𝑋 0.138 0.1 7.0 - - - - 0.0 89.7 - - - - - 3.3 

  0.280 0.1 15.8 - - - - 0.0 49.4 - - - - - 34.7 

  0.410 0.2 26.9 - - - - 0.0 39.7 - - - - - 33.2 

 𝑌 0.138 0.0 3.7 - - - - 0.0 46.7 - - - - - 49.6 

  0.280 0.0 5.3 - - - - 0.0 16.6 - - - - - 78.0 

  0.410 0.0 4.2 - - - - 0.0 6.2 - - - - - 89.5 

 𝑁 0.138 0.1 2.7 - - - - 0.0 34.0 - - - - - 63.3 

  0.280 0.1 3.2 - - - - 0.0 10.1 - - - - - 86.6 

  0.410 0.1 2.4 - - - - 0.0 3.5 - - - - - 94.1 

Pure sway 𝑋 0.280 0.0 5.1 0.0 0.0 0.0 - 0.0 86.1 0.1 0.4 2.6 - 0.0 5.6 

 𝑌  0.0 2.9 0.0 0.0 0.0 - 0.0 8.8 0.6 8.4 - 0.2 0.0 79.0 

 𝑁  0.1 2.7 0.2 0.0 0.0 0.0 0.0 8.4 0.1 0.0 0.0 0.0 0.4 88.0 

Pure yaw 𝑋 0.138 0.1 14.0 0.1 1.1 0.0 - 0.0 57.3 11.2 0.0 0.7 - 0.0 15.5 

  0.280 0.0 5.1 0.0 0.3 0.0 - 0.0 86.6 3.8 0.0 0.1 - 0.0 4.1 

  0.410 0.0 2.7 0.0 0.1 0.0 - 0.0 95.5 1.0 0.0 0.0 - 0.0 0.6 

 𝑌 0.138 0.0 0.2 0.5 0.0 0.1 - 0.0 18.1 0.0 28.8 - 9.2 0.0 43.0 

  0.280 0.0 0.6 0.5 0.0 0.1 - 0.0 8.7 0.0 28.5 - 3.3 0.0 58.2 

  0.410 0.0 0.5 0.6 0.0 0.1 - 0.0 3.3 0.0 29.9 - 1.9 0.0 63.7 

 𝑁 0.138 0.1 2.7 1.6 0.0 0.0 10.6 0.0 33.7 0.0 0.0 0.0 0.0 4.8 46.4 

  0.280 0.2 5.9 2.3 0.0 0.0 11.2 0.0 17.7 0.0 0.0 0.0 0.0 3.8 58.8 

  0.410 0.2 5.1 1.2 0.0 0.0 9.1 0.0 7.3 0.0 0.0 0.0 0.0 4.5 72.7 

Yaw & drift 𝑋 0.280 0.0 4.4 0.0 0.2 0.0 - 0.0 70.9 2.6 1.8 2.1 - 0.0 17.8 

 𝑌  0.0 6.6 0.1 0.0 0.0 - 0.0 21.7 1.8 7.6 - 0.9 0.0 61.2 

 𝑁  0.3 10.3 0.3 0.0 0.0 1.7 0.0 29.4 0.5 0.0 0.0 0.0 0.6 56.9 

† 𝑈𝐶 for static drift test;  - not applicable. 

 

 

 

Table 5-8 Identifications of primary bias sources and propagations.  

Test Bias Test type1) Primary biases and propagations Bias source 

Static 
𝐵𝑋 , 𝐵𝑌, 

𝐵𝑁  
SD 

𝐵𝑈𝐶
  

𝐵𝐹  𝐵𝐹,𝛽   𝐵𝛽   
𝑈𝐶, 𝛽 

Dyanmic 𝐵𝑋   PS,PY,YD 𝐵𝑢   𝐵𝑈𝐶
 𝑈𝐶  

 𝐵𝑌, 𝐵𝑁   PS 𝐵𝐹  𝐵𝐹,𝑣  𝐵𝑣  𝐵𝜓   𝐵𝛽 , 𝐵𝜓𝑚𝑎𝑥
 𝛽, 𝜓𝑚𝑎𝑥   

  PY 𝐵𝐹  𝐵𝐹,𝑟   𝐵𝑟   𝐵𝑟𝑃𝑀𝑀
  𝐵𝜓𝑚𝑎𝑥

   

  YD 𝐵𝐹  𝐵𝐹,𝑣/𝐵𝐹,𝑟   𝐵𝑣/𝐵𝑟   𝐵𝜓 /𝐵𝑟𝑃𝑀𝑀
  𝐵𝛽 ,𝐵𝜓𝑚𝑎𝑥

  

 1) SD = static drift; PS = pure sway; PY = pure yaw; YD = yaw and drift.  
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Table 5-9 Summary of UA results.  

Test R 
Fr 𝐷r   𝐵r  

 𝐵r
2 

 𝑈r
2 

  𝑃r  
 𝑃r

2 

 𝑈r
2 

  𝑈r  

[-] [-] (%𝐷r) (%) (%𝐷r) (%) (%𝐷r) 

Static drift 𝑋  0.138 0.021 2.9 95.9 0.6   4.1 2.9 

0.280 0.023 2.0 96.6 0.3   3.4 1.9 

0.410 0.033 1.5 69.3 1.0 30.7 1.8 

𝑌  0.138 0.054 3.9 82.7 1.8 17.3 4.4 

0.280 0.061 3.3 95.1 0.8   4.9 3.4 

0.410 0.070 3.7 99.6 0.2   0.4 3.7 

𝑁  0.138 0.025 3.3 80.2 1.6 19.8 3.6 

0.280 0.031 2.7 94.5 0.6   5.5 2.8 

0.410 0.036 3.2 99.6 0.2   0.4 3.2 
 

𝑧 (10-2) 0.138 0.054 6.1 76.9 3.3 23.1 6.9 
 0.280 0.296 1.1 66.6 0.8 33.4 1.4 
 0.410 0.726 0.5 15.8 1.1 84.2 1.1 
 

𝜃 () 0.138 0.020 197.6 99.9 7.3 0.1 197.7 
 0.280 -0.152 26.4 99.9 0.9 0.1 26.4 
 0.410 0.217 18.4 88.9 6.5 11.1 19.6 

Pure sway 𝑋  0.280 0.024 3.4 24.8 5.8 75.2 4.7 
𝑌   0.133 1.6 63.0 1.2 37.0 2.0 
𝑁   0.065 1.5 93.6 0.4 6.4 1.6 

 𝑧 (10-3)  1.928 1.7 11.3 4.7 88.7 5.0 
 𝜃 ()  0.163 24.5 77.0 13.3 23.0 27.9 

Pure yaw X  0.138 0.018 2.0 3.7 10.3 96.3 10.5 
0.280 0.019 3.4 19.0 6.8 81.0 7.6 
0.410 0.027 4.6 66.5 3.2 33.5 5.7 

Y  0.138 0.026 4.7 36.2 6.7 63.8 8.3 
0.280 0.034 3.0 74.4 1.9 25.6 3.7 
0.410 0.039 3.3 89.2 1.2 10.8 3.6 

𝑌  0.138 0.025 1.6 91.3 0.5 8.7 1.7 
0.280 0.031 1.1 81.1 0.5 18.9 1.2 
0.410 0.040 1.2 93.3 0.3 6.7 1.2 

 
𝑧 (10-3) 0.138 0.294 11.2 51.0 10.8 49.0 15.6 

 0.280 1.540 2.1 11.5 5.9 88.5 6.2 
 0.410 4.944 0.7 15.6 1.5 84.4 1.7 
 

𝜃 () 0.138 0.094 74.8 99.3 4.1 0.7 42.9 
 0.280 0.127 31.5 77.8 16.8 22.2 35.7 
 0.410 0.444 9.0 86.8 3.5 13.2 9.7 

Yaw & drift 𝑋  0.280 0.022 3.6 28.8 5.6 71.2 6.7 
𝑌   0.065 3.3 80.1 1.7 19.9 3.7 
𝑁   0.045 1.9 91.8 0.6 8.2 2.0 

 𝑧 (10-3)  3.224 1.0 11.7 2.8 88.3 3.0 

 𝜃 ()  0.302 13.2 75.8 7.4 24.2 15.2 
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Table 5-10 Evaluation of asymmetry bias 𝐵𝑎𝑠𝑦𝑚 . 

Test r 𝐹𝑟 𝐷rm  
 𝐷𝑎𝑠𝑦𝑚    𝑈r   𝐵𝑎𝑠𝑦𝑚    𝑈𝑇1

  

(%) (%) (%) (%) 

Static drift 𝑋  0.138 0.0196 7.7 3.1 7.0 7.7 

 0.280 0.0214 10.5 2.1 10.3 10.5 

 0.410 0.0302 7.5 1.9 7.2 7.5 

 𝑌  0.138 0.0524 2.0 4.5 0.0 4.5 
 0.280 0.0619 0.4 3.3 0.0 3.3 
 0.410 0.0715 1.8 3.6 0.0 3.6 

 𝑁  0.138 0.0250 0.0 3.7 0.0 3.7 
 0.280 0.0313 0.6 2.8 0.0 2.8 
 0.410 0.0365 0.8 3.1 0.0 3.1 

 𝑧 (10-2) 0.138 0.046 18.3 8.1 16.4 18.3 
 0.280 0.288 2.9 1.4 2.5 2.9 
 0.410 0.714 1.7 1.2 1.2 1.7 

 𝜃 () 0.138 -0.050 140.2 79.5 115.5 140.2 
 0.280 -0.212 28.5 18.9 21.4 28.5 
 0.410 0.131 65.7 32.4 57.2 65.7 

Pure sway 𝑋  0.280 0.0245 9.0 6.7 6.1 10.0 
 𝑌   0.1327 5.4 2.0 5.0 5.4 
 𝑁   0.0653 1.3 1.6 0.1 1.6 
 𝑧 (10-3)  1.9284 13.2 5.0 11.9 13.5 
 𝜃 ()  0.1631 4.1 27.9 0.0 27.9 

Pure yaw 𝑋  0.138 0.0185 10.3 10.5 5.7 12.9 
  0.280 0.0189 9.5 7.6 5.9 10.4 
  0.410 0.0274 6.6 5.7 4.2 7.7 

 𝑌  0.138 0.0241 7.2 9.0 3.1 10.3 
  0.280 0.0344 3.2 3.7 1.7 4.7 
  0.410 0.0385 4.2 3.6 2.1 4.7 

 𝑁  0.138 0.0250 1.2 1.7 0.0 1.7 
  0.280 0.0308 1.6 1.2 1.0 1.6 
  0.410 0.0397 1.4 1.2 0.5 1.4 

 𝑧 (10-3) 0.138 0.2820 74.0 16.3 71.1 74.8 
  0.280 1.5398 18.2 6.2 16.7 18.5 
  0.410 4.9434 3.4 1.7 2.9 3.6 

 𝜃 () 0.138 0.0433 95.1 92.5 52.0 115.5 
  0.280 0.1270 33.4 35.7 17.1 42.9 
  0.410 0.4442 9.0 9.7 3.7 11.1 
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Table 5-11 Comparisons of UA between facilities. 

    IIHR  FORCE  INSEAN 

Test r 𝐹𝑟 
  𝑟  𝐵r 𝑃r 𝑈r   𝑟  𝐵r 𝑃r 𝑈r   𝑟  𝐵r 𝑃r 𝑈r 

  (%) (%) (%)   (%) (%) (%)   (%) (%) (%) 

Static drift1) 𝑋 0.138  0.0210 95.9 4.1 2.9  0.0174 97.2 2.8 11.3  0.0169 92.8 7.2 3.9 

0.280  0.0234 96.6 3.4 1.9  0.0195 77.8 22.2 3.4  0.0189 94.1 5.9 1.4 

0.410  0.0330 69.3 30.7 1.8  0.0278 89.6 10.4 1.6  0.0285 91.2 8.8 0.7 

𝑌 0.138  0.0538 82.7 17.3 4.4  0.0542 79.0 21.0 3.5  0.0552 99.1 0.9 3.1 

0.280  0.0611 95.1 4.9 3.4  0.0617 74.2 25.8 2.1  0.0626 99.1 0.9 3.3 

0.410  0.0703 99.6 0.4 3.7  0.0729 69.6 30.4 1.8  0.0717 99.5 0.5 3.9 

𝑁 0.138  0.0251 80.2 19.8 3.6  0.0260 69.2 30.8 2.2  0.0261 99.7 0.3 3.4 

0.280  0.0310 94.5 5.5 2.8  0.0306 21.0 79.0 2.4  0.0309 98.9 1.1 3.1 

0.410  0.0361 99.6 0.4 3.2  0.0367 43.4 56.6 1.4  0.0363 99.4 0.6 2.8 

Pure sway2) 𝑋 0.280  0.0292 35.2 64.8 5.8  0.0207 98.1 1.9 3.1  0.0197 46.6 53.4 1.3 

𝑌   0.0548 73.3 26.7 5.5  0.0565 98.3 1.7 1.8  0.0637 66.0 34.0 2.1 

𝑁   0.0316 98.0 2.0 4.2  0.0306 92.6 7.4 1.5  0.0334 73.0 27.0 1.8 

Pure yaw3) X 0.138  0.0224 4.0 96.0 9.9  0.0177 97.6 2.4 11.3  0.0156 77.0 23.0 4.2 

0.280  0.0215 20.8 79.2 7.4  0.0187 98.8 1.2 3.4  0.0168 52.7 47.3 1.7 
0.410  0.0303 68.1 31.9 5.6  0.0264 98.0 2.0 2.9  0.0249 70.5 29.5 0.9 

𝑌 0.138  0.0072 48.9 51.1 36.5  0.0114 90.3 9.7 15.8  0.0090 70.1 29.9 10.3 

0.280  0.0161 88.0 12.0 10.8  0.0178 93.4 6.6 5.5  0.0178 85.5 14.5 4.6 
0.410  0.0168 90.1 9.9 12.2  0.0176 90.6 9.4 3.5  0.0178 86.2 13.8 6.2 

𝑁 0.138  0.0114 94.7 5.3 4.0  0.0114 98.8 1.2 7.3  0.0119 34.1 65.9 2.6 

0.280  0.0146 90.0 10.0 2.9  0.0140 93.9 6.1 3.3  0.0160 59.6 40.4 1.4 
0.410  0.0188 94.1 5.9 3.0  0.0186 87.7 12.3 1.4  0.0210 61.4 38.6 1.8 

Yaw & drift3) 𝑋 0.280  0.0265 29.8 70.2 6.7  0.0234 99.2 0.8 5.8  0.0255 67.6 32.4 1.3 

𝑌   0.0470 79.6 20.4 4.7  0.0458 89.0 11.0 2.1  0.0469 74.0 26.0 3.5 

𝑁   0.0135 92.8 7.2 4.9  0.0135 98.0 2.0 2.7  0.0134 64.0 36.0 4.4 

     1) at 𝛽 = -10 for IIHR and 10 for FORCE and INSEAN; 2) at 𝑣′ 𝑡  = 𝑣0
′ ; 3) at 𝑟′ 𝑡  = 𝑟0

′ . 
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Table 5-12 Evaluation of asymmetry bias 𝐵𝑎𝑠𝑦𝑚  (FORCE and INSEAN data). 

    FORCE  INSEAN 

 r 𝐹𝑟  𝐷r𝑚
  𝑈r   𝐵𝑎𝑠𝑦𝑚    𝑈𝑇1

   𝐷r𝑚
  𝑈r   𝐵𝑎𝑠𝑦𝑚    𝑈𝑇1

  
     (%) (%) (%)   (%) (%) (%) 

Static drift 𝑋 0.138  0.0185 10.6 0.0 10.6  0.0159 4.2 4.7 6.3 

0.280  0.0199 3.3 0.0 3.3  0.0174 1.5 11.4 11.5 

0.410  0.0285 1.5 1.9 2.5  0.0253 0.8 11.8 11.9 

𝑌 0.138  0.0539 3.5 0.0 3.5  0.0580 2.9 0.0 2.9 

0.280  0.0607 2.1 0.0 2.1  0.0620 3.3 0.0 3.3 

0.410  0.0718 1.9 0.0 1.9  0.0800 3.5 0.0 3.5 

𝑁 0.138  0.0256 2.3 0.0 2.3  0.0228 2.9 0.0 2.9 

0.280  0.0297 2.5 1.7 3.0  0.0290 3.3 0.0 3.3 

0.410  0.0358 1.5 2.0 2.5  0.0390 2.6 0.0 2.6 

Pure sway 𝑋 0.280  0.0201 3.2 0.0 3.2  0.0184 1.2 11.1 11.3 

𝑌   0.1283 0.8 0.1 0.8  0.1392 0.9 0.0 0.9 

𝑁   0.0615 0.8 0.4 0.9  0.0670 0.8 0.0 0.8 

Pure yaw 𝑋 0.138  0.0176 11.2 0.0 11.2  0.0153 3.9 6.0 7.8 

0.280  0.0188 3.4 0.1 3.4  0.0169 1.2 5.4 5.7 

0.410  0.0259 2.9 0.0 2.9  0.0246 0.8 6.4 6.5 

𝑌 0.138  0.0310 6.0 0.0 6.0  0.0226 4.3 3.8 6.2 

0.280  0.0368 2.7 0.0 2.7  0.0356 1.9 0.7 2.2 

0.410  0.0420 1.4 0.4 1.6  0.0434 2.0 0.4 2.1 

𝑁 0.138  0.0242 3.1 1.5 3.8  0.0251 1.2 0.0 1.2 

0.280  0.0296 1.5 0.5 1.5  0.0329 0.7 0.0 0.7 

0.410  0.0394 0.5 1.4 1.5  0.0434 0.8 0.0 0.8 
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Table 5-13 Evaluation of facility bias 𝐵𝐹𝐵 . 

Test X 𝐹𝑟 X  
𝑈X  𝑈X   𝐷  𝑈𝐷  𝐵𝐹𝐵  𝑈𝑇2

 

(%) (%) (%) (%) (%) (%) 

Static drift 𝑋 0.138 0.0180 4.9 8.4 8.9 9.7 0.0 8.4 

0.280 0.0196 5.2 11.5 9.4 12.6 0.0 10.9 

0.410 0.2800 4.5 8.0 7.9 9.2 0.0 8.0 

𝑌 0.138 0.0548 2.1 4.3 4.3 4.8 0.0 4.3 

0.280 0.0615 1.7 3.3 0.6 3.7 0.0 3.3 

0.410 0.0744 1.8 3.5 3.9 3.9 0.5 3.5 

𝑁 0.138 0.0245 1.7 3.7 2.2 4.2 0.0 3.8 

0.280 0.0300 1.7 2.8 4.3 3.4 2.7 4.0 

0.410 0.0374 1.6 3.1 2.4 3.4 0.0 3.0 

Pure sway 𝑋 0.280 0.0225 5.4 7.6 20.6 9.3 18.3 19.8 

𝑌  0.0604 3.5 10.2 1.0 10.8 0.0 10.2 

𝑁  0.0322 1.6 4.2 1.3 4.5 0.0 4.2 

Pure yaw 𝑋 0.138 0.0175 7.5 17.8 10.0 19.3 0.0 17.8 

0.280 0.0181 5.7 15.4 3.3 16.4 0.0 15.4 

0.410 0.0263 4.3 10.3 4.9 11.2 0.0 10.3 

𝑌 0.138 0.0096 13.0 27.2 13.0 30.2 0.0 27.3 

0.280 0.0175 4.2 9.9 3.0 10.7 0.0 9.9 

0.410 0.0180 4.5 11.3 2.8 12.2 0.0 3.2 

𝑁 0.138 0.0117 3.5 3.9 0.9 5.3 0.0 3.9 

0.280 0.0150 1.7 3.3 0.4 3.7 0.0 3.3 

0.410 0.0196 1.3 2.8 2.0 3.1 0.0 2.8 

Yaw & drift 𝑋 0.280 0.0251 3.0 7.1 5.4 7.7 0.0 7.1 

𝑌  0.0465 2.1 4.7 0.7 5.2 0.0 4.7 

𝑁  0.0135 2.4 4.9 0.0 5.5 0.0 5.0 
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Table 5-14 Evaluation of facility bias 𝐵𝐹𝐵  (FORCE and INSEAN data). 

    FORCE  INSEAN 

Test r 𝐹𝑟  𝑈X   𝐷  𝑈𝐷  𝐵𝐹𝐵  𝑈𝑇2
  𝑈X   𝐷  𝑈𝐷  𝐵𝐹𝐵  𝑈𝑇2

 

    (%) (%) (%) (%) (%)  (%) (%) (%) (%) (%) 

Static drift 𝑋 0.138  10.9 2.8 12.0 0.0 10.9  5.6 11.7 7.4 9.0 10.6 

0.280  3.4 1.7 6.2 0.0 3.4  10.2 11.1 11.5 0.0 10.2 

0.410  2.5 1.8 5.2 0.0 2.5  10.8 9.6 11.7 0.0 10.8 

𝑌 0.138  3.4 1.6 4.0 0.0 3.4  3.1 5.9 3.7 4.6 5.5 

0.280  2.1 1.4 2.7 0.0 2.1  3.4 0.8 3.8 0.0 3.4 

0.410  1.8 3.5 2.6 2.4 3.0  3.8 7.5 4.2 6.2 7.3 

𝑁 0.138  2.4 4.6 3.0 3.6 4.3  2.7 6.8 3.2 6.0 6.6 

0.280  3.0 1.0 3.4 0.0 3.0  3.2 3.3 3.6 0.0 3.2 

0.410  2.4 1.9 2.8 0.0 2.4  2.7 4.3 3.1 2.9 4.0 

Pure sway 𝑋 0.280  2.9 8.0 6.1 5.2 5.9  14.1 12.5 15.1 0.0 14.1 
𝑌   1.7 6.4 3.9 5.1 5.4  2.2 5.5 4.2 3.5 4.2 
𝑁   1.5 5.1 2.2 4.6 4.8  1.9 3.8 2.5 2.9 3.4 

Pure yaw 𝑋 0.138  11.4 1.0 13.6 0.0 11.4  7.5 10.9 10.6 2.8 8.0 
0.280  3.5 3.4 6.7 0.0 3.5  6.4 6.7 8.6 0.0 6.4 
0.410  2.9 0.5 5.2 0.0 2.9  7.4 5.4 8.6 0.0 7.4 

𝑌 0.138  19.1 18.8 23.1 0.0 19.1  20.0 5.9 23.9 0.0 20.0 
0.280  5.6 1.4 7.0 0.0 5.6  5.4 1.6 6.8 0.0 5.4 
0.410  3.2 1.9 5.5 0.0 3.2  6.6 0.9 8.0 0.0 6.6 

𝑁 0.138  9.5 2.6 10.1 0.0 9.5  2.6 1.7 4.4 0.0 2.6 
0.280  3.5 6.7 3.9 5.5 6.5  1.5 6.3 2.3 5.9 6.1 
0.410  1.9 5.3 2.3 4.7 5.1  1.9 7.3 2.3 6.9 7.2 

Yaw & drift 𝑋 0.280  5.3 6.8 6.1 3.1 6.2  1.2 1.4 3.2 0.0 1.2 

𝑌   2.1 1.6 2.9 0.0 2.1  3.5 0.8 4.1 0.0 3.5 

𝑁   2.6 0.4 3.5 0.0 2.6  4.5 0.4 5.1 0.0 4.5 
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Figure 5-1 Definition of 𝛽ref  for drift angle calibration.  

  



 

 

130 

1
3
0
 

(a) 

 

(d) 

 
    

(b) 

 

(e) 

 
    

(c) 

 

  

Figure 5-2 Static drift test results: (a) 𝑋; (b) 𝑌; (c) 𝑁, (d) 𝑧, (e) 𝜃, respectively.  Symbols: 
 𝐹𝑟 = 0.138  𝐹𝑟 = 0.280,  𝐹𝑟 = 0.410.   
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

(e) 

   

Figure 5-3 Dynamic test results: (a) 𝑋, (b) 𝑌, (c) 𝑁, (d) 𝑧, and (e) 𝜃 for pure sway (left, 
𝛽𝑚𝑎𝑥  = 10), pure yaw (center, 𝑟𝑚𝑎𝑥  = 0.30), and yaw and drift (right, 𝛽 = 
10) tests, respectively.  Symbols for pure yaw data:  𝐹𝑟 = 0.138  𝐹𝑟 = 
0.280,  𝐹𝑟 = 0.410.   
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(a) (b) 

  

Figure 5-4 Comparisons of UA between facilities (Scale effect): (a) Static drift data 
(X,Y,N: Fr = 0.138; X,Y,N: Fr = 0.280; X,Y,N: Fr = 0.410) and (b) Dynamic 
tests data (X,Y,N: Pure sway; X,Y,N: Pure yaw; X,Y,N: Yaw and drift).   

(a) (b) 

  

Figure 5-5 Comparisons of UA between facilities (Fr effect): (a) Static drift data and (b) 
Dynamic tests data.  Symbols: X,Y,N, IIHR; X,Y,N, FORCE; X,Y,N, IN-
SEAN. 
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5.2 UA for Phase-Averaged Flow Field 

The uncertainty analysis (UA) of phase-averaged Stereo PIV measurement results 

follows the ASME PTC 19.1-2005 Standard (ASME 2005).  The ASME (2005) is a revi-

sion of the ASME PTC 19.1-1998 Standard (ASME 1998) that is equivalent to the AIAA 

(1999) standard.  The approach of ASME (1998)/AIAA (1999) is error/uncertainty defi-

nitions, systematic/random categorizations, and large sample size/normal distribution 

95% level confidence interval assumptions.  The details of the ASME (1998)/AIAA 

(1999) are derived and explained in Coleman and Steele (1995).   

The main revision of the ASME (2005) from its previous version, ASME 1998, is 

focused on the harmonization with the ISO Guide (1995) that utilizes conceptually differ-

ent error/uncertainty classifications (Type A and Type B) from the ASME (1998)/AIAA 

(1999).  For this, the ASME 2005 adapts nomenclatures more consistent with the ISO 

Guide (1995): 1) the terms „bias‟ and „precision‟ are not used therein, however, uncer-

tainties remain conceptualized as „systematic‟ and „random‟, respectively, and 2) the term 

„standard‟ uncertainty is introduced and the terms such as „combined standard‟ uncertain-

ty and „expanded‟ uncertainty are used instead of the term „total‟ uncertainty. 

5.2.1 UA Methodology (ASME 2005) 

Measurement error, the difference between the measured value 𝑋 and the true 

value, consists of two components: random error (𝜖) that varies randomly in repeated 

measurements and systematic error (𝛽) that remains constant throughout the test.  Mea-

surement uncertainty is the combination of random uncertainty (𝑠) due to the random er-

ror and systematic uncertainty (𝑏) due to the systematic error.   

Random error causes scatters in successive measurements of 𝑋 from which sam-

ple mean 𝑋  and sample standard deviation 𝑠𝑋  are calculated.  The random standard uncer-

tainty of the sample mean, 𝑠𝑋 , then, can be used to define the probable interval containing 
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the population (true) mean of the measurement with a defined level of confidence, which 

is given as 

 

𝑠𝑋 = 𝑠𝑋  𝑁          (5.38)  

where 𝑁 is the number of repeat measurements.  For a normal distribution and a large 

sample size (𝑁 > 30), for example, the interval 𝑋 ± 2𝑠𝑋  is expected to contain the true 

mean with 95% confidence.   

The measurement is influenced by several different elemental systematic error 

sources, each of which may be postulated to come from a population of possible error 

values.  Systematic standard uncertainty of the measurement is a combination of the ele-

mental systematic errors from all the error sources such that 

 

𝑏𝑋 =    𝑏𝑋 𝑘 
2𝐾

𝑘=1  

1

2
        (5.39)  

where the elemental systematic standard uncertainty 𝑏𝑋 𝑘
 represents the dispersion of 

possible elemental systematic error values 𝛽𝑋 𝑘  at the standard deviation level.    

The elemental systematic standard uncertainties are usually evaluated from a) en-

gineering judgment, b) published information, or c) special data.  Engineering judgment 

is to use engineering analysis and experience to estimate an interval for elemental syste-

matic error within which 95% of possible 𝛽𝑋 𝑘  values are expected.  Typically 𝛽𝑋 𝑘  is as-

sumed as normal distribution and spread symmetric (equally in both the positive and neg-

ative directions) with a large degree of freedom (  30).  Subsequently the elemental 

systematic standard uncertainty is estimated as 

 

𝑏𝑋 𝑘
= 𝐵𝑋 𝑘 2          (5.40)  
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where 𝐵𝑋 𝑘  represents the 95% confidence level estimate of the symmetric limits of error 

associated with the k
th

 elemental error source.  Next, the published information includes 

calibration reports, instrument specifications, and other technical references that may 

provide quantitative information regarding the elemental systematic errors, such as a con-

fidence interval, an ISO expanded uncertainty statement, or a multiple of a standard devi-

ation.  In these cases, 𝑏𝑋 𝑘
 is estimated by dividing those information values by the statis-

tic value such as the Student‟s t, by the coverage factor (or the “k factor”), or by the mul-

tiplier, respectively.  Lastly, the special data include inter-laboratory or inter-facility tests 

and comparisons of independent measurements that depend on different principles or that 

have been made by independently calibrated instruments (See Section 4-3.2.2.3 of ASME 

2005).  

For a calculated result 𝑅 that is expressed as a function of measured (averaged) or 

assigned values of independent parameters (𝑋𝑖) as 

 

𝑅 = 𝑓 𝑋 1, 𝑋 2, … , 𝑋 𝐼         (5.41) 

the uncertainties of those parameters may propagate to the result through the functional 

relationship.  The error propagations can be approximated by a Taylor series method (See 

Nonmandatory Appendix C of ASME 2005), typically up to the first order, and the sensi-

tivity (or sensitivity coefficient) 𝜃𝑖  of the parameter 𝑋 𝑖  is defined as   

 

𝜃𝑖 =
𝜕𝑅

𝜕𝑋 𝑖
         (5.42)  

of which partial differentiation can be evaluated either analytically or numerically.  Then, 

the systematic standard uncertainty of 𝑅 is determined from the propagation equation as 

 

𝑏𝑅 =    𝜃𝑖𝑏𝑋 𝑖
 

2𝐼
𝑖=1  

1

2
        (5.43)  
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When more than one test is conducted with the same instrument package (i.e., repeated 

tests), the estimate of the standard deviation of the distribution of the results is 

 

𝑠𝑅 =  
  𝑅𝑚−𝑅  2𝑀

𝑚 =1

𝑀−1
 

1

2
        (5.44) 

where 𝑀 is the number of tests, and the random standard uncertainty of the mean result 𝑅  

is 

 

𝑠𝑅 = 𝑠𝑅  𝑀          (5.45)  

The root-sum-square of the systematic and random standard uncertainties is calculated to 

determine the „combined‟ standard uncertainty of 𝑅 as 

 

𝑢𝑅 =   𝑏𝑅 
2 +  𝑠𝑅 

2 
1

2       (5.46)  

Finally, the combined standard uncertainty is expanded to the 95% level of confidence, 

termed as the „expanded‟ uncertainty, by multiplying appropriate expansion factor 𝑡95 as    

 

𝑈𝑅,95 = 𝑡95 ⋅ 𝑢𝑅         (5.47)  

where the expansion factor (or „coverage factor‟) 𝑡95 value, with the degree of freedom 

𝜈𝑅  known, is obtained from the Student t statistic at the 95% confidence level, and 𝑡95 = 2 

for large degrees of freedom (𝜈𝑅   30).  When the degree of freedom for one of the sys-

tematic and random standard uncertainties or for both is not large (𝜈𝑅  < 30), an effective 

degree of freedom may be obtained by using the Welch-Satterthwaite formula (Nonman-

datory Appendix B of ASME 2005). 

 

𝜈𝑅 =
    𝜃𝑖𝑏𝑖 

2+ 𝜃𝑖𝑠𝑖 
2 𝐼

𝑖=1  
2

  
 𝜃 𝑖𝑠𝑖 

4

𝜈𝑠𝑖
+ 

 𝜃 𝑖𝑏𝑖𝑘
 

4

𝜈𝑏𝑖𝑘

𝐾𝑖
𝑘=1

 𝐼
𝑖=1

       (5.48)  
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where 𝜈𝑠𝑖
 = 𝑁𝑖  –1  is the degree of freedom of the random standard uncertainty 𝑠𝑖  and 

𝜈𝑏𝑖𝑘
is the degree of freedom of the kth elemental uncertainty of the systematic standard 

uncertainty 𝑏𝑖  which can be approximated as 

 

𝜈𝑏𝑖𝑘
=

1

2
 
Δ𝑏𝑖𝑘

𝑏𝑖𝑘

 
−2

        (5.49) 

where the quantity in parentheses is an estimate of the relative variability of the estimate 

of 𝑏𝑖𝑘  (See the ISO Guide 1995) 

5.2.2 UA Procedures 

The basic underlying idea of present UA procedures for the Stereo PIV (SPIV) 

measurement is to calibrate the SPIV measured data to the known reference values.  An 

example can be a UA for a measurement of flow velocity 𝑉 behind a model using a Pitot 

probe at a towing tank facility.  The uncertainty in 𝑉 may be estimated by using a data 

reduction equation such as 𝑉 =  2Δ𝑝 𝜌  from the Bernoulli‟s equation, along with con-

siderations of the elemental uncertainties in the pressure difference Δ𝑝 and water density 

𝜌 measurements.  Alternatively, the Pitot measurement can be calibrated to a reference 

measurement data such as the towing carriage speed 𝑈𝐶  data, with known uncertainty.  If 

a calm and open (i.e. no model installed) water is measured with the Pitot probe towed at 

a certain carriage speed 𝑈𝐶 , then, the difference between the 𝑉 and 𝑈𝐶  can be considered 

as the systematic (bias) uncertainty of the Pitot measurement, relative to the 𝑈𝐶  mea-

surement and uncertainty. 

Similar UA approach is used herein for SPIV measurement.  For this, undisturbed 

open water is measured with the SPIV that is undergoing a forced PMM motion.  As no 

model is installed, SPIV measured data are the free stream flow data of which values can 

be determined as well from the PMM measured sway and yaw motion data by using the 

coordinate transformation relationship between the PMM- and PIV-fixed coordinate sys-
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tems as shown in Section 3.1.2.  Then, the PMM measured free stream data are used as 

the reference to be compared with the SPIV measurements estimating the systematic un-

certainties. 

The open water measurement includes two test cases: Case 1) Uniform flow mea-

surement and Case 2) Open water pure yaw test.  The former case is the simplest case 

where the calm and open water is measured as the PIV system is towed straight at a con-

stant speed 𝑈𝐶  with no PMM motions.  For the latter case, the undisturbed open water is 

measured as the PIV system is undergoing a forced pure yaw PMM motions.  Test condi-

tions are summarized in Table 5-15 for both cases.  

An overall schematic (flow chart) of the present UA procedure is shown in Fig. 5-

6, where the procedures are grouped into three stages; designated as A, B, and C in the 

figure.  A) The systematic standard uncertainties of the measurements are estimated and 

the sources of the possible elemental errors are identified.  B) The PMM measured refer-

ence values are calculated and the phase-averaged PIV data from the open water tests are 

compared.  The elemental measurement uncertainties from the previous stage are propa-

gated through the data reduction process.  C) The uncertainties in the test results such as 

the phase-averaged mean velocity, Reynolds stresses, turbulent kinetic energy, and the 

axial vorticity are estimated by combining the systematic and random standard uncertain-

ties and then expanded to the 95% confidence level by multiplying a proper expansion 

factor.   

5.2.2.1 Systematic standard uncertainty 

The elemental systematic uncertainties of measurements include 𝑏𝑈𝐶
, 𝑏𝑌, 𝑏𝜓 , 𝑏𝑑𝑥 , 

and 𝑏𝑑𝑦  in the measurements of carriage speed 𝑈𝐶 , PMM sway displacement 𝑌 and yaw 

angle 𝜓, and field point location 𝑑𝑥 and 𝑑𝑦, respectively.  𝑏𝑈𝐶
 = 𝐵𝑈𝐶

2  = 0.005 m/s, 

where the bias limit of carriage speed 𝐵𝑈𝐶
 = 0.010 m/s is from the carriage speed calibra-

tion as per Section 5.1.1.  𝑏𝑌 = 0.05 mm is from the sway potentiometer calibration.  𝑏𝜓  = 
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𝐵𝛽 2  = 0.11, where the bias limit 𝐵𝛽  = 0.22 is from the drift angle calibration as per 

Section 5.1.1.  𝑏𝑑𝑥  = 𝑏𝑑𝑦  = 0.5 mm is from the tape measure accuracy for 𝑑𝑥 and 𝑑𝑦 

measurements.  These elemental systematic uncertainties propagate through the data re-

duction equations (DRE‟s) shown in Section 3.5.2, and are used to estimate the SPIV 

measurement results, i.e. the turbulent flow field data around the model in PMM motion, 

as follows. 

Let result 𝑅 = 𝑈𝑖 , 𝑢𝑖𝑢𝑗 , 𝑘, and 𝜔𝑥  from the SPIV measurement.  𝑈𝑖  is velocity 

components and 𝑖 = 1, 2, 3 for 𝑈, 𝑉, 𝑊, respectively, and 𝑢𝑖𝑢𝑗  is Reynolds stress where 𝑖, 

𝑗 = 1, 2, 3 for 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑢𝑣, 𝑢𝑤, 𝑣𝑤 in combinations, and 𝑘 is the turbulent kinetic 

energy, and 𝜔𝑥  is the axial vorticity.  The systematic uncertainty is determined herein by 

comparing (or calibrating) the 𝑅 with the corresponding reference data, 𝑅𝑅𝑒𝑓 .    

The overall procedure evaluating the systematic standard uncertainty of the re-

sults, 𝑏𝑅 , is conceptually similar as typical measurement device calibration; the reference 

data 𝑅𝑅𝑒𝑓  is used as the calibration standard and the difference that is defined as 

 

𝛿 = 𝑅 − 𝑅𝑅𝑒𝑓           (5.50)  

is considered as the systematic or bias error of 𝑅 with respect to 𝑅𝑅𝑒𝑓 .  If the standard 

limit of the systematic error, 𝑏𝛿 , and the systematic standard uncertainty of the reference 

data, 𝑏𝑅𝑅𝑒𝑓
, are known, then, 𝑏𝑅  is the root-sum-square of those elemental uncertainties, 

𝑏𝛿  and 𝑏𝑅𝑅𝑒𝑓
, as per the equation (5.39) such that 

 

𝑏𝑅 =  𝑏𝛿
2 + 𝑏𝑅𝑅𝑒𝑓

2  
1
2
        (5.51)  

where  

𝑏𝛿 =  𝛿 2 +  2 ⋅
𝑠𝛿

 𝑀
 

2

 

1
2

2        (5.52)  
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𝑏𝛿  = 𝐵𝛿 2  as per (5.40), where 𝐵𝛿 , i.e. the numerator at the right hand side of (5.52), is 

the systematic limit of 𝛿 at the 95% confidence level by assuming a normal distribution 

of 𝛿 with a large degree of freedom (𝑀 > 30).  𝛿  and 𝑠𝛿  in (5.52) are the mean and stan-

dard deviation of the 𝛿 values collected from a number 𝑀 of repeat measurements, re-

spectively.  The other elemental systematic uncertainty of 𝑏𝑅  in (5.51), 𝑏𝑅𝑅𝑒𝑓
, is defined 

and evaluated in two different ways according to the result variable 𝑅 as follows.  

The 𝑅𝑅𝑒𝑓  is from the free stream data, introduced at the later part of Section 3.1.2, 

measured from the aforementioned open water tests.  Knowing that the free stream flow 

is only in the horizontal plane of the ship-fixed 𝑥-𝑦 coordinate system (Fig. 3-4), ex-

pected from the free stream flow are no velocity in the vertical direction, no turbulence in 

the flow, and no velocity gradient in the cross-flow plane.  Accordingly, 𝑅𝑅𝑒𝑓  data are 

not measured for 𝑅 = 𝑊, 𝑢𝑖𝑢𝑗 , 𝑘, and 𝜔𝑥  from the open water tests, but the expected val-

ue is used as the reference, i.e. 𝑅𝑅𝑒𝑓  = 0, thus 𝑏𝑅𝑅𝑒𝑓
 = 0. 

For 𝑅 = 𝑈 and 𝑉, on the other hand,  𝑅𝑅𝑒𝑓  is using the longitudinal 𝑢𝑃  and the lat-

eral 𝑣𝑃  velocities of the free stream in the ship-fixed coordinate system (Fig. 3-4), respec-

tively.  Let 𝑅𝑃𝑀𝑀  = 𝑢𝑃  and 𝑣𝑃 , then 𝑅𝑅𝑒𝑓  is the normalized 𝑅𝑃𝑀𝑀  with the carriage speed 

𝑈𝐶  such as 

 

𝑅𝑅𝑒𝑓 = 𝑅𝑃𝑀𝑀 𝑈𝐶         (5.53) 

or 𝑅𝑅𝑒𝑓  = 𝑓(𝑅𝑃𝑀𝑀 , 𝑈𝐶) in a functional form.  Then, the systematic standard uncertainty 

the reference data, 𝑏𝑅𝑅𝑒𝑓
, is from the elemental systematic standard uncertainties, 𝑏𝑅𝑃𝑀𝑀

 

and 𝑏𝑈𝐶
, propagated through the data reduction equation (DRE) (5.53) as 

 

𝑏𝑅𝑅𝑒𝑓
=  𝜃𝑅𝑃𝑀𝑀

2 𝑏𝑅𝑃𝑀𝑀

2 + 𝜃𝑈𝐶

2 𝑏𝑈𝐶

2  
1
2      (5.54)  

as per the error propagation equation (5.43), where the sensitivity coefficients 𝜃𝑅𝑃𝑀𝑀
 = 

𝜕𝑅𝑅𝑒𝑓 𝜕𝑅𝑃𝑀𝑀  and 𝜃𝑈𝐶
 = 𝜕𝑅𝑅𝑒𝑓 𝜕𝑈𝐶  are respectively as per (5.42).    
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The elemental systematic uncertainty 𝑏𝑅𝑃𝑀𝑀
 of 𝑅𝑃𝑀𝑀  = 𝑓 𝑈𝐶 , 𝑉𝑃 , 𝑟, 𝜓, 𝑑𝑥, 𝑑𝑦  as 

per the DRE‟s (3.5a) and (3.5b) in Section 3.1.3 (or in Section 3.5.2) for 𝑢𝑃  and 𝑣𝑃 , re-

spectively, is from the further elemental systematic uncertainties, 𝑏𝑈𝐶
, 𝑏𝑉𝑃

, 𝑏𝑟 , 𝑏𝜓 , 𝑏𝑑𝑥 , 

and 𝑏𝑑𝑦 .  The error propagation equation for 𝑏𝑅𝑃𝑀𝑀
 can be written using (5.43) as  

 

𝑏𝑅𝑃𝑀𝑀
=  𝜃𝑈𝐶

2 𝑏𝑈𝐶

2 + 𝜃𝑉𝑃

2 𝑏𝑉𝑃

2 + 𝜃𝑟
2𝑏𝑟

2 + 𝜃𝜓
2𝑏𝜓

2 + 𝜃𝑑𝑥
2 𝑏𝑑𝑥

2 + 𝜃𝑑𝑦
2 𝑏𝑑𝑦

2  
1
2 (5.55) 

Where the sensitivity coefficient 𝜃𝑋𝑖
 = 𝜕𝑅𝑃𝑀𝑀 𝜕𝑋𝑖  for 𝑋𝑖  = 𝑈𝐶 , 𝑉𝑃, 𝑟, 𝜓, 𝑑𝑥, and 𝑑𝑦 is 

respectively as per (5.42).   

Of the six elemental standard systematic uncertainties in (5.55), 𝑏𝑉𝑃
 is for 𝑉𝑃 = 

𝑓 𝑌0, 𝜔, 𝛾  as per the DRE (3.23) and 𝑏𝑟  is for 𝑟 = 𝑓 𝜓0, 𝜔, 𝛾  as per the DRE (3.24), 

hence those uncertainties are even further elemental systematic standard uncertainties 𝑏𝑌0
, 

𝑏𝜓0
, 𝑏𝜔 , and 𝑏𝛾 , propagated through the DRE‟s.  𝑌0 and 𝜓0 are the Fourier Series 1

st
-

order harmonic amplitudes of the 𝑌 and 𝜓 measurement data, respectively, thus any poss-

ible constant shift in 𝑌 and 𝜓, i.e. the systematic error, does not affect the 𝑌0 and 𝜓0 val-

ues.  Accordingly, 𝑏𝑌 and 𝑏𝜓  do not propagate to 𝑌0 and 𝜓0 through data reduction, and 

𝑏𝑌0
 = 𝑏𝜓0

 = 0.  Next, 𝑏𝜔  is for 𝜔 = 2𝜋 N 60  , where N is the PMM frequency 𝑓𝑃𝑀𝑀  in 

RPM.  Then, 𝑏𝜔  =  2𝜋⋅𝐵N
60

 2  = 0.00003 Hz, where 𝐵𝑁 = 0.0006 rpm is the bias limit of N 

from Table 9 for PMM UA in Section 5.1.2.  For IIHR PMM, 𝑏𝜔  is negligibly small such 

that 𝑏𝜔 𝜔  = 0.0002 for 𝜔 = 0.842 (corresponding to 𝑓𝑃𝑀𝑀  = 0.134 Hz), it can be as-

sumed that 𝑏𝜔  = 0.  Consequently, 𝑏𝑉𝑃
 and 𝑏𝑟  are from 𝑏𝛾  only, and their error propaga-

tion equations are written as 

 

𝑏𝑉𝑃
=  𝜃𝛾

2𝑏𝛾
2 

1
2        (5.56) 

𝑏𝑟 =  𝜃𝛾
2𝑏𝛾

2 
1
2         (5.57) 
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where the sensitivity coefficient 𝜃𝛾  = 𝜕𝑉𝑃 𝜕𝛾  in (5.56) and 𝜃𝛾  = 𝜕𝑟 𝜕𝛾  in (5.57), respec-

tively.  𝑏𝛾  in (5.56) and (5.57) is for 𝛾 = 𝑓 𝑌, 𝜓, 𝑌0, 𝜓0  as per DRE (3.27) in Section 

3.5.2, and from the elemental systematic uncertainties 𝑏𝑌, 𝑏𝜓 , 𝑏𝑌0
, and 𝑏𝜓0

, where 𝑏𝑌0
 = 

𝑏𝜓0
 = 0 as previously discussed.  Then, the error propagation equation for 𝑏𝛾  can be writ-

ten as 

 

𝑏𝛾 =  𝜃𝑌
2𝑏𝑌

2 + 𝜃𝜓
2𝑏𝜓

2  
1
2       (5.58) 

where the sensitivity coefficients 𝜃𝑌  = 𝜕𝛾 𝜕𝑌  and 𝜃𝜓  = 𝜕𝛾 𝜕𝜓 , respectively as per 

(5.42). 

5.2.2.2 Random standard uncertainty 

The random standard uncertainty 𝑠𝑅  of the previously defined result 𝑅 is esti-

mated by performing „end-to-end‟ multiple tests at the same test conditions.  Herein the 

term „end-to-end‟ implies that the whole data acquisition/reduction procedures described 

in Sections 3.7.2/3.8.2 are repeated to see the overall scatters in the results as a conse-

quence of all possible elemental random errors.  For the multiple tests, the location of the 

PIV system relative to the ship model was perturbed each time of the multiple tests by 

repositioning the PIV system in the (𝑥, 𝑦, 𝑧) directions.  Note, however, that the same 

towing tank facilities, the same PMM, the same model, the same PIV system including its 

calibration are used for the multiple tests due to limited experimental resources.  

Total three sets (𝑀 = 3) of test are performed; each test consists of more than 100 

carriages runs for the phase averaging purposes.  Each carriage run is made with about 

12-minute interval between the runs to minimize flow disturbances from previous runs.  

Each test set takes typically one day for test setup and 3  4 days for data acquisition, 

thus spanning total 4  5 days.  The mean result 𝑅  is calculated from the results of mul-
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tiple tests, used to calculate the random standard uncertainty 𝑠𝑅  using the equation (5.38) 

with 𝑀 = 3.   

5.2.2.3 Combined standard and expanded uncertainty 

Combined standard uncertainty 𝑢𝑅  of the result is the root-sum-square of the sys-

tematic standard uncertainty 𝑏𝑅  and the random standard uncertainty 𝑠𝑅  as per the equa-

tion (5.46) in Section 5.2.1.  The systematic uncertainty 𝑏𝑅  is from (5.51) and the random 

standard uncertainty 𝑠𝑅  is using the equation the equation (5.38) from the multiple tests.   

Expanded uncertainty 𝑈𝑅,95 of the result is as per the equation (5.47) in Section 

5.2.1.  The expansion factor 𝑡95 in (5.47) is estimated using the Welch-Satterthwaite for-

mula shown in (5.48) as the degree of freedom of the random standard uncertainty esti-

mation, 𝜈𝑠𝑅  = 𝑀 – 1 = 2, is smaller than 30 for the large sample assumption.  The Welch-

Satterthwaite formula (5.48) can be rewritten for the present UA as 

 

𝜈𝑅 =
  𝑏𝑅 2+ 𝑠𝑅 2 

2

 𝑏𝑅 4 𝜈𝑏𝑅
 + 𝑠𝑅 4 𝜈𝑠𝑅

 
        (5.59)  

5.2.3 UA Results and Discussions 

5.2.3.1 Open water Tests 

Case 1) Uniform flow measurement:  

The SPIV measurement area is located at 51 mm off from the towing tank center-

line and at 93 mm below the calm water free surface line.  A total 12 repeat tests are 

made, where the average towing carriage speed 𝑈𝐶
     = 1.5232 m/s with a standard devia-

tion of 0.0028 m/s (0.2% of 𝑈𝐶
    ).  Each test is a single carriage run with 94 data samples 

acquired at a rate of 5 Hz (Δ𝑡 = 200 ms) and reduced as per Section 3.5.2.  Note that the 

data reduction in this case is not a phase-average but a time-average of the 94 data as no 

phase information.   
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In Fig. 5-7, test result 𝑅 (shown as colored contours) and the systematic standard 

uncertainty 𝑏𝑅  (labeled line contours) are shown for (a) 𝑈, (b) 𝑉, (c) 𝑊, (d) 𝑢𝑢, (e) 𝑣𝑣, 

(f) 𝑤𝑤, (g) 𝑢𝑣, (h) 𝑢𝑤, (i) 𝑣𝑤, (j) 𝑘, and (l) 𝑥 , respectively.  𝑅 is the mean value of 

each variable data from the 12 repeat test, non-dimensional with 𝑈𝐶  for 𝑈, 𝑉, 𝑊, with 𝑈𝐶
2 

for 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑢𝑣, 𝑢𝑤, 𝑣𝑤, and 𝑘, and with 𝑈𝐶 𝐿  for 𝜔𝑥 , respectively, where 𝐿 = 3.048 

m is the model length.  𝑏𝑅  is evaluated as per Section 5.2.2.1 and presented as non-

dimensional similarly as for 𝑅.  The evaluation of 𝑏𝑅  is summarized in Table 5-17 includ-

ing the elemental uncertainties used in Section 5.2.2.1.  All the data in the table are the 

spatially averaged values of those over the SPIV measurement area. 

From Fig. 5-7 (a) – (c), velocities in general 𝑈 = 0.98  1.0, 𝑉 = 0.01  0.02, 𝑊 = 

-0.01  0.01, respectively, of which mean difference (from the 12 repeat tests) from the 

reference value (𝑅𝑅𝑒𝑓  = 1.0, 0.0, 0.0, respectively) 𝛿  = -0.0062, 0.0150, -0.0004 in aver-

age, respectively.  𝑏𝑈  = 0.004  0.007, 𝑏𝑉  = 0.004  0.012, 𝑏𝑊  = 0  0.003, correspond-

ing respectively to about 0.6%, 0.8%, and 0.1% of 𝑈𝐶  in average.  𝑏𝑈  is the root-sum-

square (RSS) of 𝑏𝛿  and 𝑏𝑅𝑅𝑒𝑓
 as per (51), where 𝑏𝑅𝑟𝑒𝑓

 =  2 ⋅ 𝑏𝑈𝐶

2 𝑈𝐶
2  

1
2 = 0.0046 from 

(54) by using 𝑅𝑃𝑀𝑀 = 𝑈𝐶 , and 𝑏𝑈𝐶
 = 0.005 m/s from Table 5-16.  Whereas, 𝑏𝑉  and 𝑏𝑊  

are the same as 𝑏𝛿  of 𝑉 and 𝑊, respectively, as 𝑏𝑅𝑅𝑒𝑓
 = 0 for both.  The evaluations of 𝑏𝛿  

for 𝑈, 𝑉, 𝑊 are as per (52), summarized in Table 5-17.  

From Fig. 5-7 (d) – (f), the normal Reynolds stresses in general 𝑢𝑢 = 0.0001  

0.0004, 𝑣𝑣 = 0.0001  0.0003, and 𝑤𝑤 = 0  0.0001, corresponding to  𝑢𝑢 = 1.6%,  𝑣𝑣 

= 1.4%,  𝑤𝑤 = 0.8% of 𝑈𝐶 , respectively, in average.  Shear stresses, from Fig. 5-7 (g) – 

(i), are in general 𝑢𝑣 = 0.0001  0.0003, 𝑢𝑤 = -0.00003  0.00004, and 𝑣𝑤 = -0.00004  

0.00004, corresponding to  𝑢𝑣 = 1.3% of 𝑈𝐶  and  𝑢𝑤   𝑣𝑤  0 in average.  Turbulent 

kinetic energy 𝑘 shown in Fig. 5-7 (j) is similar with 𝑢𝑢.  The systematic standard uncer-

tainty is as per (51) using (52) and 𝑏𝑅𝑅𝑒𝑓
 = 0 for those variables; 𝑏𝑢𝑢  = 0.00013, 𝑏𝑣𝑣  = 

0.00010, 𝑏𝑤𝑤  = 0.00003 for the normal stresses, 𝑏𝑢𝑣  = 0.00009, 𝑏𝑢𝑤  = 0.00001, 𝑏𝑣𝑤  = 
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0.00001 for shear stresses, and 𝑏𝑘  = 0.00013 for turbulent kinetic energy, respectively, 

summarized in Table 5-17. 

From Fig. 5-7 (k), the axial vorticity is in general 𝜔𝑥  = -3  3 except for the re-

gion at the right side where locally strong 𝜔𝑥  = -8  7 exhibiting a particular cascade-

shaped pattern.  This pattern will be discussed below.  𝑏𝜔𝑥
 = 1.2 in average, evaluated as 

per (51) using (52) and 𝑏𝑅𝑅𝑒𝑓
 = 0, summarized in Table 5-17. 

Possible sources of the systematic uncertainty of SPIV measurement may include 

the intrusive disturbance effect of the SPIV system.  The displacement effect of the SPIV 

system is measured with a one-hole Pitot probe and the result is shown in Fig. 5-8.  The 

axial velocity 𝑈 of the free stream is measured along the longitudinal axis 𝑥 through the 

center point of the SPIV measurement area, at several locations between 𝑥 𝐷  = -5  10, 

where 𝐷 = 100 mm is the diameter of the SPIV camera housings (See Fig. 3-10) and 𝑥 = 

0 is located at the measurement area center point.  Measurement result reveals the re-

tarded flow around the camera housings, at maximum 𝑈 𝑈𝐶  = 0.9585 near at 𝑥 𝐷  = -4, 

due to the displacement effect.  At 𝑥 𝐷  = 0, the measurement area location, the retarded 

velocity 𝑈 𝑈𝐶  = 0.9937 or the amount of retardation 1 - 𝑈 𝑈𝐶  = 0.0063, which are com-

parable with 𝛿  = 0.9938 and 𝑏𝑈  = 0.0058 of the uniform flow 𝑈 measurement shown at 

Table 5-17.  The error bars shown at 𝑥 𝐷  = 0 in Fig. 5-8 depict the 2𝑠 range, where 𝑠 = 

0.0011 is the standard deviation of 𝑈 𝑈𝐶  values from five repeated measurements.  

Another possible source of the systematic uncertainty may be the SPIV evaluation 

error such as the registration error (Scarano et al. 2005, Coudert & Schon 2001, Prasad 

2000, Willert 1997, Prasad & Adrian 1993).  The registration error is due to the mis-

matched SPIV image pairs in the interrogation process, which produces a particular pat-

tern so called Moiré pattern in the dewarped PIV images.  The Moiré pattern can be seen 

from Fig. 5-7 (a) – (c) and (k) for 𝑈, 𝑉, 𝑊, and 𝜔𝑥 , the cascade-shaped pattern at the 

right side of the measurement area.  The Moiré pattern is more distinct for 𝑉 which re-

sults in the rather strong Moiré pattern of 𝜔𝑥  through the data reduction process.    
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Case 2) Open water pure yaw test: 

A total three tests are conducted with designated as Test 1, 2, and 3 respectively.  

SPIV measurements are at two different longitudinal positions 𝑥 𝐿  = 0.935 for Tests 1 

and 2 and 𝑥 𝐿  = 0.002 for Test 3, respectively, where 𝐿 = 3.048 m is the model length.  

The vertical location is at 𝑧 𝑇  = 1.1 for Test 1 and Test 3 and 𝑧 𝑇  = 0.5 for Test 2, re-

spectively, where 𝑇 = 0.136 m is the model draft.  The lateral position 𝑦 = 0 for all tests.  

Where, the locations correspond to the center-point position of the SPIV measurement 

area in the Ship-fixed coordinate system (Fig. 3-4). 

Test conditions are same for all tests, summarized in Table 5-15.  A total 100 car-

riage runs are made for each test.  The mean and standard deviation values of carriage 

speed 𝑈𝐶  and PMM sway 𝑌0 and yaw 𝜓0 amplitudes are summarized in Table 5-18 for 

Test 1.  Sway 𝑌 and yaw 𝜓 data are phase-sorted into 32 phase groups where the typical 

number of data is about 270  280.  Phase averaged 𝑌 and 𝜓 values are summarized in 

Table5-19 for Test 1 and for selective phase groups (every 45 nominal phase angle), 

where the subsequent phase 𝛾 values calculated from the 𝑌, 𝜓, 𝑌0, and 𝜓0 data by using 

(3.27) in Section 3.5.2. are as well presented.   

Test results are shown in Fig. 5-9.  Presented in the figure are the difference 𝛿 = 𝑅 

– 𝑅𝑅𝑒𝑓  defined at (5.50).  The results 𝑅 = (𝑈, 𝑉, 𝑊) is the SPIV measured flow velocity  

and the reference data 𝑅𝑅𝑒𝑓  = (𝑢𝑃 , 𝑣𝑃 , 0), where  𝑢𝑃  and 𝑣𝑃  are respectively as per (3.5a) 

and (3.5b) in Section 3.5.2 using the PMM measured data.  Each symbol in the figure 

represents the spatially averaged 𝛿 value over the SPIV measurement area, measured at 

each phase angle 𝛾 of each test.  In general 𝛿 is function 𝛾; 𝛿 is relatively larger between 

𝛾 = 180  360 for 𝑈 and between 𝛾 = 90  270 for 𝑉, whereas almost flat for 𝑊, re-

spectively.  𝛿 may be a function of SPIV locations as well.  For 𝑉 (green colored), 𝛿 for 

Test 3 (symbol ; at 𝑥 𝐿  = 0.002) is rather different from those for Tests 1 and 2 (respec-

tively symbols  and ; at 𝑥 𝐿  = 0.935).  For 𝑊 (blue colored), 𝛿 for Test 1 (symbol  



 

 

147 

1
4
7
 

and ; at 𝑧 𝑇  = 1.1) is larger than those for Test 2 (symbol ; at 𝑧 𝑇  = 0.5).  Whereas for 

𝑈 (red colored), 𝛿 is almost same between the tests. 

The evaluation of 𝑏𝑅  is summarized in Table 5-20 for all variables.  All the data 

values in the table are first averaged spatially over the SPIV measurement area and then 

for all phase positions.  For velocity data, 𝑏𝑈  = 0.0078, 𝑏𝑉  = 0.0068, and 𝑏𝑊  = 0.0055, 

corresponding to about 0.8%, 0.7% and 0.6% of 𝑈𝐶 , respectively, and about 130%, 90%, 

and 390% of those from the uniform flow test, respectively.  For Reynolds normal 

stresses, 𝑏𝑢𝑢  = 0.00020, 𝑏𝑣𝑣  = 0.00011, and 𝑏𝑤𝑤  = 0.00004, of which square-root values 

are corresponding to about 1.4%, 1.0%, and 0.6% of 𝑈𝐶 , respectively.  For shear Rey-

nolds stresses, 𝑏𝑢𝑣= 0.00011, 𝑏𝑢𝑤  = 0.00001, and 𝑏𝑣𝑤  = 0.00001, of which square-root 

values are corresponding to about 1.0%, 0.3%, and 0.3% of 𝑈𝐶 , respectively.  For turbu-

lent kinetic energy, 𝑏𝑘  = 0.00017 and  2 3 ⋅ 𝑏𝑘   = 1.1% of 𝑈𝐶 .  𝑏𝑢𝑢  and 𝑏𝑘  are 154% 

and 131% of those from the uniform flow test, whereas similar for other stress compo-

nents.  For axial vorticity 𝑏𝜔𝑥
 = 1.2 is same as the uniform flow result. 

5.2.3.2 Pure yaw test 

Test is with model and as per the test conditions shown in Table 5-15, which are 

the same as those for open water pure yaw tests.  The longitudinal location of the SPIV 

measurement is at 𝑥 𝐿  = 0.135.  Test is more than 100 carriage runs allowing about 270 

 280 data per each of 32 PMM phase positions for phase averaging.  The whole test pro-

cedures are repeated for three times.  

UA is estimating the systematic 𝑏𝑅  and random 𝑠𝑅  standard uncertainties to ascer-

tain the combined standard uncertainty 𝑢𝑅  as per (5.46).  𝑏𝑅  is from the open water pure 

yaw test and 𝑠𝑅  is from the three repeat tests as per (5.45) using 𝑀 = 3.  𝑢𝑅  is used to es-

timate the expanded uncertainty 𝑈𝑅,95 as per (5.47) where the expansion factor 𝑡95 = 

2.365 corresponding to the Student 𝑡 statistic for a degree of freedom 𝜈𝑅  = 7 and for a 

95% confidence level.  𝜈𝑅  is estimated by using (5.59) as per the Welch-Satterthwaite 
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formula (5.48), where for (5.59), 𝜈𝑏𝑅
 = 8 is used as per (5.49) for 𝑏𝑖𝑘

 = 𝑏𝑅  by assuming 

the relative variability of the estimate Δ𝑏𝑅 𝑏𝑅  = 0.25 as per the example case (B-1.10) in 

Appendix B of ASME (2005).    

Pure yaw test result 𝑅 and the relative expanded uncertainty 𝑈𝑅,95 (% 𝑅) is shown 

in Fig. 5-10 for (a) 𝑈, (b) 𝑉, (c) 𝑊, (d) 𝑢𝑢, (e) 𝑣𝑣, (f) 𝑤𝑤, (g) 𝑢𝑣, (h) 𝑢𝑤, (i) 𝑣𝑤, (j) 𝑘, 

and (k) 𝜔𝑥  at the PMM phase 𝛾 = 236.25 position, respectively.  The results shown in 

the figure are the mean values of the three repeat tests data.  The center point position of 

the SPIV measurement area is located at 𝑦 𝐿  = -0.0125 laterally and at 𝑧 𝐿  = 0.0525 

(𝑧 𝑇  = 1.1765) vertically, respectively.  The measurement area is split into two sub re-

gions as shown in Fig. 5-10 (l) using 𝐾 = 0.45 as a criteria, where 𝐾 = 1

2
 𝑈2 + 𝑉2 + 𝑊2  

is the kinematic energy of the fluid.  The Inner Region is where 𝐾  0.45 representing the 

boundary layer region and the Outer Region is where 𝐾 > 0.45 representing the free 

stream region of the flow, respectively.  All the result values and the UA data value are 

averaged within the two regions respectively, and summarized in Tables 5-21 and 5-22 

for the Inner and Outer region, respectively. 

In the Inner Region, the random uncertainty is predominant, 60%  99%, over the 

systematic uncertainty, 1%  40%, for all variables except for 𝑉 and 𝑊.  For 𝑉 and 𝑊, 

systematic uncertainty is dominant, 69% and 63%, respectively.  The expanded uncer-

tainty 𝑈𝑅,95 = 0.0321, 0.0213, 0.0188 for 𝑈, 𝑉, 𝑊, respectively, corresponding to about 

3.2%, 2.1%, and 1.9% of 𝑈𝐶 , respectively, and to 3.9%, 29.1%, and 32.1% of the mean 

𝑈, 𝑉, 𝑊 values, respectively.  For the normal Reynolds stresses, 𝑈𝑅,95 = 0.0014, 0.0007, 

0.0003 for 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, respectively, of which squqre-root value corresponds to about 

4%, 3%, and 2% of 𝑈𝐶 , respectively.  For the shear Reynolds stresses, 𝑈𝑅95 = 0.0008, 

0.0003, 0.0002 for 𝑢𝑣, 𝑢𝑤, 𝑣𝑤, respectively, of which square-root value corresponds to 

about 3%, 2%, and 1% of 𝑈𝐶 , respectively.  The relative uncertainties of the Reynolds 

stresses are 24%  33% and 45%  78% of the mean result values for the normal and 

shear stresses, respectively.  For turbulent kinetic energy 𝑘, 𝑈𝑅,95 = 0.0011 and 
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 2 3 ⋅ 𝑈𝑅,95 = 2.7% 𝑈𝐶 , and its relative uncertainty is 25% of the mean 𝑘 value.  For 

axial vorticity 𝜔𝑥 , 𝑈𝑅,95 = 15.2 and the relative uncertainty is 36% of the mean 𝜔𝑥  value.   

In the Outer Region, the systematic uncertainty is predominant, in general 70%  

96%, over the random uncertainty, in general 4%  30%, for all variables except for 𝜔𝑥 .  

For 𝜔𝑥 , both systematic and random uncertainties are equally large, 52% and 48%, re-

spectively.  The expanded uncertainty 𝑈𝑅,95‟s of 𝑈, 𝑉, 𝑊 are relatively smaller than those 

for the Inner Region; about 2.4%, 1.5%, and 1.4% of 𝑈𝐶 , respectively, or 2.5%, 12.1%, 

and 26.1% of the mean values, respectively.  𝑈𝑅,95 for the Reynolds stresses and the tur-

bulent kinetic energy are also smaller than those for the Inner Region, about 0  0.0005, 

of which square-values are about 0  2% of 𝑈𝐶 .  However, the relative 𝑈𝑅,95 values are 

large, about 100%  200%, due to very small mean values of those variables in the Outer 

Region.  For axial vorticity 𝜔𝑥 , 𝑈𝑅,95 = 4.0 and the relative uncertainty is large about 

140% as well due to smaller mean value of 𝜔𝑥  in the Outer Region. 

Consequently, the absolute uncertainty of the SPIV measurement is about 2  3% 

of 𝑈𝐶  for the out of plane velocity component, 𝑈, and about 1  2% of 𝑈𝐶  for the in-plane 

velocity components, 𝑉 and 𝑊, respectively.  The relative uncertainty is about 3  4%, 

12  29%, and 26  32% for 𝑈, 𝑉, 𝑊, respectively.  The relative uncertainties of 𝑈 are 

comparable with the 2.4% of Gui et al. (2001a) and the 1.6% and 1.0  3.5% of Longo et 

al. (2007) for steady- and unsteady-flow, respectively.  Whereas, the relative uncertain-

ties of 𝑉 and 𝑊 are larger than the 4  8% of Gui et al. (2001a) and the 3  4% of Longo 

el al. (2007).  Gui et al. (2001a) and Longo et al. (2007) are 2D-PIV measurements using 

the same IIHR towing tank facility and the same DTMB 5512 model as the present study, 

respectively.  Note that the uncertainties of Gui et al. (2001a) and Longo et al. (2007) are 

relative to the dynamic ranges of measurements.  The relative uncertainties of the Rey-

nolds stresses, about 25%  50% in general at the Inner Region, are larger than the 4  

6% of Gui et al. (2001a) and the 3  6% of Longo et al. (2007) for steady flow, whereas 

those are comparable with the 10  45% of Longo et al. (2007) for unsteady flow.  For 
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the SPIV measurement, the large random uncertainty in the Inner Region may be reduced 

by increasing the number of PIV images for the phase averaging.  On the other hand, the 

large systematic uncertainty in the Outer Region can be improved by using more sophis-

ticated SPIV algorithm to reduce the SPIV evaluation errors such as the registration error 

and by using more careful reference data to reduce the calibration errors.
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Table 5-15 Open water tests conditions for Stereo PIV UA. 

Test 

Case Test description 

𝑈𝐶 

(m/s) 

𝑌0 

(mm) 

𝜓0 

() 

𝑓 

(Hz) 

Δ𝑡 

(ms) 

Δ𝛾 

() 

Number 
of data 

per run 

L 

Number of 
runs per 

test 

K 

Number 
of repeat 

tests 

M 

Case 1) Uniform flow 1.531 0.0 0.0 0.0 200.0 - 94 1 12 

Case 2) Open water pure yaw 1.531 326.1 10.2 0.134 233.2 11.25 88 100 3 

 - : Not applicable  

 

 

 

Table 5-16 Elemental systematic standard uncertainties of the SPIV measurements.  

Measurement 

variable 

𝑋 Description  Unit Symbol 

Systematic 

standard 

uncertainty 

𝑏𝑋  

𝑈𝐶 Carriage speed m/s 𝑏𝑈𝐶
 0.005 

𝑌 Sway displacement mm 𝑏𝑌 0.05 

𝜓 Yaw angle deg 𝑏𝜓  0.11 

𝑑𝑥, 𝑑𝑦 Field point location from the midship point mm 𝑏𝑑𝑥 , 𝑏𝑑𝑦  0.5 

 

 

 

Table 5-17 Systematic uncertainties of SPIV uniform flow measurement
†
. 

Result 

variable 

𝑅 

Average 
SPIV 

data 

𝑅  

Reference 

data 

𝑅𝑅𝑒𝑓  

Average 

difference 

𝛿  

Standard 
deviation 

of differ-

ence 

𝑠𝛿  

Systematic 

standard 
uncertainty 

of differ-

ence 

𝑏𝛿  

Systematic 
standard 

uncertainty 

of refer-
ence 

𝑏𝑅𝑅𝑒𝑓
 

Systematic 
standard 

uncertainty 

of Result 

𝑏𝑅 

𝑈 0.9938 1.0 -0.0062 0.0047 0.0034 0.0046 0.0058 

𝑉 0.0150 0.0 0.0150 0.0017 0.0075 0.0 0.0075 

𝑊 -0.0004 0.0 -0.0004 0.0008 0.0014 0.0 0.0014 

𝑢𝑢 0.00025 0.0 0.00025 0.00006 0.00013 0.0 0.00013 

𝑣𝑣 0.00019 0.0 0.00019 0.00004 0.00010 0.0 0.00010 

𝑤𝑤 0.00006 0.0 0.00006 0.00002 0.00003 0.0 0.00003 

𝑢𝑣 0.00017 0.0 0.00017 0.00004 0.00009 0.0 0.00009 

𝑢𝑤 0.00000 0.0 0.00000 0.00002 0.00001 0.0 0.00001 

𝑣𝑤 0.00000 0.0 0.00000 0.00002 0.00001 0.0 0.00001 

𝑘 0.00025 0.0 0.00025 0.00005 0.00013 0.0 0.00013 

𝜔𝑥  -0.17 0.0 -0.17 2.2 1.2 0.0 1.2 

† Presented varles are non-dimensional and averaged over the measurement area. 
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Table 5-18  Measurement data of 𝑈𝐶 , 𝑌0, and 𝜓0†. 

Measurement 

variable 

𝑋 Unit Nominal value 

Mean value 

𝑋  

Standard deviation 

𝑠𝑋  

𝑈𝐶 m/s 1.531 1.5307 0.0059 

𝑌0 mm 326.1 328.42 0.0241 

𝜓0 deg. 10.2 10.40 0.0566 

† From open water pure yaw test with N = 100 carriage runs 
 

 

 

Table 5-19  Measurement data of 𝑌, 𝜓, and 𝛾†. 

Phase 

Group 

𝑛 

Number 

of data 

N 

𝑌 (mm)   𝜓 ()   𝛾 ()  

Nominal 
value 

Mean 

value 

𝑋  

Standard 

deviation 

𝑠𝑋  

Nominal 
value 

Mean 

value 

𝑋  

Standard 

deviation 

𝑠𝑋  

Nominal 
value 

Measured 
value 

1 276 0.0 0.7 1.6 -10.20 -10.33 0.05 0.0 -0.1 

5 274 -230.6 -232.5 1.3 -7.21 -7.40 0.04 45.0 44.9 
9 274 -326.1 -329.2 0.6 0.00 -0.06 0.04 90.0 89.7 

13 278 -230.6 -234.4 0.4 7.21 7.35 0.05 135.0 134.7 

17 273 0.0 -2.1 0.6 10.20 10.39 0.06 180.0 179.6 
21 267 230.6 230.1 0.4 7.21 7.49 0.05 225.0 224.2 

25 276 326.1 327.4 0.7 0.00 0.17 0.04 270.0 269.1 

29 282 230.6 232.0 1.3 -7.21 -7.30 0.05 315.0 314.8 

† From open water pure yaw test with N = 100 carriage runs.  

 

 

Table 5-20 Summary of UA for open water pure yaw test (M = 3 repeat tests)†. 

Result 

variable 

𝑅 

Average 

difference 

𝛿  

Standard 

deviation 
of differ-

ence 

𝑠𝛿  

Systematic 

standard 

uncertainty 
of differ-

ence 

𝑏𝛿  

Systematic 

standard 
uncertainty 

of refer-
ence 

𝑏𝑅𝑅𝑒𝑓
 

Systematic 

standard 
uncertainty 

of Result 

𝑏𝑅 

𝑈 -0.0111 0.0031 0.0060 0.0046 0.0078 

𝑉 0.0085 0.0064 0.0064 0.0024 0.0068 

𝑊 -0.0090 0.0055 0.0055 0.0 0.0055 

𝑢𝑢 0.00038 0.00009 0.00020 0.0 0.00020 

𝑣𝑣 0.00021 0.00005 0.00011 0.0 0.00011 

𝑤𝑤 0.00007 0.00002 0.00004 0.0 0.00004 

𝑢𝑣 0.00022 0.00005 0.00011 0.0 0.00011 

𝑢𝑤 0.00000 0.00002 0.00001 0.0 0.00001 

𝑣𝑤 0.00000 0.00001 0.00001 0.0 0.00001 

𝑘 0.00033 0.00006 0.00017 0.0 0.00017 

𝜔𝑥  -0.1 1.7 1.2 0.0 1.2 
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Table 5-21  Summary of UA for pure yaw test with model (Inner Region). 

Result 

variable 

Result 

𝑅 

Systematic 
standard 

uncertainty 

𝑏𝑅 

Random 
standard 

uncertainty 

𝑠𝑅 

Combined 
standard 

uncertainty 

𝑢𝑅  

Relative 
systematic 

uncertainty 

contribution 

𝑏𝑅
2 𝑢𝑅

2  (%) 

Relative 
random 

uncertainty 

contribution 

𝑠𝑅
2 𝑢𝑅

2  (%) 

Expanded 

uncertainty 

𝑈95𝑅 

Relative 
expanded 

uncertainty 

𝑈95𝑅 𝑅  (%) 

𝑈 0.8326 0.0081 0.0101 0.0136 39.4 60.6 0.0321 3.9 

𝑉 0.0733 0.0071 0.0048 0.0090 68.6 31.4 0.0213 29.1 

𝑊 0.0586 0.0059 0.0045 0.0079 63.2 36.8 0.0188 32.1 

𝑢𝑢 0.0044 0.0002 0.0005 0.0006 12.0 88.0 0.0014 32.9 

𝑣𝑣 0.0026 0.0001 0.0003 0.0003 13.6 86.4 0.0007 26.2 

𝑤𝑤 0.0014 0.0000 0.0001 0.0001 7.4 92.6 0.0003 24.0 

𝑢𝑣 0.0017 0.0001 0.0003 0.0003 13.1 86.9 0.0008 45.3 

𝑢𝑤 0.0004 0.0000 0.0001 0.0001 0.8 99.2 0.0003 74.0 

𝑣𝑤 0.0003 0.0000 0.0001 0.0001 0.9 99.1 0.0002 77.8 

𝑘 0.0042 0.0002 0.0004 0.0004 16.3 83.7 0.0011 24.9 

𝜔𝑥  41.8 1.7 6.0 6.4 7.2 92.8 15.2 36.3 

 

 

 

 

 

 

 

 

Table 5-22  Summary of UA for pure yaw test with model (Outer Region). 

Result 

variable 

Result 

𝑅 

Systematic 

standard 

uncertainty 

𝑏𝑅 

Random 

standard 

uncertainty 

𝑠𝑅 

Combined 

standard 

uncertainty 

𝑢𝑅  

Relative 

systematic 

uncertainty 
contribution 

𝑏𝑅
2 𝑢𝑅

2  (%) 

Relative 

random 

uncertainty 
contribution 

𝑠𝑅
2 𝑢𝑅

2  (%) 

Expanded 

uncertainty 

𝑈95𝑅 

Relative 

expanded 

uncertainty 

𝑈95𝑅 𝑅  (%) 

𝑈 0.9772 0.0098 0.0020 0.0102 95.9 4.1 0.0240 2.5 

𝑉 0.1236 0.0060 0.0015 0.0063 93.9 6.1 0.0149 12.1 

𝑊 0.0536 0.0057 0.0012 0.0059 95.9 4.1 0.0140 26.1 

𝑢𝑢 0.0004 0.0002 0.0000 0.0002 94.7 5.3 0.0005 128.3 

𝑣𝑣 0.0002 0.0001 0.0000 0.0001 95.1 4.9 0.0003 116.2 

𝑤𝑤 0.0001 0.0000 0.0000 0.0000 92.6 7.4 0.0001 105.9 

𝑢𝑣 0.0002 0.0001 0.0000 0.0001 95.7 4.3 0.0003 141.3 

𝑢𝑤 0.0000 0.0000 0.0000 0.0000 72.5 27.5 0.0000 178.0 

𝑣𝑤 0.0000 0.0000 0.0000 0.0000 77.1 22.9 0.0000 212.8 

𝑘 0.0004 0.0002 0.0000 0.0002 95.8 4.2 0.0004 118.7 

𝜔𝑥  2.9 1.1 1.1 1.7 51.7 48.3 4.0 141.4 
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Figure 5-6 Error propagation chart for SPIV measured flow field data. 
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(a)  (b)  (c)  

(d)  (e)  (f)  

(g)  (h)  (i)  

(j)  (k)  

 

Figure 5-7 SPIV measured uniform flow field and systematic standard uncertainty for (a) 
U, (b) V, (c) W, (d) uu, (e) vv, (f) ww, (g) uv, (h) uw, (i) vw, (j) k, and (k) x, 
respectively.  

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2
2

3
3

3

3

3

3 3

U
1.025

1.015

1.005

0.995

0.985

0.975

Level U

6 0.0150

5 0.0125

4 0.0100

3 0.0075

2 0.0050

1 0.0025

b
U

1

1

1

2
2

2
2 2

2

2

2
2

2 2

2

2

2

2

2 2

2 2
3

3

3

3

3

3

3

3
3

3

3

3
3

3

3

33

3
3

33

3

3

3

3

3

3

3

3
3

3

3

3

3
33

4

4 4

4

4

4

4

4
V

0.025

0.015

0.005

-0.005

-0.015

-0.025

Level V

6 0.0150

5 0.0125

4 0.0100

3 0.0075

2 0.0050

1 0.0025

b
V

1
1

1

1

1 1 1

1

1

1

1
1

1

1 W
0.025

0.015

0.005

-0.005

-0.015

-0.025

Level W

6 0.0150

5 0.0125

4 0.0100

3 0.0075

2 0.0050

1 0.0025

b
W

1
1

1

1

11

1

1

1

1 2

2

2

2

2 2

2

3

3

uu
0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

Level uu

5 0.0005

4 0.0004

3 0.0003

2 0.0002

1 0.0001

b
uu

1

1

1

1

1

1
1

1

1

vv
0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

Level vv

5 0.0005

4 0.0004

3 0.0003

2 0.0002

1 0.0001

b
vv

ww
0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

Level ww

5 0.0005

4 0.0004

3 0.0003

2 0.0002

1 0.0001

b
ww

1 1

1

1

1

1

1

1

uv
0.0005

0.0003

0.0001

-0.0001

-0.0003

-0.0005

Level uv

5 0.0005

4 0.0004

3 0.0003

2 0.0002

1 0.0001

b
uv

uw
0.0005

0.0003

0.0001

-0.0001

-0.0003

-0.0005

Level uw

5 0.0005

4 0.0004

3 0.0003

2 0.0002

1 0.0001

b
uw

vw
0.0005

0.0003

0.0001

-0.0001

-0.0003

-0.0005

Level vw

5 0.0005

4 0.0004

3 0.0003

2 0.0002

1 0.0001

b
vw

1

1

1

1

1

1
1

2

k
0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

Level k

5 0.0005

4 0.0004

3 0.0003

2 0.0002

1 0.0001

b
k

1

1 1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
2

2

2

2

2

2

3

3

3

wx
10.0

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

-10.0

Level wx

5 5

4 4

3 3

2 2

1 1

b
x



 

 

156 

1
5
6
 

 

Figure 5-8 Pitot probe open water velocity U with normalized with the carriage speed UC 
at various longitudinal locations, x.  relative to the PIV measurement area (la-
ser sheet plane) position x/D = 0, where D = 100 mm is the cylinder diameter 
of the underwater PIV camera housing. 

 

 

Figure 5-9 Open water pure yaw test result for SPIV UA.  Symbols: □, Test 1; , Test 2; 
○, Test 3; and solid line is the mean 𝛿 of Test 1, 2, and 3.  Each symbol shows 
the spatially averaged  value over the SPIV measurement area. 
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(a)  (b)  (c)  

(d)  (e)  (f)  

(g)  (h)  (i)  

(j)  (k)  (l)  

 

Figure 5-10  SPIV measured pure yaw flow field and relative expanded uncertainty U95 
(%) for: (a) U, (b) V, (c) W, (d) uu, (e) vv, (f) ww, (g) uv, (h) uw, (i), vw, (j) k, 
and (k) x, respectively.  (l) Inner region, K  0.45 and Outer region, K > 
0.45, where K = ½(U

2
 + V

2
 + W
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CHAPTER 6 RESULTS AND DISCUSSION 

6.1 Forces and Moment and Motions 

Results are presented and discussed first for the data from the FRz condition.  

Time-mean and -histories of the forces and moment data from static and dynamic PMM 

tests are presented in Section 6.1.1.  In Section 6.1.2, hydrodynamic derivatives from 

forces and moment data are determined with the „Multiple-Run‟ and the „Single-Run‟ me-

thods as introduced in Section 2.3.5, and results are compared between the methods by 

defining and evaluating the data-reconstruction error, 𝐸𝑅 .  Forces and moment, and the 

resulting hydrodynamic derivatives from the three different facilities data using ship-

models with different size are compared in Section 6.1.3, where the trends of the hydro-

dynamic derivatives with the model-size are discussed.  Heave, pitch, and roll motions of 

the model during the static and dynamic PMM tests for the FRz and FRz conditions are 

presented in Section 6.1.4.  Lastly, the effects of different mount-conditions including 

FX0, FX, and FRz  are discussed in Section 6.1.5.  Note that all data presented herein 

are corrected for asymmetry as per discussed in Section 5.1.5. 

6.1.1 Time-mean and -histories of Data  

Time-mean values of static drift 𝑋, 𝑌, and 𝑁 are shown in Fig. 6-1 (a), (b), and 

(c), respectively, for Fr = 0.138, 0.280, and 0.410 cases.  Data are fitted to quadratic, 

𝑋 = 𝐴 + 𝐵𝛽2, and cubic, 𝑌, 𝑁 = 𝐴𝛽 + 𝐵𝛽3, functions, respectively, which can be re-

written as 𝑋 = 𝐴 ⋅  1 + 𝜆  and 𝑌, 𝑁 = 𝐴𝛽 ⋅  1 + 𝜆 , respectively, where 𝜆 is defined as 

 

𝜆 ≡
𝐵

𝐴
𝛽2         (6.1)  
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which is the ratio of the non-linear terms to the linear terms, representing the degree of 

non-linearity of data9.  For 𝛽 << 10, 𝜆  0 (at 𝛽 = 5, 𝜆 = 0.06, 0.04, and 0.02 for 𝑋, 𝑌, 

and 𝑁, respectively, at Fr = 0.280) and 𝑋 in (a) is close to a constant value, i.e. 𝑋 = 𝐴, 

and 𝑌 and 𝑁 in (b) and (c) are nearly linear, i.e. 𝑌, 𝑁 = 𝐴𝛽, with slope 𝐴 seemingly inde-

pendent of Fr.  This is consistent with Longo et al. (2002) where the authors measured 

the resistance 𝐶𝑇 , side force 𝐶𝑆, and drift moment 𝐶𝑀  (corresponding to 𝑋, 𝑌, and 𝑁, re-

spectively) of the Series 60 CB = 0.6 model in oblique towing for a range of 𝛽 = 0 - 10 

and Fr = 0.1 - 0.35.  The authors curve-fitted data as 𝐶𝑇 = 𝑎𝛽 + 𝑏 and 𝐶𝑆,𝑀 = 𝑎𝛽2 +

𝑏𝛽 + 𝑐, respectively, and reported that for the former 𝑎 is independent of Fr and for the 

latter 𝑏 is nearly independent of Fr.  For 𝛽  > 10, however, data become non-linear as 𝜆 

> 0 (at 𝛽 = 10, 𝜆 = 0.26, 0.18, and 0.07 for 𝑋, 𝑌, and 𝑁, respectively, at Fr = 0.280) and 

𝐵 exhibits rather strong dependency on Fr for all variables (See Fig. 6-9, where 𝑋∗, 𝑌𝑣, 

and 𝑁𝑣 correspond to 𝐴; 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣  correspond to 𝐵; and Δ𝑢 corresponds to Fr).   

Time-histories of the forced PMM motions, and those of the responses in forces 

and moment are shown in Fig. 6-2 for pure sway (left column), pure yaw (center col-

umn), and yaw and drift tests (right column), respectively.  Forced motions are defined in 

equations (2.14a) – (2.14c) and (2.15) for pure sway, (2.16a)  – (2.16c) for pure yaw, and 

(2.17a) – (2.17b) for yaw and drift tests, respectively (typical examples of the motions are 

illustrated in Fig. 2-4 (b), (c), and (d), respectively).  Shown in Fig. 6-2 (a) are drift angle 

𝛽 for pure sway test (for 𝛽𝑚𝑎𝑥  = 2, 4, and 10 cases), heading 𝜓 for pure yaw (for 𝑟𝑚𝑎𝑥  

= 0.05, 0.15, 0.30, 0.45, 0.60, and 0.75 cases) and yaw and drift tests (for 𝛽 = 9, 10, and 

                                                 

9 𝜆 can be rewritten by using the mathematic models (2.19a), (2.19b), and (2.19c) for 𝑋, 𝑌, and 𝑁 

as: 

 𝜆 =
𝑋𝑣𝑣

𝑋∗
𝑣2;  

𝑌𝑣𝑣𝑣

𝑌𝑣
𝑣2;  

𝑁𝑣𝑣𝑣

𝑁𝑣
𝑣2  

respectively.   
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11 cases with 𝑟𝑚𝑎𝑥  fixed at 0.30), respectively.  Specific test conditions are summarized 

in Table 3-3.   

The responses in 𝑋, 𝑌, and 𝑁 shown in Fig. 6-2 are typically the 2
nd

-order domi-

nant oscillations for 𝑋 with super posed on the period-mean values, whereas the 1
st
-order 

dominant oscillations for 𝑌 and 𝑁 with phase shifted with respect to the forced motions, 

except for the yaw and drift.  For yaw and drift, the 1
st
-order oscillations are dominant 

with superposed on the period mean value for all variable.   The forces and moment time-

histories are expressed in Fourier series (FS) forms such as 

 

𝜒 𝑡 = 𝜒0 +  𝜒𝑛 cos 𝑛𝜔𝑡 + 𝜑𝜒𝑛  𝑛       (6.2)  

for 𝜒 = 𝑋, 𝑌, and 𝑁, where 𝜒0 is the period-mean of 𝜒, and 𝜒𝑛  and 𝜑𝜒𝑛  are the 𝑛th-order 

amplitude and phase terms, respectively.  In Table 6-1, the harmonic amplitudes 𝜒𝑛  for 𝑛 

= 1, … , 6 are presented in percentages of the data oscillation amplitudes and in averages 

of all 𝛽𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , and 𝛽 cases, respectively.  For pure sway, the 2
nd

-order amplitude 𝑋2 is 

the largest, 72.8%, while the 4
th

- and 6
th

-order amplitudes 𝑋4 and 𝑋6 are also fairly large, 

12.7% and 33.1%, respectively, for 𝑋; the 1
st
-order amplitudes 𝑌1 and 𝑁1 are predominant 

99.3% and 98%, respectively, whereas the higher-order amplitudes 𝑌3, 𝑌5 and 𝑁3, 𝑁5 are 

all small, less than about 3%, for 𝑌 and 𝑁.  For pure yaw, the overall trends are similar as 

for pure sway whereas the 3
rd

-order amplitudes 𝑌3 and 𝑁3 are relatively larger, 11.6% and 

5.8%, respectively.  For yaw and drift, the 1
st
-order amplitude 𝑋1 is dominant, 69.4%, but 

the higher-order amplitudes 𝑋2,3,4,5,6 are also large, about 10% - 30%, for 𝑋, and the 1
st
-

order amplitudes 𝑌1 and 𝑁1 are the largest, 93.5% and 98.0%, respectively, the 2
nd

-order 

amplitudes 𝑌2 and 𝑁2 are the 2
nd

 largest, 22.2% and 11.1%, respectively, and the higher-

order amplitudes 𝑌3,4,5,6 and 𝑁3,4,5,6 are all small, less than about 5%, for 𝑌 and 𝑁.   

The 1
st
-order phase angles 𝜑𝑌1 and 𝜑𝑁1 are seemingly constant from Fig. 6-2 

where 𝜑𝑌1 2𝜋  and 𝜑𝑁1 2𝜋  values about 0.09 (32) and 0.02 (9) for pure sway, about 
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0.28 (102) and 0.29 (105) for pure yaw, and about 0.29 and 0.28 for yaw and drift, re-

spectively.  However, those phase values are functions of the motion parameters such as 

𝑦𝑚𝑎𝑥 , 𝜓𝑚𝑎𝑥 , 𝜔, and/or 𝛽 (or 𝑣𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , 𝜔, and/or 𝑣) as will be discussed later. 
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Table 6-1 Harmonics of Dynamic Tests Time-histories (% Amplitude, Fr = 0.280).  

Test Var (𝜒) 𝜒1 𝜒2 𝜒3 𝜒4 𝜒5 𝜒6 

Pure sway 𝑋 - 72.8 - 12.7 - 33.1 

 𝑌 99.3 - 3.1 - 2.1 - 

 𝑁 98.0 - 2.5 - 0.4 - 

Pure yaw 𝑋 - 66.8 - 23.9 - 31.8 

 𝑌 89.2 - 11.6 - 2.9 - 

 𝑁 95.7 - 5.8 - 1.1 - 

Yaw and drift 𝑋 69.4 30.4 14.6 9.5 10.8 21.7 

 𝑌 93.5 22.2 5.8 2.1 1.6 1.9 

 𝑁 98.0 11.1 3.0 0.7 0.9 0.8 
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(a)  

 

 

(b) (c) 

  

Figure 6-1 Static drift test data (Corrected for symmetry): (a) 𝑋, (b) 𝑌, and (c) 𝑁.  Sym-
bols:  𝐹𝑟 = 0.138,  𝐹𝑟 = 0.280,  𝐹𝑟 = 0.410.  
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

Figure 6-2 Time-histories for pure sway (left), pure yaw (center), and yaw and drift 
(right) tests at Fr = 0.280 (Corrected for symmetry): Forced-motions (a) 𝛽 and 
𝜓; and responses in (b) 𝑋, (c) 𝑌, and (d) 𝑁.  
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6.1.2 Hydrodynamic Derivatives 

6.1.2.1 Static drift test 

Hydrodynamic derivatives 𝑋∗, 𝑋𝑣𝑣, 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  in the mathematic 

models (2.19) in Section 2.3.3 are presented in Table 6-2.  Those derivatives were deter-

mined by fitting the time-mean values of static drift 𝑋, 𝑌, and 𝑁 data shown in Fig. 6-1 to 

the polynomial equations (2.27) by using the relation 𝑣 = − sin 𝛽 derived in (2.13).  The 

polynomial coefficients 𝐴‟s and 𝐵‟s in (2.27) were evaluated by using a Least-Squared-

error (LS) method and then used in (2.28) to determined the derivatives. 

6.1.2.2 Dynamic tests 

Hydrodynamic derivatives in the mathematic models (2.20), (2.22), and (2.24) in 

Section 2.3.3 are determined from the pure sway, pure yaw, and yaw and drift tests data, 

respectively, through the harmonics forms of the mathematic models, (2.21), (2.23), and 

(2.25), respectively.  The harmonics 𝑋0, 𝑋𝑆𝑛 , 𝑋𝐶𝑛 , 𝑌0, 𝑌𝑆𝑛 , 𝑌𝐶𝑛 , 𝑁0, 𝑁𝑆𝑛 , and 𝑁𝐶𝑛  for 𝑛 = 

1, 2, or 3, in the mathematic models were evaluated as per (2.30) in Section 2.3.5 for the 

dynamic PMM tests 𝑋, 𝑌, and 𝑁 time-histories (e.g. Fig. 6-2), plotted in Figs. 6-3, 6-4, 

and 6-5 for pure sway, pure yaw, and yaw and drift tests data, respectively.  In the fig-

ures, the harmonics data are plotted against 𝑣𝑚𝑎𝑥 , 𝑣 𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , 𝑟 𝑚𝑎𝑥 , or 𝑣 as necessary per 

the mathematic models summarized in Table 2-3.  Determinations of hydrodynamic de-

rivatives are as per introduced in Section 2.3.5, either by using the „Multiple-Run‟ method 

(including MRL and MRH) or by using the „Single-Run‟ method (including SRL and SRH), 

as summarized in Tables 2-4 and 2-5, respectively. 

 

‘Multiple-Run’ method:  

Hydrodynamic derivatives using the MRL and MRH methods are presented in 

Tables 21 and 22, respectively.  Herein, the results for MRL are discussed first in the or-
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der of sway, yaw, and cross-coupled derivatives, and then the derivatives from MRH are 

compared with the MRL. 

Sway derivatives 𝑋𝑣𝑣 (including 𝑋∗), and 𝑌𝑣, 𝑌𝑣𝑣𝑣  and 𝑁𝑣, 𝑁𝑣𝑣𝑣 , and 𝑌𝑣  and 𝑁𝑣  are 

determined from the pure sway data FS harmonics, shown in Fig. 6-3 (a) 𝑋0, (c) 𝑌𝐶1 and 

𝑁𝐶1, and (d) 𝑌𝑆1 and 𝑁𝑆1, respectively, for 𝛽𝑚𝑎𝑥  = 2, 4, and 10 (correspond to 𝑣𝑚𝑎𝑥  = 

0.035, 0.070, and 0.174, respectively) cases.  From Fig. 6-3 (a) and (c), harmonics data 

exhibit quadratic for 𝑋0 and cubic for 𝑌𝐶1 and 𝑁𝐶1 trends with 𝑣𝑚𝑎𝑥  (i.e. with 𝛽𝑚𝑎𝑥 ), re-

spectively, similarly as static drift data discussed previously in Section 6.1.1.  However, 

the magnitudes of data are in general larger, smaller, and similar with (than) the static 

drift 𝑋, 𝑌, and 𝑁 data (shown as dashed lines), respectively.  When 𝜆 is defined10 simi-

larly as for static drift data in (6-1), with 𝛽 replaced with 𝛽𝑚𝑎𝑥 , then 𝜆 = 0.43, 0.25, and 

0.07 for 𝑋0, 𝑌𝐶1, and 𝑁𝐶1 at 𝛽𝑚𝑎𝑥  = 10, respectively, indicating that the non-linearity of 

those harmonics data are more stronger than the static drift 𝑋, 𝑌, and 𝑁 data (𝜆 = 0.26, 

0.18, and 0.07, respectively, at 𝛽 = 10 and at Fr = 0.280).  This will be discussed again 

later at the MRH method part.  𝑌𝑆1 and 𝑁𝑆1 data shown in Fig. 6-3 (d) exhibit linear trend 

with 𝑣 𝑚𝑎𝑥  as expected from their mathematic models presented Table 2-3.  In that 𝑌𝑆1 

and 𝑁𝑆1 stem from the acceleration terms („added-mass‟) in the mathematic models 

(2.20b) and (2.20c) and 𝑌𝐶1 and 𝑁𝐶1 from the velocity terms („damping‟), the ratios be-

tween the harmonics may of interest.  For 𝑌 as an example, 𝑌𝑆1 𝑌𝐶1  represents the ratio 

                                                 

10 𝜆 can be rewritten by using the mathematic models for 𝑋0, 𝑌𝐶1, and 𝑁𝐶1 shown in Table 2-3 

as: 

 𝜆 =
1

2

𝑋𝑣𝑣

𝑋∗
𝑣𝑚𝑎𝑥

2 ;  
3

4

𝑌𝑣𝑣𝑣

𝑌𝑣
𝑣𝑚𝑎𝑥

2 ;  
3

4

𝑁𝑣𝑣𝑣

𝑁𝑣
𝑣𝑚𝑎𝑥

2   

respectively. 
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between the „added-mass‟ and „damping‟ forces, which corresponds to the tangent value 

of the 1
st
-order phase of the 𝑌 time-history as11 

 

tan 𝜑𝑌1 =
𝑌𝑣 𝜔

𝑌𝑣 1+𝜆 
         (6.3)  

Similarly, tan 𝜑𝑁1 can be written by replacing 𝑌𝑣  and 𝑌𝑣 in (6-3) with 𝑁𝑣  and 𝑁𝑣, respec-

tively.  For 𝜆 = 0, then, the ratio (or the 1
st
-order phase) is a constant value, for present 

case, 0.730 and 0.135 (or, 𝜑𝑌1 = 36.1 and 𝜑𝑁1 = 7.7) for 𝑌 and 𝑁, respectively, for a 

given 𝜔 = 1.672, indicating that the „damping‟ force is larger than the „added-mass‟ force 

for 𝑌 and the former is predominant for 𝑁, respectively.   

𝑋∗, 𝑋𝑣𝑣, 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  are compared in Table 6-3 with those from the 

static drift data at Fr = 0.280 presented in Table 6-2.  In general, the linear derivatives 𝑋∗, 

𝑌𝑣, and 𝑁𝑣 are close to static drift values with ratios 1.02, 0.88, and 1.01, respectively, 

whereas the non-linear derivatives 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣  are larger with ratios 3.12, 1.53, 

and 1.30, respectively, possibly due to the stronger non-linearity in the pure sway FS 

harmonics data discussed previously. 

Yaw derivatives 𝑋𝑟𝑟  (including 𝑋∗), and 𝑌𝑟  and 𝑌𝑟𝑟𝑟 , and 𝑌𝑟 , and 𝑁𝑟  and 𝑁𝑟𝑟𝑟 , and 

𝑁𝑟  are determined from the pure yaw data FS harmonics, shown in Fig. 6-4 (a) 𝑋0, (c) 

𝑌𝑆1, (d) 𝑌𝐶1, (f) 𝑁𝑆1, and (g) 𝑁𝐶1, respectively, for 𝑟𝑚𝑎𝑥  = 0.05 – 0.75 cases at Fr = 0.138, 

0.280, and 0.410.  In general, 𝑋0, 𝑌𝑆1, and 𝑁𝑆1 in Fig. 6-4 (a), (c), and (f) exhibit curve 

shapes similar as the static drift 𝑋, 𝑌, and 𝑁 curves shown in Fig. 6-1.  However, pure 

                                                 

11 A combination of sine and cosine functions, 𝐴 sin 𝜔𝑡 + 𝐵 cos𝜔𝑡, can be rewritten as 

 𝐴2 + 𝐵2 ⋅ cos 𝜔𝑡 + 𝜑  where,  

 − tan 𝜑 = 𝐴 𝐵   

In this case, 𝐴 = 𝑌𝑆1 and 𝐵 = 𝑌𝐶1, where  𝑌𝑆1 = 𝑌𝑣 𝑣 𝑚𝑎𝑥  and 𝑌𝐶1 = − 𝑌𝑣𝑣𝑚𝑎𝑥 + 3

4
𝑌𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3  , 

which can be rewritten as  𝑌𝑆1 = 𝑌𝑣 𝜔 ⋅ 𝑣𝑚𝑎𝑥  and 𝑌𝐶1 = −𝑌𝑣𝜆 ⋅ 𝑣𝑚𝑎𝑥 , respectively. 
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yaw harmonics data are less non-linear with 𝑟𝑚𝑎𝑥  with 𝜆 = 0.08, 0.06, and 0.07, respec-

tively, at 𝑟𝑚𝑎𝑥  = 0.30 (𝜓𝑚𝑎𝑥  = 10.2) at Fr = 0.280, defined12 similarly as (6-1) with 𝛽 

replaced with 𝑟𝑚𝑎𝑥 , than static drift 𝑋, 𝑌, and 𝑁 data (𝜆 = 0.26, 0.18, and 0.07, respec-

tively, at 𝛽 = 10 and at Fr = 0.280).   𝑌𝐶1 and 𝑁𝐶1 shown in Fig. 6-4 (d) and (g) exhibit 

linear trend with 𝑟 𝑚𝑎𝑥  as expected from their mathematic models shown in Table 2-3, 

whereas more scatters in data curve-fits are observed (particularly for 𝑌𝐶1 at Fr = 0.280) 

than the pure sway 𝑌𝑆1 and 𝑁𝑆1 data shown in Fig. 6-3 (d).  The ratio 𝑌𝑆1 𝑌𝐶1  or 𝑁𝑆1 𝑁𝐶1  

can be similarly defined as (3) for pure sway as (See footnote 11) 

 

− tan 𝜑𝑌1 =
𝑌𝑟 1+𝜆 

𝑌𝑟 𝜔
         (6.4)  

and tan 𝜑𝑁1 as well, which are the ratios of the „damping‟ force to the „added-mass‟ 

force as discussed previously.  For 𝜆 = 0 (and for a fixed 𝜔 = 1.672), the ratios are 3.223 

and 4.144 (or, 𝜑𝑌1 = 107.2 and 𝜑𝑁1 = 103.6) for 𝑌 and 𝑁, respectively, at Fr = 0.280, 

indicating that the „damping‟ forces are about three and four times, respectively, larger 

than the „added-mass‟ forces. 

Cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣  and 𝑁𝑟𝑣𝑣 , and 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟  are from the yaw 

and drift data FS harmonics, shown in Fig. 6-5 (b) 𝑋𝑆1, (d) 𝑌0 and 𝑁0, and (e) 𝑌𝑆1 and 

𝑁𝑆1, respectively, for 𝛽 = 9, 10, and 11 (correspond to 𝑣 = -0.156, -0.174, and -0.191, 

respectively) cases.  𝑋𝑆1 in Fig. 6-5 (b) is solely due to the cross-couple effect between 

the sinusoidal yaw motion and the drift angle 𝛽, which is not measured from pure yaw 

tests.  Data exhibit roughly linear trend with 𝑣, however, with rather large scatters in the 

                                                 

12 𝜆 can be rewritten by using the mathematic models for 𝑋0, 𝑌𝑆1, and 𝑁𝑆1 shown in Table 2-3 as: 

 𝜆 =
1

2

𝑋𝑟𝑟

𝑋∗
𝑟𝑚𝑎𝑥

2 ;  
3

4

𝑌𝑟𝑟𝑟

𝑌𝑟
𝑟𝑚𝑎𝑥

2 ;  
3

4

𝑁𝑟𝑟𝑟

𝑁𝑟
𝑟𝑚𝑎𝑥

2   

respectively. 
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curve-fit.  𝑌0 and 𝑁0 shown in Fig. 6-5 (d) are from both of the drift angle 𝛽 and the 

cross-couple effect, and those harmonics values are about 11% and 5% larger at 𝛽 = 10 

than the static drift 𝑌 and 𝑁 at the same drift angle (shown as dashed and dash-dot lines, 

respectively).  𝑌𝑆1 and 𝑁𝑆1 in Fig. 6-5 (e) are from both of the sinusoidal yaw motion and 

the cross-couple effect.  Cross-couple effect is rather stronger for 𝑌𝑆1 and 𝑁𝑆1 than for 𝑌0 

and 𝑁0 cases, and their values at 𝛽 = 10 are about 89% and 44% larger than the pure 

yaw 𝑌𝑆1 and 𝑁𝑆1 data (shown as dashed and dash-dot lines, respectively) at the same 𝑟𝑚𝑎𝑥  

= 0.3 condition.   

Non-linear derivatives 𝑋𝑣𝑣, 𝑋𝑟𝑟 , 𝑌𝑣𝑣𝑣 , 𝑌𝑟𝑟𝑟 , 𝑌𝑣𝑟𝑟 , 𝑁𝑣𝑣𝑣 , 𝑁𝑟𝑟𝑟 , and 𝑁𝑣𝑟𝑟  determined 

using the MRH method are presented in Table 6-4.  For MRH, 𝑋𝑣𝑣 is determined from the 

2
nd

-order cosine harmonic 𝑋𝐶2 of pure sway data, shown in Fig. 6-3 (b), where the data 

exhibit quadratic trend with 𝑣𝑚𝑎𝑥  as expected from its mathematic model shown in Table 

2-3.  The MRH, however, gives rather smaller 𝑋𝑣𝑣 value than the MRL, with a ratio 0.27, 

nevertheless, the value is closer to static drift 𝑋𝑣𝑣 value with a ratio 0.85 than the MRL 

value (the ratio was 3.12 in Table 6-3).  The MRH gives smaller 𝑋𝑟𝑟  values than the MRL 

similarly for 𝑋𝑣𝑣, showing ratio values between 0.2 – 0.5 presented in Table 6-4.  This 

may indicate that the 𝑋 force in dynamic PMM is more non-linear than the 2
nd

-order, i.e., 

functions of 𝑣2 or 𝑟2 as assumed in the mathematic models (2.20a) and (2.22a), respec-

tively, and suggests to include higher order terms such as 𝑣4, 𝑣6 and 𝑟4, 𝑟6 to the ma-

thematic models, which result in additional terms 3

8
𝑋𝑣𝑣𝑣𝑣𝑣𝑚𝑎𝑥

4 , 5

16
𝑋𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑎𝑥

6  and 

3

8
𝑋𝑟𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

4 , 5

16
𝑋𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

6  to the 0
th

-order harmonic 𝑋0, respectively.  Those higher order 

terms as well result in the 4
th

- and the 6
th

-order harmonics 𝑋𝐶4 cos 4𝜔𝑡 and 𝑋𝐶6 cos 6𝜔𝑡 

to the 𝑋 mathematic models (2.21a) and (2.23a), which may explain the relatively larger 

𝑋4 and 𝑋6 in the pure sway and pure yaw 𝑋 time-histories discussed previously in Sec-

tion 6.1.1.  On the other hand, the 𝑌 derivatives such as 𝑌𝑣𝑣𝑣 , 𝑌𝑟𝑟𝑟 , and 𝑌𝑣𝑟𝑟  and the 𝑁 de-

rivatives such as 𝑁𝑣𝑣𝑣 , 𝑁𝑟𝑟𝑟 , and 𝑁𝑣𝑟𝑟  values from MRH are usually larger than those 

from MRL with the ratios about 1.0 – 3.0 except for a few cases as shown in Table 6-4. 
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‘Single-Run’ Method: 

Sway derivatives using the „Single-Run‟ (SR) method are shown in Fig. 6-6 for 

(a) linear derivatives 𝑌𝑣, 𝑁𝑣, 𝑌𝑣 , and 𝑁𝑣  including 𝑋∗ and (b) non-linear derivatives 𝑋𝑣𝑣, 

𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣 , for 𝛽𝑚𝑎𝑥  = 2, 4, and 10 cases.  In the figures, the derivatives are shown 

as scaled values to the MRL for comparisons.  Typically, the linear derivatives shown in 

Fig. 6-6 (a) are close to MRL with ratios between 0.9 – 1.1 except for a few cases.  In 

contrast, the non-linear derivatives in Fig. 6-6 (b) are in general larger than MRL values 

with ratios 1.0 – 3.0 except for a few cases, showing a tendency to approach to the MRL 

values as 𝛽𝑚𝑎𝑥  increases.   

Yaw derivatives using the SR method are shown in Fig. 6-7 for (a) 𝑌𝑟 , 𝑁𝑟 , 𝑌𝑟 , and 

𝑁𝑟  including 𝑋∗ and (b) 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , and 𝑁𝑟𝑟𝑟 , respectively, for 𝑟𝑚𝑎𝑥  = 0.05 – 0.75 at Fr = 

0.138, 0.280, and 0.410 conditions, with scaled to the MRL values.  The overall trends are 

similar as the sway derivatives; values are close to MRL for the linear derivatives and 

larger than MRL for the non-linear derivatives.  The linear derivatives shown in Fig. 6-7 

(a) at small 𝑟𝑚𝑎𝑥  are in general smaller or larger than the MRL with ratios 0.1 – 1.7 and 

approach to the MRL values as 𝑟𝑚𝑎𝑥  increases, except for 𝑌𝑟  at Fr = 0.138 and 0.280, con-

tinuously decreasing with 𝑟𝑚𝑎𝑥 .  The non-linear derivatives shown in Fig. 6-7 (b) exhibit 

huge ratio values ranging between -210 and 60 (used in the figure are the absolute values 

for the log scale), decreasing with 𝑟𝑚𝑎𝑥  but still larger ratio values 0.5 – 3.5 at 𝑟𝑚𝑎𝑥  = 

0.75.    

Cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑁𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , and 𝑁𝑟𝑣𝑣  are shown in Fig. 6-8 

(a) with scaled to the MRL values, where the 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟  are from the SRL method and 

those from the SRH are shown in Fig. 6-8 (b), respectively, for 𝛽 = 9, 10, and 11 cases.  

𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣 , and 𝑁𝑟𝑣𝑣  shown in Fig. 6-8 (a) are fairly close to the MRL values with ratios 

0.8 – 1.2.  The ratios for 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟  using the SRL method shown in Fig. 6-8 (a) are 

relatively large, 0.5 – 1.4, whereas the ratios for those derivatives using the SRH method 
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shown in Fig. 6-8 (b) are very close to 1.0 for 𝑌𝑣𝑟𝑟  and relatively large, 1.4 – 1.7, for 

𝑁𝑣𝑟𝑟 , respectively. 

In summary, the „Single-Run‟ method gives the linear sway and yaw, and the 

cross-coupled derivatives similar values as the „Multiple-Run‟ method as the dynamic 

PMM motion becomes larger (i.e, larger 𝛽𝑚𝑎𝑥  and 𝑟𝑚𝑎𝑥  values), whereas it gives typical-

ly larger or smaller non-linear sway and yaw derivatives values particularly at smaller 

PMM motion conditions.  

 

Reconstruction Errors: 

The validities of the hydrodynamic derivatives determined using the „Multiple-

Run‟ and „Single-Run‟ methods are evaluated by examining the errors in reconstruction 

of forces and moment time-histories data.  Reconstructions are by using the mathematic 

models (2.21), (2.23), and (2.25) where first the harmonic amplitude terms such as 𝑋0, 

𝑋𝐶2, …, 𝑁𝑆3 are calculated using the derivatives values and then the time-histories of 𝑋, 

𝑌, and 𝑁 are reconstructed (also see Table 2-3).  Subsequently, the reconstruction error 

𝐸𝑅  is defined as  

 

𝐸𝑅 % =
  𝐷𝑖−𝑅𝑖 

𝑀
𝑖

  𝐷𝑖 
𝑀
𝑖

× 100        (6.5)  

where, 𝐷𝑖  is the measured data from the PMM tests, 𝑅𝑖  is the reconstructed data by using 

the mathematic models, subscript 𝑖 represents the time 𝑡𝑖 , and 𝑀 is the total number of 

data points.   

The 𝐸𝑅‟s in reconstructing the time-histories of pure sway, pure yaw, and yaw 

and drift data shown in Fig. 6-2 are calculated using the sway, yaw, and cross-coupled 

derivatives, respectively, using the „Multiple-Run‟ (MRL and MRH) and the „Single-Run‟ 

(SR) methods, and the average errors  𝐸𝑅
     for all 𝛽𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , and 𝛽 cases, respectively, 

are presented in Tables 6-5, 6-6, and 6-7, respectively.  For sway and yaw derivatives in 
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Tables 6-5 and 6-6, the 𝐸𝑅
    ‟s are the smallest for the derivatives using the MRL method, 

and the 𝐸𝑅
    ‟s for the derivatives using the MRH method are relatively larger in general.  

The 𝐸𝑅
    ‟s for derivatives using the SL method are typically large, particularly for the de-

rivatives from the smallest motion cases such as the sway derivatives from the pure sway 

data for 𝛽𝑚𝑎𝑥  = 2 case (SR2) and the yaw derivatives from the pure yaw data for 𝑟𝑚𝑎𝑥  = 

0.30 case (SR0.30), and tend to decrease as the PMM motions become large, showing sim-

ilar values as the MRH in general.  In Table 6-5, the 𝐸𝑅
    ‟s for the sway derivatives from 

the static drift test are compared with those from the pure sway test, of which values are 

relatively larger than those for MRL method but close to those for MRH method case.  For 

cross-coupled derivatives in Table 6-7, the 𝐸𝑅
    ‟s are similarly small for all method cases 

as the yaw and drift motions are sufficiently large (𝛽 = 9, 10, and 11 and 𝑟𝑚𝑎𝑥  = 0.30) 

from which the derivatives are determined.  Consequently, the „Multiple-Run‟ (MRL) me-

thod is more rigorous than the „Single-Run‟ method determining the hydrodynamic deriv-

atives and the latter method is suggested only when the PMM motions are large enough. 

6.1.2.3 Speed variation test 

Surge derivatives were evaluated as per Section 2.3.5 using the sway and yaw de-

rivatives determined previously for three Fr‟s, 0.138, 0.280, and 0.410, cases.  For this, 

the sway derivatives from the static drift tests (Table 6-2) and the yaw derivatives using 

the MRL method (Table 6-3) were used, which are shown in Fig. 6-9 as functions surge 

velocity, 𝑢.  In the figure, surge velocity is non-dimensionalized such that Δ𝑢 =

 𝑢 − 𝑈 𝑈 , where 𝑢 is the surge velocity at each Fr and 𝑈 is that at Fr where the surge 

derivatives are determined (herein, Fr = 0.280).  In the figure, all derivatives were norma-

lized with the values at Fr = 0.280.  From Fig. 6-9 (a), for sway derivatives, 𝑋∗ and 𝑋𝑣𝑣 

show strong dependency on Δ𝑢, i.e. Fr, with their normalized values changing between 

1.1 to 1.5 and 0.2 to 1.0, respectively.  Whereas 𝑌𝑣 and 𝑁𝑣 are almost independent on Δ𝑢 

showing the normalized values ranging between 0.9 and 1.0 and 0.8 and 1.0, respectively.  
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The yaw derivatives in Fig. 6-9 (b) show similar trends.  The normalized 𝑋𝑟𝑟  values in-

crease rather monotonically from 0.3 to 1.4 within the speed range, and the normalized 𝑌𝑟  

and 𝑁𝑟  values vary moderately between 0.6  1.1 and 0.8  1.0.  In summary, typically 

the linear derivative such 𝑌𝑣, 𝑁𝑣, 𝑌𝑟 , and 𝑁𝑟  are nearly in dependent with the speed (Fr) 

changes, whereas the non-linear derivatives 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 , 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , and 𝑁𝑟𝑟𝑟  exhibit 

rather strong dependency on the speed (Fr) changes.   

Subsequently, those derivatives were curve fitted to the 2
nd

-order polynomial 

functions of Δ𝑢 as per equation (2.35), from which surge derivatives such as 𝑋𝑢 , 𝑋𝑢𝑢  and 

𝑋𝑣𝑣𝑢 , 𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , 𝑁𝑣𝑢𝑢  are evaluated using (2.36) and (2.37), respectively, and pre-

sented in Table 26.  Note that the derivatives 𝑋𝑢𝑢𝑢  and 𝑋𝑣𝑟𝑢  are not evaluated herein due 

to the limited number of Fr cases in the present PMM test matrix (shown in Table 3-3) 

for static drift and yaw and drift tests, respectively.  
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Table 6-2 Hydrodynamic Derivatives (Static Drift).  

Derivative Fr = 0.138 Fr = 0.280 Fr = 0.410 

𝑋∗ -0.0182 -0.0170 -0.0258 

𝑋𝑣𝑣  -0.0301 -0.1528 -0.1544 

𝑌𝑣 -0.2637 -0.2961 -0.2963 

𝑌𝑣𝑣𝑣  -1.6256 -1.9456 -3.7914 

𝑁𝑣 -0.1396 -0.1667 -0.1717 

𝑁𝑣𝑣𝑣  -0.3426 -0.4355 -1.2591 

 

 

 

Table 6-3 Hydrodynamic Derivatives (MRL Method).  

Derivative Fr = 0.280 Derivative Fr = 0.138 Fr = 0.280 Fr = 0.410 Derivative Fr = 0.280 

𝑋∗ -0.0173 (1.02) 𝑋∗ -0.0181 (0.99) -0.0177 (1.04) -0.0260 (1.01)   

𝑋𝑣𝑣  -0.4765 (3.12) 𝑋𝑟𝑟  -0.0078 -0.0282 -0.0385 𝑋𝑣𝑟   0.0819 

𝑌𝑣 -0.2601 (0.88) 𝑌𝑟  -0.0276 -0.0485 -0.0548 𝑌𝑣𝑟𝑟  -0.8682 

𝑌𝑣𝑣𝑣  -2.9686 (1.53) 𝑌𝑟𝑟𝑟  -0.0370 -0.0452 -0.0710 𝑌𝑟𝑣𝑣  -1.5172 

𝑁𝑣 -0.1681 (1.01) 𝑁𝑟  -0.0382 -0.0485 -0.0548 𝑁𝑣𝑟𝑟  -0.1989 

𝑁𝑣𝑣𝑣  -0.5677 (1.30) 𝑁𝑟𝑟𝑟  -0.0211 -0.0505 -0.0821 𝑁𝑟𝑣𝑣  -0.7220 

𝑌𝑣  -0.1135 𝑌𝑟  -0.0146 -0.0090 -0.0127   

𝑁𝑣  -0.0136 𝑁𝑟  -0.0065 -0.0070 -0.0077   

 (  ): ratio to static drift  

 

 

 

 

Table 6-4 Hydrodynamic Derivatives (MRH Method).  

Derivative Fr = 0.280 Derivative Fr = 0.138 Fr = 0.280 Fr = 0.410 Derivative Fr = 0.280 

𝑋𝑣𝑣  -0.1296 (0.27) 𝑋𝑟𝑟  -0.0016 (0.21) -0.0132 (0.47) -0.0163 (0.42)   

𝑌𝑣𝑣𝑣  -2.2962 (0.77) 𝑌𝑟𝑟𝑟  -0.0927 (2.51) -0.1305 (2.89) -0.1210 (1.70) 𝑌𝑣𝑟𝑟  -0.9066 (1.04) 

𝑁𝑣𝑣𝑣  -0.8533 (1.50) 𝑁𝑟𝑟𝑟  -0.0312 (1.48) -0.0473 (0.94) -0.0387 (0.47) 𝑁𝑣𝑟𝑟  -0.3161 (1.59) 

 (  ): ratio to MRL 
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Table 6-5 Reconstruction Errors (Sway derivatives).  

Errors Var. MRL 1)MRH SR2 SR4 SR10 
2)Static drift 

𝐸𝑅
    (%) 𝑋 9.4 12.0 22.8 9.4 19.5 12.2 

 𝑌 5.5 6.2 5.1 10.1 7.3 10.5 

 𝑁 2.9 4.0 30.2 6.1 3.9 3.6 

1) 𝑌𝑣 , 𝑁𝑣 , 𝑌𝑣, and 𝑁𝑣 from the MRL were used for reconstructions  
2) 𝑌𝑣  and 𝑁𝑣  from the MRL were used for reconstructions 

 

 

Table 6-6 Reconstruction Errors (Yaw derivatives). 

Errors Var. MRL 1)MRH SR0.05 SR0.15 SR0.30 SR0.45 SR0.60 SR0.75 

𝐸𝑅
    (%) 𝑋 7.6 9.5 549.4 52.2 12.1 8.5 9.2 13.8 

 𝑌 17.2 29.5 106.2 56.3 25.2 27.2 31.2 45.7 

 𝑁 5.2 5.2 616.2 22.4 5.3 6.6 5.5 6.7 

1) 𝑌𝑟 , 𝑌𝑟 , 𝑁𝑟 , 𝑁𝑟  values from the MRL method were used for reconstructions. 

 

 

Table 6-7 Reconstruction
1)

 Errors (Cross-coupled derivatives).  

Errors Var. MRL 2)MRH SRL9 SRL10 SRL11 
3)SRH9 

3)SRH10 
3)SRH11 

𝐸𝑅
    (%) 𝑋 11.0 - 11.1 11.0 11.0 - - - 

 𝑌 3.5 3.5 3.6 5.2 5.5 3.6 3.5 3.7 

 𝑁 2.7 3.0 2.4 2.4 4.6 2.9 2.5 3.6 

1) For reconstructions, 𝑋∗, 𝑋𝑣𝑣 , 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  from static drift, and 𝑌𝑟 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑣 , 𝑁𝑟 , and 𝑁𝑟𝑟𝑟  using the MRL me-
thod were used. 

3) 𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑟𝑣𝑣  using MRL were used for reconstructions  
4) 𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑟𝑣𝑣  using SRL were used for reconstructions. 

 

 

 

 

Table 6-8  Surge-derivatives (Fr = 0.280).  

Derivative Value Derivative Value 

𝑋𝑢  -0.0088   

𝑋𝑢𝑢  -0.0220   

𝑋𝑣𝑣𝑢  -0.1172 𝑋𝑟𝑟𝑢  -0.0308 

𝑌𝑣𝑢  -0.0307 𝑌𝑟𝑢  -0.0268 

𝑌𝑣𝑢𝑢   0.0653 𝑌𝑟𝑢𝑢   0.0284 

𝑁𝑣𝑢  -0.0311 𝑁𝑟𝑢  -0.0183 

𝑁𝑣𝑢𝑢   0.0439 𝑁𝑟𝑢𝑢  -0.0066 
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(a) (b)  

  

 

(c) (d) (e) 

   

Figure 6-3 Pure sway 𝑋, 𝑌, and 𝑁 data FS harmonics: (a) 𝑋0, (b) 𝑋𝐶2, (c) 𝑌𝐶1and 𝑁𝐶1, (d) 
𝑌𝑆1 and 𝑁𝑆1, and (e) 𝑌𝐶3 and 𝑁𝐶3.  
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(a) (b)  

  

 

 (c) (d) (e) 

   
(f) (g) (h) 

   

Figure 6-4 Pure yaw 𝑋, 𝑌, and 𝑁 data FS harmonics: (a) 𝑋0, (b) 𝑋𝐶2, (c) 𝑌𝑆1, (d) 𝑌𝐶1, (e) 
𝑌𝑆3, (f) 𝑁𝑆1, (g) 𝑁𝐶1, and (h) 𝑁𝑆3. Simbols: , Fr = 0.138; , Fr = 0.280; , Fr 
= 0.410.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h)  

  

 

Figure 6-5 Yaw and drift 𝑋, 𝑌, and 𝑁 data FS harmonics: (a) 𝑋0, (b) 𝑋𝑆1, (c) 𝑋𝐶2, (d) 𝑌0 
and 𝑁0, (e) 𝑌𝑆1 and 𝑁𝑆1, (f) 𝑌𝐶1 and 𝑁𝐶1, (g) 𝑌𝐶2 and 𝑁𝐶2, and (h) 𝑌𝑆3 and 𝑁𝑆3.  
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(a) (b) 

  

Figure 6-6 Single-run method (sway derivatives): (a) linear and (b) non-linear deriva-
tives.  Hydrodynamic derivatives shown are scaled with MRL.  

(a) (b) 

  

Figure 6-7 Single-run method (yaw derivatives): (a) linear and (b) non-linear derivatives.  
Hydrodynamic derivatives shown are scaled with MRL.  
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(a) (b) 

  

Figure 6-8 Single-Run method (cross-coupled derivatives): (a) SRL (b) SRH.  Hydrody-
namic derivatives shown are scaled with MRL.  

(a) (b) 

  

Figure 6-9 Speed variation test: Hydrodynamic derivatives with surge velocity change 
Δ𝑢: (a) Sway and (b) yaw derivatives.  Hydrodynamic derivatives shown are 
scaled with the values at Δ𝑢 = 0 (Fr = 0.280).  
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6.1.3 Comparisons between Facilities 

Forces and moment and subsequent hydrodynamic derivatives from three facili-

ties (IIHR, FORCE, and INSEAN) are compared.  All the facilities shared the same geo-

metry (DTMB 5415) and the same PMM test matrix (Table 3-3, for the FRz condition 

only).  The model length L used for each facility is 3.048 m, 4.002 m, and 5.720 m, re-

spectively, and the specific model particulars are summarized in Table 3-1.  The compar-

isons include evaluations of the standard deviation13 from the facility mean values (the 

mean values of the three facilities data) of the time-mean values of 𝑋, 𝑌, and 𝑁 data for 

static drift test and those of the harmonic amplitude and phase of the time-histories data 

as per (2) for dynamic tests.  Herein, the standard deviation values are presented in per-

cent of the facility mean values.  Subsequently, hydrodynamic derivatives are compared 

between the facilities data and possible effects of model size are discussed. 

Static drift 𝑋, 𝑌, and 𝑁 are shown in Fig. 6-10 (a), (b), and (c), respectively, for 

Fr = 0.138 (left), 0.280 (middle), and 0.410 (right) cases, respectively.  The facility mean 

and standard deviation values of 𝑋, 𝑌, and 𝑁 data at 𝛽 = 10 for the three Fr cases are 

presented in Table 6-9.  From Fig. 6-10 (a), 𝑋 data exhibit relatively large deviations 

from facility to facility with standard deviations about 9% - 11% at 𝛽 = 10.  𝑌 and 𝑁 

data in Fig. 6-10 (b) and (c) in general show good agreements between facilities, where 

the standard deviations at 𝛽 = 10 are about 1% - 4% except for a few cases.  In the fig-

ure, data are curve fitted (solid lines for FORCE and INSEAN, and dashed lines for 

IIHR) to quadratic, 𝑋 = 𝐴 + 𝐵𝛽2, and cubic, 𝑌, 𝑁 = 𝐴𝛽 + 𝐵𝛽3, functions similarly as 

discussed in Section 6.1.1.  For 𝑋 in Fig. 6-10 (a), the intercept 𝐴 is different from facility 

to facility, more or less, whereas the 2
nd

-order coefficient 𝐵 is seemingly similar between 

                                                 

13 Although the number of facilities, three, is minimal for a normal distribution, nevertheless the 

standard deviation shows a value close to the average deviation of data from the facility mean 

values. 
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facilities except for the Fr = 0.138 case.  For 𝑌 and 𝑁 in Fig. 6-10 (b) and (c), the 1
st
-

order (linear) coefficient 𝐴 is similar between facilities, whereas the 3
rd

-order (non-linear) 

coefficient 𝐵 is different from facility to facility in general.  The quantitative compari-

sons of those coefficients will be discussed later with related to the comparisons of the 

sway derivatives.   

Dynamic test time-histories of 𝑋, 𝑌, and 𝑁 are shown in Fig. 6-11 (a), (b), and (c), 

respectively, for pure sway (left, 𝛽𝑚𝑎𝑥  = 10 case), pure yaw (middle, 𝑟𝑚𝑎𝑥  = 0.30 case), 

and yaw and drift (right, 𝛽 = 10 case) tests for Fr = 0.280 case, respectively.  While the 

data exhibit in general good agreements between facilities, the mean and standard devia-

tion values of the dominant harmonic amplitude and phase are presented in Table 6-10.  

In Fig. 6-11 (a), 𝑋 time-histories show relatively large deviations between facilities data.  

Nonetheless, the standard deviations of the 0
th

-order amplitude 𝑋0 are fairly small, 

14.9%, 6.2%, and 7.5% for pure sway, pure yaw, and yaw and drift tests, respectively, 

whereas those of the 2
nd

-order amplitude 𝑋2 and phase 𝜑𝑋2 (for yaw and drift 𝑋1 and 𝜑1) 

are in general large, 42.9%, 8.3%, and 69.2%, respectively, for the former, and 5.8%, 

307.3%, and 76.8%, respectively, for the latter.  For 𝑌 and 𝑁, the time-histories shown in 

Fig. 6-11 (b) and (c) exhibit good agreements between facilities, where the standard devi-

ations of the 1
st
-order amplitude 𝑌1 and phase 𝜑𝑌1 are small, about 4% - 6% and about 

2% - 10%, respectively, for all test types.  For yaw and drift 𝑌 and 𝑁, the standard devia-

tions of the 0
th

-order amplitude 𝑌0 and 𝑁0 are also small about 2%. 

Hydrodynamic derivatives from the facilities data are compared in Tables 6-11 

through 6-14 for the sway, yaw, cross-coupled, and surge derivatives, respectively.  Pre-

sented in the tables are the facility mean and standard deviation values and the ratio val-

ues of each facility data to the facility mean values.  The sway velocity derivatives 𝑋𝑣𝑣, 

𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣 , including 𝑋∗, are determined from the static drift data and the 

sway acceleration derivatives 𝑌𝑣  and 𝑌𝑣  are from the pure sway data using the MRL me-

thod.  The yaw derivatives 𝑋𝑟𝑟 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 , 𝑌𝑟 , 𝑁𝑟 , 𝑁𝑟𝑟𝑟 , and 𝑁𝑟  and the cross-coupled de-
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rivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑣𝑟𝑟 , and 𝑁𝑟𝑣𝑣  are as well using the MRL method.  The surge 

derivatives 𝑋𝑢 , 𝑋𝑢𝑢 , 𝑋𝑣𝑣𝑢 , 𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , 𝑁𝑣𝑢𝑢 , 𝑋𝑟𝑟𝑢 , 𝑌𝑟𝑢 , 𝑌𝑟𝑢𝑢 , 𝑁𝑟𝑢 , and 𝑁𝑟𝑢𝑢  are de-

rived from the aforementioned sway and yaw derivatives as per (2.36) and (2.37) in Sec-

tion 2.3.5. 

Sway and yaw derivatives are compared in Tables 6-11 and 6-12 where the facili-

ty mean and standard deviation values are presented.  For sway derivatives, 𝑋∗ and 𝑋𝑣𝑣 

correspond to the intercept 𝐴 and the 2
nd

-order coefficient 𝐵 of the static drift 𝑋 data 

curve fits, and 𝑌𝑣, 𝑁𝑣 and 𝑌𝑣𝑣 , 𝑁𝑣𝑣𝑣  correspond to the 1
st
- and 3

rd
-order coefficients 𝐴 and 

𝐵 of the static drift 𝑌 and 𝑁 data curve fits, respectively, discussed previously.  Recalling 

Fig. 6-10 (a), the standard deviation of the intercept values of 𝑋 data (𝑋∗) is relatively 

large, about 10% - 14%, whereas the standard deviation of the 2
nd

-order coefficient (𝑋𝑣𝑣) 

is relatively small, about 7% - 10% except for the Fr = 0.138 case.  For 𝑌 and 𝑁 in Fig. 

6-10 (b) and (c), the standard deviations of the 1
st
-order coefficients (𝑌𝑣 and 𝑁𝑣) are 

small, about 2% - 7%, whereas the 3
rd

-order coefficients (𝑌𝑣𝑣𝑣  and 𝑁𝑣𝑣𝑣) are large, about 

10% - 30%.  On the other hand, from Table 6-11, the standard deviations of the sway ac-

celeration derivatives 𝑌𝑣  and 𝑁𝑣  are small, 4.4% and 8.8%, respectively.  Similar overall 

trends in comparisons are observed from the yaw derivatives in Table 6-12; relatively 

small deviations of linear derivatives and large deviations of non-linear derivative, whe-

reas the standard deviation values are rather larger than the sway derivatives cases.  The 

standard deviations of the linear derivatives 𝑌𝑟  and 𝑁𝑟  are about 5% - 27%, while those of 

the non-linear derivatives 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , and 𝑁𝑟𝑟𝑟  are fairly large, 37% - 91%, 15% - 72%, 

and 20% - 55%, respectively.  The standard deviations of 𝑌𝑟  and 𝑁𝑟  are 21% - 34% and 

15% - 25%, respectively, which are larger than the sway acceleration derivatives cases. 
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Ratios of the derivative values to the facility means presented in Tables 6-11 and 

6-12 are plotted against the model length in Figs. 6-12 and 6-13 for sway and yaw deriva-

tives, denoted with a „*‟ symbol, respectively, revealing the possible effect of model size.  

In the figures, the model lengths of each facility, IIHR, FORCE, and INSEAN, are scaled 

with the smallest model size corresponding to L
*
 = L/L3.048 m = 1.0, 1.31, and 1.88, re-

spectively.  Subsequently, the ratio values are linear-curve fitted to y = AL
*
 + B, where 

the coefficient A = y/L
*
 indicates the amount of change of derivative value, y, (in 

fraction of the facility mean value) as the model size is doubled, i.e L
*
 = 1.  From Fig. 

6-12 (a), the ratios of the linear derivatives, 𝑌𝑣
∗ and 𝑁𝑣

∗, are close to 1.0 whereas the ratios 

of the non-linear derivatives, 𝑋𝑣𝑣
∗ , 𝑌𝑣𝑣𝑣

∗ , and 𝑁𝑣𝑣𝑣
∗ , are distributed over a rather wide range 

in general between 0.6 and 1.04.  The curve-fit coefficient A‟s for the linear and non-

linear derivatives are near to zero, 0.01 and -0.03, respectively, indicating that the deriva-

tives are nearly independent of model size.  The ratios 𝑌𝑣 
∗ and 𝑁𝑣 

∗ shown in Fig. 6-12 (b) 

are also near to 1.0, similarly as 𝑌𝑣
∗ and 𝑁𝑣

∗, whereas the values tend to decrease with 

model size, however, the number of data (6 points) is very limited for a general remark.  

From Fig. 6-13 (a), the ratios of the linear derivatives, 𝑌𝑟
∗ and 𝑁𝑟

∗, are close to 1.0 distri-

buted between 0.8 and 1.2, whereas the ratios of the non-linear derivatives, 𝑋𝑟𝑟
∗ , 𝑌𝑟𝑟𝑟

∗ , and 

𝑁𝑟𝑟𝑟
∗  are distributed over a quite wide range between 0.2 and 1.8.  The curve-fit coeffi-

cient A‟s are 0.14 and -0.16 for the linear and non-linear derivatives, respectively, indi-

cating that those derivatives values can increase 14% and decrease 16%, respectively, as 

the model length is doubled.  The ratios of yaw acceleration derivatives, 𝑌𝑟 
∗ and 𝑁𝑟 

∗, exhi-

bit rather strong dependency on the model size as shown in Fig. 6-13 (b).  The curve-fit 

coefficient A is large, A = 0.52, meaning that 𝑌𝑟  and 𝑁𝑟  values can increase as much as 

52% as the model size is doubled.  In summary, generally, sway derivatives are nearly 

independent of model size whereas yaw derivatives (particularly yaw acceleration deriva-

tives) exhibit considerable dependency on the model size.  However, general conclusions 
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are precluded for the non-linear derivatives due to large scatters in the ratio values distri-

butions. 

Cross-coupled derivatives and Surge derivatives are compared in Tables 6-13 and 

6-14, respectively.  The standard deviations from and the ratios to the facility mean val-

ues of those derivatives values are typically larger than those for the sway and yaw deriv-

atives, and clear trends with the model size are not observed for those derivatives. 
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Table 6-9 Comparisons between Facilities: Static drift test (𝛽 = 10). 

Var. 
Fr = 0.138 Fr = 0.280 Fr = 0.410 

Mean StDev(%) Mean StDev(%) Mean StDev(%) 

𝑋 -0.0176 9.2 -0.0197 10.7 -0.0281 9.2 

𝑌 0.0559 3.4 0.0616 1.0 0.0746 6.3 

𝑁 0.0250 7.5 0.0300 3.9 0.0372 4.1 

 

 

 

 

 

Table 6-10 Comparisons between Facilities: Dynamic tests (Fr = 0.280).  

Var. Harmonics 
Pure sway Pure yaw Yaw and drift 

Mean StDev(%) Mean StDev(%) Mean StDev(%) 

𝑋 𝑋0 -0.0210 14.9 -0.0182 6.2 -0.0225 7.5 

 𝑋2 0.0017 42.9 0.0007 8.3 1)0.0026 69.2 

 𝜑𝑋2 -0.75 𝜋 5.8 -0.18 𝜋 307.3 2)0.25 𝜋 76.8 

𝑌 𝑌0 - - - - 0.0698 2.0 

 𝑌1 0.0665 3.8 0.0175 6.4 0.0318 6.1 

 𝜑𝑌1 0.17 𝜋 7.0 0.58 𝜋 2.1 0.59 𝜋 3.2 

𝑁 𝑁0 - - - - 0.0333 1.6 

 𝑁1 0.0315 3.7 0.0153 5.8 0.0221 5.8 

 𝜑𝑁1 0.04 𝜋 10.1 0.59 𝜋 2.2 0.57 𝜋 1.8 

1) 𝑋1 and 2) 𝜑𝑋1 for yaw and drift test. 
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Table 6-11 Comparisons between Facilities (Sway derivatives).  

Derivative Fr Mean 
StDev 

(%) 

Facility data (ratio to Mean) 

IIHR FORCE INSEAN 

𝑋∗ 0.138 -0.0164 13.7 1.11 1.04 0.85 

 0.280 -0.0155 12.4 1.10 1.05 0.86 

 0.410 -0.0239 9.8 1.08 1.03 0.89 

𝑌𝑣 0.138 -0.2673 5.4 0.99 0.95 1.06 

 0.280 -0.3000 1.8 0.99 0.99 1.02 

 0.410 -0.2941 2.9 1.01 1.02 0.97 

𝑁𝑣 0.138 -0.1351 5.9 1.03 1.04 0.93 

 0.280 -0.1628 2.2 1.02 1.00 0.98 

 0.410 -0.1749 7.0 0.98 0.94 1.08 

𝑋𝑣𝑣  0.138 -0.0427 51.6 0.70 0.70 1.60 

 0.280 -0.1421 6.5 1.08 0.96 0.96 

 0.410 -0.1392 9.5 1.11 0.94 0.96 

𝑌𝑣𝑣𝑣  0.138 -1.7940 13.9 0.91 1.16 0.93 

 0.280 -1.7875 7.8 1.09 0.97 0.94 

 0.410 -4.5105 25.7 0.84 0.86 1.30 

𝑁𝑣𝑣𝑣  0.138 -0.2866 31.2 1.20 1.16 0.64 

 0.280 -0.3284 31.0 1.33 0.96 0.71 

 0.410 -1.3113 11.0 0.96 1.12 0.92 

𝑌𝑣  0.280 -0.1111 4.4 1.02 1.03 0.95 

𝑁𝑣  0.280 -0.0131 8.8 1.04 1.07 0.90 

 

 

 

Table 6-12 Comparisons between Facilities (Yaw derivatives).  

Derivative Fr Mean 
StDev 

(%) 

Facility (ratio to Mean) 

IIHR FORCE INSEAN 

𝑌𝑟  0.138 -0.0313 15.3 0.88 1.17 0.95 

 0.280 -0.0457 27.2 1.06 0.70 1.24 

 0.410 -0.0572 5.6 0.96 0.98 1.06 

𝑁𝑟  0.138 -0.0372 5.8 1.03 0.93 1.04 

 0.280 -0.0487 5.4 0.94 1.05 1.01 
 0.410 -0.0543 14.5 0.84 1.03 1.13 

𝑋𝑟𝑟  0.138 -0.0090 36.9 0.87 0.71 1.42 

 0.280 -0.0191 41.5 1.48 0.71 0.81 

 0.410 -0.0190 91.4 2.03 0.68 0.29 

𝑌𝑟𝑟𝑟  0.138 -0.0454 31.5 0.82 0.82 1.36 

 0.280 -0.0570 71.8 0.79 1.80 0.41 
 0.410 -0.0608 14.6 1.17 0.93 0.90 

𝑁𝑟𝑟𝑟  0.138 -0.0255 31.8 0.83 0.81 1.37 

 0.280 -0.0342 55.3 1.48 0.39 1.13 

 0.410 -0.0773 20.1 1.06 0.78 1.16 

𝑌𝑟  0.138 -0.0162 21.0 0.90 0.86 1.24 

 0.280 -0.0136 33.3 0.66 1.01 1.33 

 0.410 -0.0184 33.5 0.69 0.95 1.36 

𝑁𝑟  0.138 -0.0073 17.8 0.89 0.91 1.21 

 0.280 -0.0096 24.6 0.73 1.07 1.21 

 0.410 -0.0092 14.6 0.83 1.06 1.10 
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Table 6-13 Comparisons between Facilities (Cross-coupled derivatives).  

Derivative Mean 
StDev 

(%) 

Facility (ratio to Mean) 

IIHR FORCE INSEAN 

𝑋𝑣𝑟  0.0300 152.1 2.73 0.39 -0.12 

𝑌𝑣𝑟𝑟  -1.3683 42.7 1.48 0.65 0.87 

𝑁𝑣𝑟𝑟  -0.4011 64.3 1.72 0.48 0.81 

𝑌𝑟𝑣𝑣  -1.7067 12.1 1.10 1.03 0.87 

𝑁𝑟𝑣𝑣  -0.5512 20.8 0.79 1.00 1.21 

 

 

 

 

Table 6-14 Comparisons between Facilities (Surge derivatives).  

Derivative Mean 
StDev 

(%) 

Facility (ratio to Mean) 

IIHR FORCE INSEAN 

𝑋𝑢  -0.0087 2.3 1.01 1.01 0.97 

𝑋𝑢𝑢  -0.0205 7.9 1.07 1.00 0.92 

𝑋𝑣𝑣𝑢  -0.0903 31.6 1.30 1.03 0.67 

𝑋𝑟𝑟𝑢  -0.0094 212.5 3.28 0.65 -0.93 

𝑌𝑣𝑢  -0.0242 98.7 1.27 1.83 -0.09 

𝑁𝑣𝑢  -0.0397 54.3 0.78 0.60 1.62 

𝑌𝑣𝑢𝑢  0.0794 18.2 0.82 0.99 1.19 

𝑁𝑣𝑢𝑢  0.0294 71.3 1.49 1.33 0.18 

𝑌𝑟𝑢  -0.0265 14.3 1.01 0.85 1.14 

𝑁𝑟𝑢  -0.0208 12.5 0.88 1.00 1.13 

𝑌𝑟𝑢𝑢  0.0033 1728.6 8.61 -19.03 13.45 

𝑁𝑟𝑢𝑢  0.0034 486.6 -1.94 6.56 -1.65 
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 𝐹𝑟 = 0.138 𝐹𝑟 = 0.280 𝐹𝑟 = 0.410 

(a) 

   

(b) 

   

(c) 

   

Figure 6-10 Comparisons between facilities – Static drift data (Corrected for symmetry): 
(a) 𝑋, (b) 𝑌, and (c) 𝑁 at Fr =0.138 (left), 0.280 (center), 0.410 (right), respe-
citively.  Symbols: , IIHR; , FORCE; , INSEAN.  
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

Figure 6-11 Comparisons between facilities – Dynamic tests data (Corrected for symme-
try): (a) 𝑋, (b) 𝑌, and (c) 𝑁 for pure sway (left, 𝛽𝑚𝑎𝑥  = 10), pure yaw (center, 
𝑟𝑚𝑎𝑥  = 0.30), and yaw and drift (right, 𝛽 = 10) tests at Fr = 0.280, respective-
ly.  Symbols (colors):  , IIHR; , FORCE; and , INSEAN.   
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(a) (b) 

  

Figure 6-12 Comparisons between facilities: (a) sway-velocity and (b) -acceleration de-
rivatives.  Derivatives and model lengths are scaled values.  Symbols: , 𝑋𝑣𝑣; 
, 𝑌𝑣

∗, 𝑌𝑣𝑣𝑣
∗ , or 𝑌𝑣 

∗; and , 𝑁𝑣
∗, 𝑁𝑣𝑣𝑣

∗ , or 𝑁𝑣 
∗, respectively.  Color codes: Fr = 

0.138 (blue), 0.280 (red), and 0.410 (green), respectively.   

(a) (b) 

  

Figure 6-13 Comparisons between facilities: (a) yaw-rate and (b) -acceleration deriva-
tives.  Derivatives and model lengths are scaled values.  Symbols: , 𝑋𝑟𝑟

∗ ; , 
𝑌𝑟

∗, 𝑌𝑟𝑟𝑟
∗ , or 𝑌𝑟 

∗; and , 𝑁𝑟
∗, 𝑁𝑟𝑟𝑟

∗ , or 𝑁𝑟 
∗, respectively.  Color codes: Fr = 0.138 

(blue), 0.280 (red), and 0.410 (green), respectively.   
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6.1.4 Heave, Pitch, and Roll Motions 

Time-mean values of static drift 𝑧, 𝜃, and 𝜙 data are shown in Fig. 6-14 (a), (b), 

and (c), respectively.  From (a) and (b), 𝑧 and 𝜃 increase with 𝛽 from the values at 0 to 

positive for the former (downward sinkage) and to negative for the latter (bow-down 

trim), respectively.  From (c), 𝜙 is zero at 𝛽 = 0 and increases to positive (heel to star-

board) with 𝛽.  Data are curve fitted to quadratic or cubic functions of 𝛽 such that 

𝑧, 𝜃 = 𝐴 + 𝐵𝛽2 and 𝜙 = 𝐴𝛽 + 𝐵𝛽3, respectively, where the coefficients 𝐴‟s and 𝐵‟s are 

presented in Table 6-15.  In general, both of the polynomial coefficients 𝐴 and 𝐵 are 

functions of Fr.  From Fig. 6-14 (a) and (b), while the 𝐴 (corresponding to the values at 𝛽 

= 0) is increasing monotonically with Fr for 𝑧 and oscillating for 𝜃, respectively, more 

complete trends will be discussed later at the next Section with related to surge force 𝑋.  

The 2
nd

-order coefficient 𝐵 for 𝑧 and 𝜃 are shown in Fig. 6-14 (d) and (e), respectively, 

plotted against Fr numbers.  In the figures, Fr is scaled with the lowest number, Fr = 

0.138, and 𝐵 is scaled with its value at the Fr, which are designated as Fr
*
 and 𝐵∗, re-

spectively.  Note that 𝐵 for 𝜃 shown in Fig. 6-14 (e) is scaled with the value at Fr = 0.280 

to avoid using a near-to-zero 𝐵 value at Fr  = 0.138 for the FRz condition case.  From the 

figures, 𝐵∗ for 𝑧 is quadratic whereas that for 𝜃 is nearly linear with Fr
*
, respectively, 

indicating that  

 

Δ𝑧  Fr
2
𝛽2

  and  Δ𝜃  Fr𝛽2
       (6.6)  

where Δ𝑧 = 𝑧 − 𝐴 and Δ𝜃 = 𝜃 − 𝐴, respectively.  Similarly, 𝐴∗ and 𝐵∗ for 𝜙 are shown 

in Fig. 6-14 (f) where the 𝐴∗ increases nearly linearly for Fr
*
 < 2 and then more steeply 

with Fr
*
, whereas the 𝐵∗ is almost independent of Fr

*
, thus, approximately for small Fr 

and 𝛽,  

 

 𝜙  Fr𝛽          (6.7)  
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For 𝑧 and 𝜃, also presented in Table 6-15 are the ratio  values, defined in (6-13), 

for the polynomial coefficients for FRz condition to those for FRz condition revealing 

the effect of roll motion to heave and pitch motions.  As 𝜙 = 0 at 𝛽 = 0, the  for 𝐴‟s 

reveal no more than the errors in measurement of 𝑧 and 𝜃 at the drift angle.  For 𝑧, the  

values for 𝐵 are close to unity, indicating that the effect of roll motions on heave is small 

or that the heave motion is independent with the roll motion.  For 𝜃, in contrast,  values 

for 𝐵 are considerably larger than unity, about 4  12, revealing that the pitch and roll 

motions are rather strongly coupled each other.     

Time-histories of 𝑧, 𝜃, and 𝜙 are shown in Fig. 6-15 (b), (c), and (d), respectively, 

for pure sway (left column), pure yaw (center column), and yaw and drift (right column) 

tests at Fr = 0.280, respectively.  Shown in Fig. 6-15 (a) are the forced PMM motions; 

drift angle 𝛽 for pure sway and heading angle 𝜓 for pure yaw and yaw and drift tests, 

which are identical with those shown in Fig. 6-2 (a) for forces and moment.  The FS har-

monic amplitudes of the time-histories are evaluated as per (2) and summarized in Table 

6-16 for 𝛽𝑚𝑎𝑥  = 10 case of pure sway test, 𝑟𝑚𝑎𝑥  = 0.30 case of pure yaw test, and 𝛽 = 

10 case of yaw and drift test, respectively.  In the table, 𝐴 is the oscillation amplitude of 

𝑧, 𝜃, and 𝜙 time-histories, respectively, and 𝑧10∘, 𝜃10∘, and 𝜙10∘ represent the static drift 

𝑧, 𝜃, and 𝜙 values at 𝛽 = 10, respectively.   

For the heave 𝑧 shown in Fig. 6-16 (b), the 2
nd

-order amplitude 𝑧2 is most domi-

nant for pure sway and pure yaw, about 100% of 𝐴.  The oscillation amplitude 𝐴 is small 

compared to the static drift, about 20% and 10% of 𝑧10∘ for pure sway and pure yaw, re-

spectively.  The 0
th

-order amplitude 𝑧0, i.e. the period-mean value, is comparable with 

static drift, about 70% and 60% of 𝑧10∘ for pure sway and pure yaw, respectively.  For 

yaw and drift, both 𝐴 and 𝑧0 are larger than those for pure sway and pure yaw, about 30% 

and 110% of 𝑧10∘, respectively.  The 1
st
-order amplitude 𝑧1 is dominant for yaw and drift, 

about 95% of 𝐴, and the 2
nd

-order amplitude 𝑧2 is the second dominant, about 20% of 𝐴.  

For all test types harmonic amplitudes higher than 3
rd

-order 𝑧3,4,5,6 are small, usually less 
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than 5% of 𝐴.  Comparing the results between FRz and FRz conditions, the ratio  

values for the dominant harmonic amplitudes including 𝐴‟s are close to unity, between 

about 0.8 – 1.4, indicating that the effects of the roll motions shown in Fig. 6-16 (d) on 

the heave motions are small. 

For the pitch 𝜃 shown in Fig. 6-15 (c), the 2
nd

-order amplitude 𝜃2 is most domi-

nant for pure sway and pure yaw, similarly as for heave, about 100% of 𝐴.  Despite the 

fact for static drift test that 𝜃 for FRz condition is considerably larger than that for FRz 

as shown in Fig. 6-14 (b) (where  = 2.67 for 𝜃 at 𝛽 = 10), for pure sway test, however, 

similar values of the 0
th

-order amplitude 𝜃0 ( = 0.81) and oscillation amplitude 𝐴 ( = 

0.86) are observed from both of the conditions.  The magnitudes of those 𝜃0 and 𝐴 are 

about 80% and 40% of 𝜃10∘ for FRz condition, respectively, and about 20% and 10% for 

FRz condition, respectively.  In contrast, for pure yaw test, 𝐴 for FRz is considerably 

large than that for FRz ( = 2.14) whereas 𝜃0 is similar for both conditions ( = 0.78), 

indicating that the effect of roll motion on pitch is mainly for the oscillation amplitude 𝐴 

for pure yaw test.  The magnitudes of those 𝜃0 and 𝐴 are about 60% and 30% of 𝜃10∘ for 

FRz condition, respectively, and about 15% and 20% for FRz condition, respectively.  

For yaw and drift test, both 𝜃0 and 𝐴 for FRz is larger than those for FRz ( = 2.62 and 

2.38, respectively), which are 142% and 152% of 𝜃10∘ for the former condition, respec-

tively, and 123% and 120% for the latter condition, respectively.  The harmonic ampli-

tudes of higher than 3
rd

-order 𝜃3,4,5,6 are small for all the test types, usually less than 5% 

of 𝐴, except for 𝜃4 for pure sway and pure yaw tests, about 10%.   

For the roll 𝜙 shown in Fig. 6-15 (d), the 1
st
-order amplitude 𝜙1 is the most do-

minant, about 100% of 𝐴, for all test types.  The oscillation amplitude 𝐴 for pure sway 

test is larger than static drift 𝜙, 124% of 𝜙10∘, whereas smaller for pure yaw and yaw and 

drift tests, about 70%, respectively.  For yaw and drift test the 0
th

-order amplitude 𝜙0 is 

slightly larger than static drift 𝜙, 106% of 𝜙10∘.  Higher-order harmonic amplitudes 

𝜙2,3,4,5,6 are all small, usually less than 5% of 𝐴, for all test types, except for a few cases.   
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The 0
th

- and 2
nd

-order harmonic amplitudes of the heave motions 𝑧0 and 𝑧2 for all 

pure yaw test cases at Fr = 0.138, 0.280, and 0.410 are shown in Fig. 6-16 (a) and (b), 

respectively, with plotted against 𝑟𝑚𝑎𝑥  values.  In general, the overall appearances of 𝑧0 

data resemble the static drift 𝑧 data shown in Fig. 6-14 (a), accordingly data are curve-

fitted as 𝑧0 = 𝐴 + 𝐶𝑟𝑚𝑎𝑥
2  where the same 𝐴 values for static drift 𝑧 curve-fit correspond-

ing to each Fr case is used for the curve-fits.  𝑧2 shown in Fig. 6-16 (b) also exhibits qua-

dratic trends with 𝑟𝑚𝑎𝑥  and data are curve-fitted as 𝑧2 = 𝐷 + 𝐸𝑟𝑚𝑎𝑥
2 .  Subsequently, the 

curve-fit coefficients 𝐶 and 𝐸 are scaled with those values for Fr = 0.138 case, designated 

as 𝐶∗ and 𝐸∗, respectively, and shown in Fig. 6-16 (c) and (d), respectively, plotted 

against the Fr
*
 similarly as 𝐵∗ shown in Fig. 6-14 (d) for static drift 𝑧 data.  From Fig. 6-

16 (c), 𝐶∗ increases with Fr
*
 roughly following a cubic line, which is much faster than 

the quadratic increase of 𝐵∗.  Whereas from Fig. 6-16 (d), the 𝐸∗ follows a Fr
*2.5

 line, 

slower than 𝐶∗ yet relatively faster than 𝐵∗.  Accordingly, for those harmonic amplitudes,  

 

Δ𝑧0  Fr
3
𝑟𝑚𝑎𝑥

2   and  Δ𝑧2  Fr
2.5
𝑟𝑚𝑎𝑥

2     (6.8)  

respectively, where Δ𝑧0 = 𝑧0 − 𝐴 and Δ𝑧2 = 𝑧2 − 𝐷, respectively.  The coefficient 𝐷 

will be discussed later at next paragraph for pitch motion.  Consequently, for dynamic 

pure yaw test, the magnitudes of 𝑧0 and 𝑧2 are smaller than static drift 𝑧, respectively 

about 80% and 10% from discussions above, however increases  with Fr faster than static 

drift 𝑧. 

Similarly, the 0
th

- and 2
nd

-order harmonic amplitudes of the pitch motions 𝜃0 and 

𝜃2 for all pure yaw test cases are shown in Fig. 6-17 (a) and (b), respectively.  Data are 

curve-fitted as 𝜃0 = 𝐴 + 𝐶𝑟𝑚𝑎𝑥
2  and 𝜃2 = 𝐷 + 𝐸𝑟𝑚𝑎𝑥

2 , respectively, and the scaled coeffi-

cients 𝐶∗ and 𝐸∗ are shown in Fig. 6-17 (c) and (d), respectively, for the former coeffi-

cient similarly as 𝐵∗ for static drift 𝜃 shown in Fig. 6-14 (e) and for the latter coefficient 

similarly as 𝐸∗ for 𝑧2 discussed previously.  From Fig. 6-17 (a), the overall appearances 
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of 𝜃0 are similar to those of the static drift 𝜃 data shown in Fig. 6-14 (b), whereas the 𝜃0 

at Fr = 0.410 increases with 𝑟𝑚𝑎𝑥  in contrast to the static drift 𝜃 at the same Fr, decreas-

ing with 𝛽.  Accordingly, the 𝐶∗ shown in Fig. 6-17 (c) exhibits more complicated curve 

pattern than the simple linear pattern of static drift 𝐵∗∗ shown in Fig. 6-14 (e), rather the 

𝐸∗ shown in Fig. 6-17 (e) exhibits linear trend with Fr
*
.  Thus, for those harmonic ampli-

tudes,  

 

Δ𝜃0  𝐶(Fr)𝑟𝑚𝑎𝑥
2   and Δ𝜃2  Fr𝑟𝑚𝑎𝑥

2      (6.9)  

respectively, where Δ𝜃0 = 𝜃0 − 𝐴 and Δ𝜃2 = 𝜃2 − 𝐷, respectively, and more data may 

be necessary to determine a functional form for 𝐶(Fr).  For FRz condition, however, the 

𝜃2 values are much larger than those for FRz condition, as shown in Fig. 6-17 (b), due to 

the cross coupling between pitch and roll motions.  When 𝜙1
∗ and 𝜃2

∗ are defined similarly 

as for the scaled coefficients for the data curve-fits, both exhibit quadratic trends with Fr
*
 

as shown in Fig. 6-17 (e), thus it can be written as Δ𝜃2  Fr
2
𝑟𝑚𝑎𝑥

2  for FRz condition. 

The 2
nd

-order harmonic amplitudes 𝑧2 and 𝜃2 of heave and pitch motions are sup-

posed to become zero as the forced PMM motions are getting smaller, e.g. 𝑟𝑚𝑎𝑥   0 for 

pure yaw test.  Thus, the non-zero 𝑧2 and 𝜃2 values at 𝑟𝑚𝑎𝑥  = 0.05 shown in Fig. 6-16 (b) 

and Fig. 6-17 (b), respectively, (accordingly non-zero 𝐷‟s for the curve-fits) are out of 

expectation.   
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Table 6-15 Polynomial Fit Coefficients for Static Drift Motions Data.  

Coeff. Fr 
 𝑧  102  𝜃 ()  𝜙 () 

 FRz FRz   FRz FRz   FRz 

𝐴 0.138  0.006 -0.017 -2.83  -0.039 -0.004 0.10  0.056 

 0.280  0.176   0.217 1.23  -0.097 -0.026 0.27  0.119 
 0.410  0.434   0.516 1.19    0.396   0.453 1.14  0.239 

𝐵 103 0.138  0.284   0.291 1.02  -0.153  -1.759 11.50  0.096 

 0.280  0.983   0.810 0.82  -1.326  -6.875 5.18  0.139 
 0.410  2.692   2.428 0.90  -2.769 -10.609 3.83  0.115 

 

 

 

 

Table 6-16  Harmonic Amplitudes
1)

 of Motions for Dynamic Tests (Fr = 0.280).  

Var. 
Harmonic 

amplitude 

Pure Sway (𝛽𝑚𝑎𝑥  = 10)  Pure Yaw (𝑟𝑚𝑎𝑥  = 0.30)  Yaw and Drift (𝛽 = 10) 

FRz FRz   FRz FRz   FRz FRz  

𝑧 𝑧0 0.67 0.81 1.16  0.54 0.76 1.37  1.12 1.12 0.96 

 𝐴 0.24 0.19 0.76  0.09 0.08 0.80  0.32 0.27 0.83 

 𝑧1 - - -  - - -  0.95 0.94 0.82 

 𝑧2 1.01 0.99 0.75  0.98 1.00 0.82  0.21 0.21 0.82 

 𝑧3 - - -  - - -  0.01 0.02 1.40 

 𝑧4 0.05 0.04 0.74  0.12 0.12 0.79  0.00 0.03 6.00 

 𝑧5 - - -  - - -  0.00 0.02 7.00 

 𝑧6 0.03 0.03 0.65  0.06 0.07 1.00  0.02 0.01 0.50 

𝜃 𝜃0 0.77 0.21 0.81  0.60 0.15 0.78  1.42 1.23 2.62 

 𝐴 -0.42 -0.12 0.86  -0.30 -0.22 2.14  -1.52 -1.20 2.38 

 𝜃1 - - -  - - -  0.97 0.99 2.44 

 𝜃2 0.99 1.03 0.89  0.99 1.01 2.19  0.12 0.14 2.90 

 𝜃3 - - -  - - -  0.02 0.01 1.62 

 𝜃4 0.09 0.10 1.02  0.13 0.05 0.78  0.00 0.01 4.30 

 𝜃5 - - -  - - -  0.00 0.01 6.06 

 𝜃6 0.01 0.02 2.48  0.04 0.02 1.14  0.00 0.01 6.87 

𝜙 𝜙0 - - -  - - -  - 1.06 - 

 𝐴 - 1.24 -  - 0.71 -  - 0.67 - 

 𝜙1 - 1.00 -  - 1.01 -  - 1.03 - 

 𝜙2 - - -  - - -  - 0.02 - 

 𝜙3 - 0.09 -  - 0.01 -  - 0.04 - 

 𝜙4 - - -  - - -  - 0.01 - 

 𝜙5 - 0.06 -  - 0.01 -  - 0.01 - 

 𝜙6 - - -  - - -  - 0.01 - 

1) Those values presented herein are 𝜒0 (𝜒 = 𝑧, 𝜃, 𝜙) and 𝐴 in % of 𝜒10∘ and 𝜒𝑛  (𝑛 = 1, 2, …, 6) in % of 𝐴, respectively, where 

𝜒10∘ represents the static drift 𝜒 value at 𝛽 = 10. 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

 

Figure 6-14 Motions data for static drift tests (Corrected for symmetry): (a) 𝑧, (b) 𝜃, and 
(c) 𝜙, and the polynomial-fit coefficients (scaled): (d) 𝐵∗ for 𝑧, (e) 𝐵∗ for 𝜃, 
and (f) 𝐴∗ and 𝐵∗ for 𝜙, respectively.  Symbols for (a), (b), and (c): , 𝐹𝑟 = 
0.138; , 𝐹𝑟 = 0.280; , 𝐹𝑟 = 0.410; , 𝐴∗; , 𝐵∗.   Color codes: , FRz and 
, FRz.  
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

Figure 6-15 Time-histories of motions data (Corrected for symmetry) for pure sway test 
(left column), pure yaw test (center column), and yaw and drift test (right col-
umn) at Fr = 0.280, resepctively: (a) input motions 𝛽 or 𝜓, and responses in 
(b) 𝑧, (b) 𝜃, and (c) 𝜙.  Color codes: , FRz and , FRz. 
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(a) 

 

(c) 

 

(b) 

 

(d) 

 

Figure 6-16 Pure yaw heave 0
th

- and 2
nd

-order harmonic amplitudes: (a) 𝑧0 and (b) 𝑧2, 
and scaled curve-fit coefficients: (c) 𝐶∗ and (d) 𝐸∗. Simbols for (a) and (b):  
𝐹𝑟 = 0.138,  𝐹𝑟 = 0.280,  𝐹𝑟 = 0.410.  Color code: , FRz and , FRz.  
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(b) 

 

(c) 
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(e) 

 

  

Figure 6-17 Pure yaw pitch 0
th

- and 2
nd

-order harmonic amplitudes: (a) 𝜃0 and (b) 𝜃2, and 
scaled curve-fit coefficients: (c) 𝐶∗ and (d) 𝐸∗, and (e) scaled 1

st
-order roll and 

2
nd

-order pitch harmonic amplitudes, 𝜙1
∗ and 𝜃2

∗.  Simbols for (a) and (b):  𝐹𝑟 
= 0.138,  𝐹𝑟 = 0.280,  𝐹𝑟 = 0.410.  Color codes: , FRz and , FRz. 
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6.1.5 The Effects of Motions and Mount Conditions 

Forces and moment and subsequent hydrodynamic derivatives are compared be-

tween four mount-conditions, FX0, FX, FRz, and FRz (Sections 3.3 and 3.4), and the 

effect of heave, pitch, and roll motions on those variables are discussed.  For the compar-

isons the ratios of data , z, and z are defined as 

 

 ,z,z  
𝑥𝜍𝜏 ,𝑧𝜃 ,𝑧𝜃𝜙

𝑥0
        (6.10)  

where 𝑥𝜍𝜏 , 𝑥𝑧𝜃 , 𝑥𝑧𝜃𝜙 , and 𝑥0 can be any quantity from the FX, FRz, FRz, and FX0 

conditions, respectively.  As all motions are restrained for FX0 condition (except for the 

forced PMM motions), the ratios , z, and z signify the effect of sinkage and trim, 

heave and pitch motions, and heave, pitch, and roll motions, respectively, on the variable 

𝑥 of interest.  Note that  defined in (6-13) is equivalent to z/z such that  = 

z/z, which emphasizes the effect of roll motion.  The ratios values for some select 

cases are presented for static drift 𝑋, 𝑌, and 𝑁 in Table 35 and for the dominant harmonic 

amplitude and phase of dynamic tests in Table 36, respectively. 

Static drift 𝑋, 𝑌, and 𝑁 data for all mount conditions are shown in Fig. 6-18.  In 

general, data are close between the FX and FX0 conditions and as well between the 

FRz and FRz conditions, whereas considerably different between the FRz and FX0 

conditions.  Between FX and FX0, at Fr = 0.280 (middle column) in Fig. 6-18,  = 

1.05 in average for 𝑋, 𝑌, and 𝑁 at  = 10 indicating that the forces and moment in-

creased about 5% due to sinkage and trim ( = 0.19210
-2

 L and  = -0.136; fixed) from 

those for FX0 condition ( =  = 0; fixed).  When the model is released free in heave and 

pitch for FRz condition (z = 0.28810
-2

 L and  = -0.212 at  = 10; z/ = 1.5 and / = 

1.6), then the increase in forces and moment from FX0 becomes considerably larger, 

where z = 1.14 in average at  = 10.  As  increased to 20, the increase in forces and 

moment as well grows with  for FRz condition (z = 1.28 in average), whereas remains 
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almost constant with  for FX condition ( = 1.05 in average), respectively.  The 

forces and moment increase even larger at Fr = 0.410 for FRz condition, shown at the 

right column of Fig. 6-18, where z = 1.28 in average at  = 10.  On the other hand, for 

FRz condition, forces and moment data are not different from those for FRz with z 

values close to z for all cases, i.e.   1.0, indicating that the effect of roll motion ( = 

0.7, 1.3, and 2.5 at  = 10 for Fr = 0.138, 0.280, and 0.410, respectively) on the 

forces and moment is almost negligible.   

For the FRz condition, the increase of forces and moment from FX0, say Δ𝑥 for 𝑥 

= 𝑋, 𝑌, or 𝑁, can be written as 

 

 Δ𝑥 = 𝑥𝑧𝜃 − 𝑥0 = 𝑥0 zθ
− 1        (6.11)  

where 𝑥𝑧𝜃  and 𝑥0 are the 𝑥 of FRz and FX0 conditions, respectively.  Shown in Fig. 6-19 

are (a) the Δ𝑥 for 𝑋, 𝑌, and 𝑁 of Fr = 0.280 case over 0 <  < 20 range and (b) those at 

 = 10 of Fr = 0.138, 0.28, and 0.410 cases, respectively.  In the figures, the 𝛽 values 

and Fr numbers at the abscissa are scaled with 10 and 0.138, respectively, denoted as 𝛽∗ 

and Fr
*
, respectively, and the Δ𝑥 values at the ordinate are scaled with its value at 𝛽 =10 

and at Fr = 0.138, respectively, denoted as Δ𝑥∗.  Consequently, the results indicate that 

Δ𝑥 is proportional to 𝛽∗2
 and Fr

*1.5
 such as  

 

 Δ𝑥  Fr
1.5
𝛽2

 + f(Fr)        (6.12)  

where f(Fr) is for 𝛽 = 0 and f = 0 for 𝑌 and 𝑁.  Recalling (6.6) in Section 6.1.4 that Δ𝑧  

Fr
2
𝛽2

 and Δ𝜃  Fr𝛽2
 for static drift heave and pitch at 𝛽 > 0, the rate of increase in 

forces and moment Δ𝑥 is similar as heave and pitch with 𝛽 whereas relatively slow with 

Fr, respectively.  In that, however, pitch motion is strongly coupled with roll motion as 

discussed in Section 6.1.4 (with  > 4 for 𝜃) whereas Δ𝑥 is almost independent of roll 
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with   1.0 as discussed above, it is considered that Δ𝑥 for 𝛽 > 0 is mainly attributed to 

the heave motion.  

On the other hand, from (6.12), Δ𝑥  f(Fr) at 𝛽 = 0 for 𝑋.  As 𝛽 = 0 corresponds 

to the steady, straight towing condition, the 𝑋, 𝑧, and 𝜃 values at 𝛽 = 0 shown in Fig. 6-1 

(a), Fig. 6-14 (a), and Fig. 6-14 (b), respectively, are converted into the total resistance 

𝐶𝑇 , sinkage 𝜍, and trim 𝜏 of the model, respectively14.  The 𝐶𝑇15𝐶
, 𝜍, and 𝜏 data are pre-

sented in Fig. 6-20 showing good agreements with Longo et al. (2005)15 where the au-

thors used the same DTMB 5512 model as the present study and measured 𝐶𝑇15𝐶
, 𝜍, and 

𝜏 over a range of Fr = 0.05 - 0.45.  The Results of Longo et al. reveals more clearly the 

Fr trends of 𝐶𝑇15𝐶
, 𝜍, and 𝜏, i.e. 𝑋, 𝑧, and 𝜃 at 𝛽 = 0; 𝐶𝑇15𝐶  first decreases for Fr  < 0.25, 

oscillates small at 0.25 < Fr < 0.35, and sharply increases for Fr > 0.35; 𝜍 increases ra-

ther monotonically; 𝜏 increases first to negative (bow-down), then oscillates, and sharply 

increases to positive (bow-up), respectively.  Noticing similar Fr trends between the data, 

𝐶𝑇15𝐶  data were curve-fitted with 𝜍 and 𝜏 data using a regression equation16 𝑦 𝜍, 𝜏 =

                                                 

14 Those are defined as:  

 𝐶𝑇 = −𝐹𝑥 0.5𝜌𝑈𝐶
2𝑆 ; 𝜍 =  Δ𝐹𝑃 + Δ𝐴𝑃 2𝐿 ; 𝜏 =  Δ𝐴𝑃 − Δ𝐹𝑃 𝐿  

respectively, where 𝑆 is the wetted-surface area of the model and Δ𝐹𝑃 and Δ𝐴𝑃 are the model 

displacements at the forward- (𝐹𝑃) and aft-perpendiculars (𝐴𝑃), respectively, related to 𝑧 and 𝜃 

as:  

 Δ𝐹𝑃 = 𝑧 − 1
2
𝐿 sin𝜃 and Δ𝐴𝑃 = 𝑧 + 1

2
𝐿 sin𝜃 

respectively.  Typically, 𝐶𝑇 is converted into 𝐶𝑇15𝐶
 with all data calibrated to a standard water 

temperate 15C, which allows direct comparisons of the 𝐶𝑇 values between tests at different Rey-

nolds number (Re) conditions. 

15 Those data presented in Longo et al. (2005) were found to be erroneous as confirmed with the 

authors by personal communications.  The 𝐶𝑇15𝐶 in Fig. 3 and 𝜍 and 𝜏 data in Fig. 4 of Longo et 

al. (2005) were found to be 𝐶𝑇, 4𝜍, and 2𝜏, respectively, accordingly those data were corrected 

for Fig. 21 of the present study. 

16 Also tested were three other regression equations: 𝑦 = 𝑎 + 𝑏𝜍; 𝑦 = 𝑎 + 𝑐𝜏; 𝑦 = 𝑎 + 𝑏𝜍 + 𝑐𝜏.  

The resulting correlation coefficients were r = 0.80, 0.93, and 0.96, respectively. 
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𝑎 + 𝑏𝜍 + 𝑐𝜏 + 𝑑𝜍𝜏.  The result shown in Fig. 6-20 (a) demonstrates a good agreement 

between 𝐶𝑇15  and 𝑦 𝜍, 𝜏  with a correlation coefficient r = 0.99, indicating that 𝐶𝑇15𝐶 , 

i.e. 𝑋 for static drift, is strongly correlated with 𝜍 and 𝜏, i.e. heave and pitch, such that 𝑋 

 f(, ; Fr) at 𝛽 = 0.   

Dynamic test results are shown Fig. 6-21 for pure sway at 𝛽𝑚𝑎𝑥  = 10 (left col-

umn), pure yaw at 𝑟𝑚𝑎𝑥  = 0.3 (middle column), and yaw and drift at 𝛽 = 10 (right col-

umn) cases, respectively.  Overall trends are similar as for static drift; for dominant har-

monic amplitudes such as the 0
th

-order amplitude 𝑋0 and the 1
st
-order amplitudes 𝑌1 and 

𝑁1, data are close between the FX and FX0 conditions and between the FRz and FRz 

conditions, but different between the FRz and FX0 conditions.  Between the FX and 

FX0 conditions, for pure sway and pure yaw tests, data are fairly close each other with  

= 0.9  1.0 for 𝑋0 and  = 1.0  1.1 for 𝑌1 and 𝑁1.  For FRz condition, compared to FX0 

condtion, the dominant harmonic amplitudes are fairly larger for pure sway data with z 

= 1.1  1.3, and moderately larger for pure yaw data with z = 1.0  1.1 and for yaw and 

drift data with z = 1.1  1.2, respectively.  For yaw and drift data, however, the 1
st
-order 

amplitude 𝑋1 of FRz is significantly larger than FX0 with z = 3.7.  Those data for FRz 

condition are close to FRz in general with similar values of z for the dominant harmon-

ic amplitudes and thus   1.0 indicating the effect of roll motions on those dominant 

harmonics data is small or nearly negligible.  In contrast, the 1
st
-order phases 𝜑𝑌1 and 

𝜑𝑁1 are close between all mount conditions for all test types, with , z, z  1.0, im-

plying that the ratios between the added-mass and the damping forces, as shown in (3) 

and (4), remains almost constant despite the changes in the harmonic amplitudes 𝑌1 and 

𝑁1 between mount conditions.  Nonetheless, no clear trend of those data such as (12) for 

static drift data, is observed from the dominant harmonics data with the PMM motion pa-

rameters such as 𝛽𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , or 𝛽, or with Fr.  
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Hydrodynamic derivatives are compared between the mount conditions in Table 

6-19 for sway, yaw, and cross-coupled derivatives.  For the sway derivatives, sway veloc-

ity derivatives 𝑌𝑣, 𝑁𝑣, 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣  and 𝑁𝑣𝑣𝑣  are by using the static drift data and the sway 

acceleration derivatives 𝑌𝑣  and 𝑁𝑣  are using the MRL method (Section 2.3.5) for the pure 

sway test data, respectively.  The yaw derivatives 𝑌𝑟 , 𝑁𝑟 , 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑟𝑟𝑟 , 𝑌𝑟 , 𝑁𝑟  and the 

cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑣𝑟𝑟 , 𝑁𝑟𝑣𝑣  are as well using the MRL method 

for the pure yaw and yaw and drift tests data, respectively.  Note that those derivatives for 

FRz condition are using the SRL method (Section 2.3.5) due to the limited number of 

test case, except for the sway velocity derivatives.  As FRz is the most common mount 

condition for PMM tests, of interest herein are the ratios 0, , and  of those deriva-

tives for FX0, FX, and FRz condition, respectively, to for FRz condition defined as 

 

 0,,  
𝑥0,𝜍𝜏 ,𝑧𝜃𝜙

𝑥𝑧𝜃
        (6.13)  

where 𝑥0, 𝑥𝜍𝜏 , 𝑥𝑧𝜃𝜙 , and 𝑥𝑧𝜃  can be any quantity from the FX0, FX, FRz, and FRz 

conditions, respectively.  For sway derivatives, linear derivatives 𝑌𝑣 and 𝑁𝑣 values of FX0 

condition are slight smaller than FRz about 10% with 0 = 0.9 in average, while those of 

FX condition are close to FRz with   1.0, respectively.  The non-linear derivatives 

𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣  of both FX0 and FX conditions, however, are considerably smaller 

than FRz with 0,   0.6, and the sway acceleration derivatives 𝑌𝑣  and 𝑁𝑣  are as well 

smaller, with 0,   0.8 for the former derivative and 0,   0.6 for the latter, respec-

tively.  On the other hand, for FRz condition, all the sway derivative values are close to 

FRz with   1.0 except for a few cases.  For yaw derivatives, linear derivatives 𝑌𝑟  and 

𝑁𝑟  of all mount conditions are close to FRz typically with 0, ,  = 0.9  1.2, whe-

reas the non-linear derivatives 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑟𝑟𝑟  are usually smaller than FRz for FX0 and 

FX conditions with  0,  = 0.5  0.7 in general.  Those non-linear derivatives of 

FRz condition, however, are rather scattering both magnitude and sign of the derivatives 
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as those are determined using the „Single-Run‟ method usually unreliable determining 

non-linear derivatives as discussed previously in Section 6.1.2.  The yaw acceleration de-

rivative 𝑌𝑟  values also scatter between the mount conditions with 0, ,  = 0.5  1.3 

but without consistency between cases, while 𝑁𝑟  values for FX0 and FX conditions are 

smaller than FRz with 0,   0.8 and for FRz condition larger with  = 1.1  1.2, 

respectively.  The comparisons results for the cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 

𝑁𝑣𝑟𝑟 , and 𝑁𝑟𝑣𝑣  are similar with for 𝑁𝑟  but with larger ratio values; 0  0.3 for FX0 condi-

tion (except for 𝑌𝑣𝑟𝑟  and 𝑌𝑟𝑣𝑣  for which 0 = 1.0 and 0.8, respectively) and  = 1.1  1.3 

for FRz condition, respectively.   

Consequently, by imposing a fixed amount of singkage and trim or by allowing 

the model to move freely in heave, pitch, or roll, the forces and moment increased up to 

about 10% and up to about 30% within the range of test conditions, respectively, from a 

condition where the model is completely restrained in all motions.  For static drift test, 

the increase in forces and moment was mainly attributed to the heave motion for 𝛽 > 0, 

whereas at 𝛽 = 0, 𝑋 force was correlated with both heave (sinkage) and pitch (trim) mo-

tions.  Typically, the effect of roll motion was small or negligible for both static and dy-

namic forces and moment, possibly due to the small magnitudes of the roll motions.   De-

spite the differences in forces and moment due to the heave and pitch motions, usually 

the linear hydrodynamic derivatives were close between the mount conditions, within a 

range of 90%  110% range, whereas the non-linear derivative values were smaller for 

the fixed-model conditions typically more or less than 40%  70% compared to the free-

model conditions.  The effect of roll motions was as well small or negligible for the hy-

drodynamic derivatives. 
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Table 6-17  Comparisons between mount-conditions (Static drift).  

𝛽 Var. 
Fr = 0.138  Fr = 0.280  Fr = 0.410 

z z    z z   z z  

0 𝑋 1.05 1.04 0.98  1.03 1.07 1.10 1.03  1.26 1.30 1.03 

10 𝑋 1.08 1.07 0.99  1.03 1.14 1.14 1.00  1.32 1.37 1.03 

 𝑌 1.08 1.06 0.99  1.05 1.11 1.12 1.00  1.25 1.29 1.03 

 𝑁 1.10 1.09 0.99  1.07 1.17 1.18 1.00  1.29 1.29 1.00 

20 𝑋 1.16 1.15 0.99  1.03 1.26 1.21 0.96  - - - 

 𝑌 1.06 1.07 1.01  1.06 1.24 1.21 0.98  - - - 

 𝑁 1.09 1.11 1.01  1.07 1.33 1.26 0.95  - - - 

 

 

 

 

 

 

Table 6-18  Comparisons between mount-conditions (Dynamic tests at Fr = 0.280).  

Var. Har. 
Pure Sway (𝛽𝑚𝑎𝑥  = 10)  Pure Yaw (𝑟𝑚𝑎𝑥  = 0.30)  Yaw and Drift (𝛽 = 10) 

 z z    z z   z z  

𝑋 𝑋0 0.98 1.34 1.17 0.87  0.94 1.10 1.09 0.99  1.14 1.12 0.99 

 𝑋1 - - - -  - - - -  3.74 4.05 1.08 

𝑌 𝑌0 - -  -  - -  -  1.13 1.12 0.99 

 𝑌1 1.08 1.12 1.13 1.01  1.00 1.00 0.99 0.99  1.13 1.09 0.97 

 𝜑𝑌1 1.00 1.03 1.03 1.00  1.03 0.98 0.98 1.00  0.98 1.00 1.02 

𝑁 𝑁0 - -  -  - -  -  1.22 1.22 1.00 

 𝑁1 1.09 1.21 1.21 1.00  1.10 1.13 1.13 1.00  1.25 1.21 0.97 

 𝜑𝑁1 1.00 1.03 1.02 1.00  1.01 1.00 1.00 1.00  1.00 1.00 1.00 
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Table 6-19  Comparisons between mount-conditions (Hydrodynamic derivatives).  

Derivative Fr 0   

𝑌𝑣 0.138 0.92 - 0.97 

 0.280 0.96 1.00 1.02 

 0.410 0.89 - 1.07 

𝑁𝑣 0.138 0.90 - 0.97 

 0.280 0.90 0.97 1.03 

 0.410 0.86 - 1.05 

𝑋𝑣𝑣  0.138 0.40 - 1.02 

 0.280 0.65 0.67 0.89 
 0.410 0.54 - 1.03 

𝑌𝑣𝑣𝑣  0.138 0.98 - 1.07 

 0.280 0.62 0.67 0.92 

 0.410 0.56 - 0.91 

𝑁𝑣𝑣𝑣  0.138 0.95 - 1.14 

 0.280 0.27 0.27 0.69 
 0.410 0.41 - 0.78 

𝑌𝑣  0.280 0.81 0.87 1.02 

𝑁𝑣   0.55 0.57 0.95 

𝑌𝑟  0.138 1.05 - 0.65 

 0.280 0.98 1.08 0.86 
 0.410 1.18 - 1.19 

𝑁𝑟  0.138 0.98 - 0.95 

 0.280 1.12 0.99 0.98 

 0.410 0.91 - 1.17 

𝑋𝑟𝑟  0.138 -0.55 - -0.14 

 0.280 0.71 1.02 -0.31 
 0.410 0.57 - 0.02 

𝑌𝑟𝑟𝑟  0.138 1.43 - 2.54 

 0.280 0.47 0.47 3.56 

 0.410 0.68 - -0.36 

𝑁𝑟𝑟𝑟  0.138 1.00 - 1.53 

 0.280 0.44 0.72 1.06 

 0.410 0.55 - 0.06 

𝑌𝑟  0.138 0.73 - 1.12 

 0.280 1.29 0.46 0.71 

 0.410 0.98 - 0.95 

𝑁𝑟  0.138 0.89 - 1.18 

 0.280 -0.59 0.80 1.16 

 0.410 0.81 - 1.06 

𝑋𝑣𝑟  0.280 0.28 - 1.17 

𝑌𝑣𝑟𝑟   1.03 - 1.26 

𝑌𝑟𝑣𝑣   0.84 - 0.93 

𝑁𝑣𝑟𝑟   0.30 - 1.27 

𝑁𝑟𝑣𝑣   0.21 - 0.98 
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 𝐹𝑟 = 0.138 𝐹𝑟 = 0.280 𝐹𝑟 = 0.410 

(a) 

   

(b) 

   

(c) 

   

Figure 6-18 Comparisons between mount-conditions – Static drift data (Corrected for 
symmetry) at Fr=0.138 (left), 0.280 (center), and 0.410 (right): (a) 𝑋, (b) 𝑌, 
and (c) 𝑁.  Symbols (colors): , FX0; , FXz; dash-line, FRz; and , FRz. 
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(a) (b) 

  

Figure 6-19 Comparisons of static drift 𝑋, 𝑌, and 𝑁 data between the FRz and FX0 
mount conditions: (a) x vs.  at Fr = 0.280 and (b) x vs. Fr at  = 10, 
where the x values are scaled with those at  = 10 and with those at Fr = 
0.138, respectively.  

(a) (b) 

  

Figure 6-20 Comparisons of the static drift 𝑋, 𝑧, and 𝜃 data at 𝛽 = 0 with the resistance 
test (Longo et al. 2005): (a) 𝐶𝑇15𝐶  and (b) 𝜍 and 𝜏.  
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

Figure 6-21 Comparisons between mount-conditions – Pure sway (left, 𝛽𝑚𝑎𝑥  = 10 case), 
pure yaw (center, 𝑟𝑚𝑎𝑥  = 0.30 case), and yaw and drift (right, 𝛽 = 10 case) 
tests at Fr = 0.280 (Corrected for symmetry): (a) 𝑋, (b) 𝑌, (c) 𝑁, (d) 𝑧, (e) 𝜃, 
and (f) 𝜙.  Symbols (colors): , FX0; , FXz; , FRz; and , FRz.  
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6.2 Stereo-PIV measured flow fields 

6.2.1 Pure sway flow field 

The trajectory of model and overviews of flow around the model in pure sway 

motion are shown in Fig. 6-22.  At the top of the figure model trajectory, i.e. the path line 

of model mid-ship point, is shown with a dashed line.  The trajectory or the path line for 

pure sway motion is a combination of a constant towing carriage speed UC and a cyclic 

sway motion y = -y0 sint, where the amplitude y0 = 0.104 L and the frequency  = 

1.672 UC/L (period T = 2π/ = 3.748 L/UC) and 𝐿 = 3.048 m is the model length and UC 

= 1.531 m/s.  In physical units, the sway frequency f = 0.134 Hz and the sway period T = 

f
 -1

 = 7.463 sec.  In the figure, the outlines of the model water-plane are shown at every 

45 phases of the pure sway motion,  = t = 0, 45, 90, 135, 180, 225, 270, 315, 

and 360, with numbered 1 through 9, respectively.   For the first half of the cycle, model 

moves with its maximum negative (toward portside) sway velocity v = -y0 = -0.174 at 

(1)  = 0 and decelerates through (2)  = 45 to (3)  = 90 where v = 0, and then changes 

its sway direction (toward starboard) and accelerates through (4)  = 135 to (5)  = 180.  

For the second half of the cycle, 5, 6, 7, and 8 are anti-symmetric with the 1, 2, 3, and 4, 

respectively, and 9 is identical with 1.   

Below the model trajectory in Fig. 6-22, shown are the overviews of the SPIV 

measured flow field around the model at each of those phase positions.  As well shown is 

the model path line (the curved lines with colored in light blue through the model) to em-

phasize the movement of model.  As the model moving along the path line, accordingly 

the direction of incoming flow changes with the phase angle continuously, e.g. 10, 7, 

0, and -7 at  = 0, 45, 90, and 135, respectively, (shown as blue arrows below at the 

model sonar dome in Fig. 6-1) with respect to the model center line, and in the opposite 

directions at the second half of the sway cycle.  The flow field data presented in the fig-

ures are the contours of axial velocity U (≤ 0.95) and the cross flow streamlines, respec-
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tively at four longitudinal locations, x = 0.135, 0.235, 0.735, and 0.935.  Note that the 

streamlines are relative to model movements, i.e., seen from onboard.  The overall flow 

pattern is with growing boundary layers in the longitudinal direction (thin at the fore 

body and thick at the aft body), and is mainly lateral flow in the cross planes where sev-

eral apparent vortices are seen clearly, in general at the leeward side of the cross flow.  

6.2.1.1 Vortical structure of the flow 

More complete vortical structure of the flow can be seen from CFD simulations 

such as Sakamoto (2009) where the flows around DTMB 5512 geometry in steady and 

dynamic PMM motions are simulated.  Simulation results for steady PMM motions are 

shown in Fig. 6-23, presenting the vortical flow structures for (a) straight-ahead and (b) 

static drift with drift angle  = 10 cases.  Sakamoto (2009) visualized the vortical flow 

structures by using the Q-criterion (Hunt et al., 1988) along with the relative helicity val-

ues; positive values for counterclockwise rotation (red colored) when viewed from be-

hind a body and negative values for clockwise rotation (blue colored).  For the straight-

ahead case, i.e.  = 0, the vortical structure is symmetry about hull center plane and with 

vortices in pairs of counter-rotating vortices.  At the fore body sonar dome vortex (SD) 

and fore body keel vortex (FK) are generated behind the sonar dome and along the keel 

line, respectively.  At the aft body, bilge keel vortex (BK), aft body keel vortex (AK), and 

transom vortex (T) are seen behind the bilge keels, neat at the aft body keel, and after the 

transom, respectively, however those vortices persist locally and are small in size in gen-

eral.  Note that the subscripts of the labels in the figure such as P, S, and C represent the 

portside, starboard, and center keel of the hull, respectively, where the vortices are gener-

ated.  For  = 10, the vortical structure is asymmetric about the hull center plane and 

vortices becomes considerably larger and global compared to the straight-ahead case. 

The vortical flow structures for pure sway are shown in Fig. 6-24 (a) and (b), with 

vortices visualized from the CFD simulations by Sakamoto (2009) and from the vorticity 
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field measured by SPIV, respectively.  In the figures vortical structures are shown at four 

sequential sway phase positions,  = 0, 45, 90, and 135, in a column, so that the tra-

jectory of the hull and the dynamic features of the vortical structures are envisioned.  For 

CFD in (a), the vortical structures are in general similar with those for static drift with  = 

10 case shown in Fig. 6-23 (b), whereas the size, location, and the sign (direction of vor-

tex rotation) of the vortices may change along the sway motion.  For SPIV in (b), vortices 

are visualized with the vorticity x contours with colored in red for x ≥ 20 and in blue 

for x ≤ -20 representing the counter-clockwise and clockwise rotations seen from behind 

the model in accordance with the helicity color coding for CFD.  The x contours are 

compared with the helicity iso-surfaces of CFD and corresponding vortices are identified 

with labeled in the figure.  From CFD, SDS vortex is first short and away from the hull at 

 = 0 and stretching in length and approaching toward the hull at  = 45 and thinning 

and straightened and close to the center plane at  = 90 and then detaches from the sonar 

dome and begins a counter rotating SDP vortex at  = 135.  Sakamoto (2009) reported 

that the angle between the SDS and the hull center plane SDs1 15 at non-dimensional 

time t/T  0.14 or at   50.  BKP vortex at the portside, the second largest one, exhibits 

similar trend as SD; stretching and straightening, thinning, and then begins a counter ro-

tating vortex.  From SPIV, SD is not captured well at the stern side for  = 0 and 45, 

maybe its location is out of the SPIV measurement area.  At the fore body and for  = 90 

and 135, however, SD vortices can be seen clearly from the SPIV and seemingly in good 

agreement with CFD in terms of their size, location, and sign.  FK vortices are not de-

tected from SPIV or hard to be seen due to the lack of spatial resolution of SPIV mea-

surement in the longitudinal direction, only two locations, x = 0.135 and 0.235, at the fore 

body where the FK vortices are from CFD.  Whereas both BKP and BKS clearly seen 

from SPIV and in general exhibit qualitatively good agreements with CFD for their size, 

location, and direction of rotation, from a visual inspection.  For other vortices, AKC vor-

tex near at the center of x = 0.935 plane in general matches well between CFD and SPIV, 
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whereas FS vortices are not clear from SPIV due to its limited amount of data and rela-

tively larger uncertainty in measurements near at the free surface.  The transom vortex T 

of CFD is out of SPIV measurement scope.   

6.2.1.2 Phase-averaged velocity field 

Phase-averaged mean axial velocity U is shown in Fig. 6-25 for the four longitu-

dinal locations, x = 0.135, 0.235, 0.735, and 0.935 (from top to bottom), and for the four 

pure sway phase positions, = 0, 45, 90, and 135 (from left to right), where the SPIV 

measurements were made.  The flows at the later phase positions,  = 180, 225, 270, 

and 315, are the horizontally mirrored images of those, respectively.  In the figures, con-

tours (with flooded) are presented for U ≤ 0.95 and those for U > 0.95 are blanked out 

and not shown, to emphasize the parts where the flow is retarded from the incoming free 

stream (or the boundary layers) only.  As well shown are the cross-sections of the model 

(the light gray part) cut at the four longitudinal x locations and the front part of the model 

from the cut positions with projected into the paper (the darker gray part) to highlight the 

details of the model hull form such as the locations of the sonar dome and the bilge keels.  

The flow is seen from behind the model, looking upstream, thus, the longitudinal direc-

tion of the incoming flow is out of paper from the figures.  The transverse direction of the 

incoming flow is from the portside to starboard (left to right in the figure) with respect to 

the model for the first two phases,  = 0 and 45, and with no transversal flow at 90 and 

in reverse (right to left in the figure) for 135.  The incoming flow directions at the sever-

al sway phase positions are depicted in Fig. 6-1, together with the path lines of the model 

in the pure sway motion. 

From Fig. 6-25, the mean axial velocity contours at x = 0.135 reveal very thin 

boundary layers near around the hull, and under the keel a retarded flow region that is in 

the SD vortex and in the wake of the sonar dome.  At x = 0.235, the retarded flow region 

becomes smaller in size and is confined at near beneath the keel, may be the flow is out 
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of the sonar dome wake and recovers its momentum.  At x = 0.735, the boundary layer 

thickens at the girth-wise middle of the bilges at portside and starboard, (y, z) = (-0.04, -

0.03) and (0.04, -0.03), respectively, thicker at leeward side, and apparently interacting 

with the BK vortices.  At x = 0.935, the boundary layer thickens considerably, and a large 

size dead-flow zone where U < 0.5 appears at  = 90, underneath the aft body keel, near 

around (y, z) = (0, -0.1).   

The shape and size of the boundary layers typically changes along with the model 

sway motion, possibly interacting with nearby vortices; mainly with the SD vortex at x = 

0.135 and 0.235, with the BK and SD vortices at x = 0.735, and with the BK, AK, and SD 

vortices at x = 0.935.  The shape of boundary layers at  = 0, 45, and 135, as expected, 

is asymmetry with respect to the hull center plane (i.e., y = 0) due to the transverse flow 

caused by the model sway motion, whereas it is notable that the boundary layer is as well 

asymmetry, particularly at the aft body, even at  = 90 where the incoming free stream 

flow is zero in transverse direction such that the incoming free stream flow is tangential 

to the model path line, i.e. straight ahead condition.  This is due to the dynamic motions 

of the model such that while the vortices around the model are changing their size, spatial 

location relative to the model, and the direction of rotation, dynamically, as shown in Fig. 

6-24, those changes may not in-phase with the model sway motions.  The phase differ-

ence between the vortices and the model motion will be discussed later together with the 

vorticity field. 

In Figs. 6-26 and 6-27, the average U≤0.9 and minimum Umin values of the phase-

average axial velocity U within the boundary layers at each phase (top) and the Fourier 

Series (FS) 0
th

- and 2
nd

-order harmonics, H0 and H2, of those values respectively (bottom) 

are presented.  The U≤0.9 and Umin are the average value for U ≤ 0.9 and the minimum 

value, respectively, out of the SPIV measured U data within the boundary layer at each 

phase positions and x locations shown in Fig. 6-25.  Note that the U≤0.9 and Umin for 180 

≤  < 360 shown in Figs. 6-26 (top) and 6-27 (top) are the mirrored values from those for 
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0 ≤  < 180 anti-symmetrically.  From Fig. 6-26 (top), in spite of the considerable dy-

namic changes of the boundary layers in shape and size, the U≤0.9 values are almost con-

stant about 0.8 through the sway phase and along the hull longitude.  From Fig. 6-26 

(bottom), H0 of U≤0.9, the period mean value, first slightly increases from 0.81 at x = 

0.135 to 0.84 at x = 0.235, and then decreases at the aft body to 0.81 and 0.79 at x = 0.735 

and 0.939, respectively.  From Fig. 6-26 (bottom), H2, i.e. the oscillation amplitude of 

U≤0.9 values along with the sway motion, is 0.014 in average, corresponding to about 2% 

of H0, which has the largest value of 0.022 at x = 0.735, about 3% of H0.  In contrast, 

from Fig. 6-27, the changes of Umin with  and x are larger than U≤0.9.  The H0 of Umin is 

0.65 at x = 0.135 and then decreases to 0.43 at x = 0.935 rather monotonically.  The aver-

age H2 value along x is 0.056, about 10% of average H0 = 0.55, and the maximum H2 is 

0.092 at x = 0.735, about 18% of the H0 value at the location.  

Cross flow velocity (V, W) vector field is shown in Fig. 6-28.  In the figure, 

shown are the every 6
th

 vectors from the SPIV measurement grid points in both y and z 

directions.  While the vector field exhibits directions of the flow and the presence of vor-

tices around the model, as an alternative way presenting the cross flow, in Fig. 6-29, the 

cross flow vector magnitude S = (V
2
 + W

2
)
1/2

 and the cross flow streamlines are shown 

together.  The spots where flow is accelerating or stagnant are obvious from the S con-

tours and directions of the flow is clear from the streamlines and the location and size of 

the vortices exposed as well from the streamlines.  At the fore body, x = 0.135 and 0.235, 

the cross flow at  = 0 and 45 is directed downward and accelerating along the hull at 

the portside and overturns the keel and the SD vortex (that is not generated by the cross 

flow, rather it is being pushed and displaced by the cross flow stream to the leeward side) 

and then merges with the flow at the starboard.  The SD vortex at x = 0.135 is small in 

size,   0.01 L, and grows at x = 0.235,   0.02 L.   is the diameter of concentric 

streamline spirals.  At  = 90 where the incoming flow is tangent to the model path line, 

flow is nearly symmetry about the model center plane and mainly down- and outward 
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with displaced by the volume of fore body.  At  = 135, the whole flow reverses as the 

model changes its direction in sway motion.  At the aft body, x = 0.735 and 0.935, the 

flow at  = 0 and 45 is nearly lateral at the portside and turns to upward past the center 

plane becoming reversal in part where it meets the BK vortex at starboard.  At  = 90, 

flow is mainly up- and inward, however, the flow is not symmetry about the center plane 

due to the presence of the SD vortex at the starboard.  The flow reverses at  = 135, si-

milarly as at the fore body.    

6.2.1.3 Turbulent kinetic energy and Reynolds stresses 

Turbulent kinetic energy k field is shown in Fig. 6-30.  In the figure, the k field is 

shown only for k ≥ 0.001 and blanked out for k < 0.001.  Reynolds number of the flow is 

Re = UCL/ = 4.610
6
 where UC and L are the towing carriage speed and model length, 

respectively, and  is the kinematic viscosity of fresh water.  It is noted that for pure sway 

test only a limited number of data (N) is used for phase-averaging, typically N  60 for x 

= 0.135, 0.235, 0.735 and N  200 for x = 0.935.  Thus, phase-averaged turbulent variable 

values such as Reynolds stresses including the turbulent kinetic energy may not be fully 

converged statistically, and may include the statistical convergence error EU up to 50% 

for data at the former and to 25% at the later x locations, respectively (See Chapter 4 and 

Fig. 4-7b for s
2
/sref

2
 = 1.0).  From Fig. 6-30, the shapes of k contours in general coincide 

with those of the mean axial velocity contours shown in Fig. 6-25, and typically k exhi-

bits larger value inside the boundary layer of the model and at the core region of the vor-

tices. 

In Figs. 6-31 and 6-32, presented are the time histories (top) and the FS harmonics 

(H0 and H2 respectively for 0
th

- and 2
nd

-order) of the time history (bottom) for kmean and 

kmax, respectively.  Herein kmean and kmax are defined as the average k value for k ≥ 0.001 

and for k ≥ 0.01, respectively, which represents approximately the mean and the maxi-

mum k values within the flow region of interest, respectively.  The k = 0.001 contour line 
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corresponds to the boundary line (flow side) of each contour plot, and the k = 0.01 con-

tour line is shown at each contour plots in Fig. 6-30 (white colored contour lines), respec-

tively.  From Fig. 6-31 (top), kmean is oscillating between 0.004  0.008 (I = 0.052  

0.073, or about 5  7% of UC) at x = 0.135 and 0.235, whereas almost flat with kmean  

0.004 (I = 0.052 or about 5% of UC) at x = 0.735 and 0.935.  From Fig. 6-31 (bottom), H0 

= 0.006 and H2 = 0.002 at x = 0.135 are respectively the largest, and then both decreases 

gradually to H0 = 0.004 and H2  0 at x = 0.935.  On the other hand, from Fig. 6-32 (top), 

kmax is between 0.011  0.015 and oscillates with the sway phase .  The turbulent intensi-

ty within the flow region is I = (2/3k)
1/2

 = 0.086  0.1, corresponding to about 9  10% 

of UC.  From Fig. 6-32 (bottom), the period mean value of kmax is the largest at x = 0.135 

with H0 = 0.014 and the oscillation amplitude is the largest at x = 0.235 with H2 = 0.002 

that is about 14% of the largest H0 value.  In a mean sense, consequently, the flow may 

have k  0.013 (I  9% of UC) locally at the high turbulent region and k  0.005 (I  6% 

of UC) in overall average, typically larger at the bow but tend to be local while decreasing 

along the ship length gradually. 

Reynolds normal (uu, vv, ww) and shear (uv, uw, vv) stress fields are shown in 

Fig. 6-33 through Fig. 6-38.  Of the normal stresses, uu and vv fields shown in Figs. 6-33 

and 6-34, respectively, exhibit almost and nearly similar appearances as the k field shown 

in Fig. 6-30, respectively, indicating that those components are dominant, whereas ww 

field shown in Fig. 6-35 is seemingly weaker than the other components.  On the other 

hand, the shear stress uv, uw, and vw fields shown in Figs. 6-36  6-38, respectively, re-

veal smaller order of magnitude than the normal stresses, where the uv is apparently the 

dominant component.  The Reynolds stresses are averaged over the regions where k ≥ 

0.001 and k ≥ 0.01, similarly as for kmean and kmax, respectively, and the period mean val-

ues of those (corresponding to H0) are shown in Figs. 6-39 and 6-40, respectively, with 

the normal stresses shown at top and the shear stresses at the bottom, respectively.  For 

the region where k ≥ 0.001 (i.e. the overall field average), from Fig. 6-39, the mean nor-
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mal stress uu, vv, ww values are 0.005, 0.003, 0.002, respectively, and the mean shear 

stress uv, uw, vw values are 0.002, 0.001, and 0.001, respectively.  For the region where k 

≥ 0.01, from Fig. 6-40, the mean values of normal stresses uu, vv, ww are 0.013, 0.009, 

0.004 along the ship length, respectively, and those of the shear stresses uv, uw, vw are 

0.006, 0.002, 0.002, respectively.  The Reynolds stresses are anisotropic, if normalized 

with the isotropic stress value, (2/3)k, the normal stresses uu, vv, ww are 1.5, 1.0, 0.5, 

respectively, and the shear stresses uv, uw, vw are 0.7, 0.2, and 0.2, respectively, which 

are almost common for both of the k ≥ 0.01 and k ≥ 0.001 regions. 

6.2.1.4 Axial vorticity field 

Axial vorticity x field is shown in Fig. 6-41, where presented are vorticity fields 

with values x ≥ 10 and x ≤ -10, otherwise blanked and not shown.  The vorticity field is 

seen from behind the model and the axis is out of the paper from the figures, thus the pos-

itive axial vorticity (x > 0, colored in red) is rotating counter-clockwise and the negative 

axial vorticity (x < 0, colored in blue) is rotating clock-wise in the figure, respectively.  

Several vortices are observed from the x field, such as the sonar dome (SD) vortex at the 

fore body, at x = 0.135 and 0.235, below and underneath the keel, respectively, and bilge 

keel (BK) vortices at the aft body, at x = 0.735 and 0.935, at the mid-bilge positions and 

below around the bottom profile, respectively, and the aft body keel (AK) vortex beneath 

the center keel position.  A couple of minor vortices can be observed at the fore body, 

such as the fore body keel (FK) vortex beneath the keel and the free surface (FS) vortex 

typically at the windward side free surface, however, those vortices are in general not 

clear from the figures, and for the latter vortex its locations maybe out of the view of 

present SPIV measurement and measured partially.  The overall structure of the vortical 

flow is presented in Fig. 6-24, and therein the CFD simulation result (Sakamoto 2009) 

discloses more complete pictures of the vortical flow.   



 

 

222 

2
2
2
 

In Fig. 6-42, the time histories of the maximum/minimum x value of the SD vor-

tex along the model sway motion phase position , respectively for x = 0.135 and 0.235 

locations.  The maximum x value is when the SD vortex has positive x values, e.g. at  

= 0 and 45 from Fig. 6-41, and the minimum value is when negative x value, e.g. at  

= 135 from Fig. 6-41.  When the maximum/minimum values are FS reconstructed such 

that Hcos(t – ), the harmonic amplitude H = 293 and 213 and  = 11 and 27 at x = 

0.135 and 0.235, respectively, indicating about 3% decrease of its magnitude and a phase 

difference  = 16 between the two locations, respectively.  The trend of SDV vortex at 

the later x locations, however, is precluded, due to the lack of the measurement data at 

the after body locations.   

Similarly, in Fig. 6-43, the maximum/minimum x value time histories of the BK 

vortex are shown for x = 0.735 and 0.935 locations.  Note that the time history of BK vor-

tex, however, is defined in a different way form the SD case.  As can be seen from Fig. 6-

41 for x = 0.735 location, the BK vortices at the portside and starboard are asymmetry 

respectively with respect to the model sway motion; one is at the wind side and the other 

is at the leeward side and after one half cycle respectively at the reverse side.  Thus, the 

time histories at the portside/starboard may not be continuous along the model sway mo-

tion, i.e. along , but at the wind/leeward side of the flow.  In other words, from Fig. 6-

43, the data at the first half of the cycle are from the BK vortices at the portside and those 

at the second half are from the BK vortices at the starboard side, which are at the wind 

side through the cycle.  When data are FS reconstructed similarly as for the SD vortex, H 

= 424 and 274 and  = 19.4 and 35.9 at x = 0.735 and 0.935, respectively.  The H‟s of 

the BK vortices at x = 0.735 and 0.935 are 145% and 85% of the SD vortex H value at x 

= 0.135, indicating that BK vortex may be stronger than SD vortex locally and decay fast.  

Whereas the phase difference of the BK vortices between the two x locations,  = 16.5, 

is similar with that for the SD vortex.   
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Lastly, the time history of AK vortex maximum/minimum x is shown in Fig. 6-

44.  The AK vortex is located nearly at the aft body keel center position and its behavior 

is symmetry with respect to the model sway motion, and the time history is defined as the 

same way as for SD vortex.  AK vortex is observed only at x = 0.935, where H = 189 

(about 65% of SD vortex H at x = 0.135) and  = -11.3 from the FS reconstruction.    
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Figure 6-22 Trajectory of model in pure sway motion (top) and overviews of the flow around the model (below).  
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Figure 6-22–Continued  
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Figure 6-23 Vortical flow structures around the DTMB 5512 geometry in steady maneuvers for: (a) straight-ahead and (b) static drift 
at  = 10 cases. (CFD simulations by Sakamoto 2009).  
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(a) CFD (b) SPIV 
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 = 135 

  

Figure 6-24 Vortical flow structures around the DTMB 5512 geometry in pure sway ma-
neuvering with max = 10: (a) Iso-surfaces of relative helicity (CFD simula-
tions by Sakamoto 2009) and (b) contours of axial vorticity (SPIV). 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-25 Phase-averaged axial velocity U field for pure sway test. 
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Figure 6-25–Continued  
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Figure 6-26 Time histories of the average axial velocity U≤0.9 (top) and FS harmonics 
(bottom) for pure sway test. 
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Figure 6-27 Time histories of the minimum axial velocity Umin (top) and FS harmonics 
(bottom) for pure sway test.  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-28 Phase-averaged cross-flow (V,W) vector field for pure sway test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    
    

    

Figure 6-28–Continued 

  



 

 

2
3
4
 

(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-29 Cross flow velocity vector magnitude S = (V
2
 + W

2
)
1/2

 and streamlines for pure sway test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    
    

    

Figure 6-29–Continued 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-30 Phase-averaged turbulent kinetic energy k field for pure sway test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    
    

    

Figure 6-30–Continued 
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Figure 6-31 Time histories of kmean (top) and FS harmonics (bottom) for pure sway test. 
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Figure 6-32 Time histories of kmax (top) and FS harmonics (bottom) for pure sway test.  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-33 Phase-averaged Reynolds stress uu field for pure sway test. 



 

 

2
4
1
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Figure 6-33–Continued 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-34 Phase-averaged Reynolds stress vv field for pure sway test. 
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Figure 6-34–Continued 

  



 

 

2
4
4
 

(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-35 Phase-averaged Reynolds stress ww field for pure sway test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    
    

    

Figure 6-35–Continued 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-36 Phase-averaged Reynolds stress uv field for pure sway test. 
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Figure 6-36–Continued 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-37 Phase-averaged Reynolds stress uw field for pure sway test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    
    

    

Figure 6-37–Continued 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-38 Phase-averaged Reynolds stress vw field for pure sway test. 
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Figure 6-38–Continued 
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Figure 6-39 Average normal (top) and shear (bottom) Reynolds stresses for kmean (Pure 
sway test).  
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Figure 6-40 Average normal (top) and shear (bottom) Reynolds stresses for kmax (Pure 
sway test).  
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Figure 6-41 Axial vorticity x field for pure sway test. 
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Figure 6-41–Continued  
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Figure 6-42 Time histories of maximum/minimum axial vorticity value of the sonar dorm 
vortex (SD) for pure sway.  

 

Figure 6-43 Time histories of maximum/minimum axial vorticity value of the bilge keel 
vortex (BK) for pure sway.  
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Figure 6-44 Time histories of maximum/minimum axial vorticity value of the aft-body 
keel vortex (AK) for pure sway test.  
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6.2.2 Pure yaw flow field 

Presentations of the pure yaw flow field data herein are using the same format and 

methodology as for the discussions for pure sway at the previous section.  The details of 

the presentation methodology and formats, thus, are not repeated in the discussions here-

in, such as: blanking out flow data and not showing in the contour plots for the data in a 

certain range, e.g. U > 0.95, k < 0.001, -10 < x < 10; defining U≤0.9 as the mean U value 

over a flow region where U ≤ 0.9 and Umin as the minimum U value (see Section 6.2.1.2); 

presenting the cross-flow field by showing the contours of the velocity (V, W) vector 

magnitude, S = (V
2
+W

2
)
1/2

, with overlaid the cross-flow streamlines over the contours, to 

represent respectively the magnitude and direction of the flow (also see Section 6.2.1.1); 

defining k≥0.005 (corresponding to k≥0.01 for pure sway) and k≥0.001 as the mean k values 

over the flow regions where k ≥ 0.005 and k ≥ 0.001, respectively, to represent the maxi-

mum and average k value, respectively, within the flow (see Section 6.2.1.3); and defin-

ing the maximum and minimum x values as those values when x > 0 and x < 0, re-

spectively, within a flow region of interest (see Section 6.2.1.4).   

At the top of Fig. 6-45, the trajectory of model (shown as a dashed-line; the path-

line of the model mid-ship point) in a pure yaw motion is shown.  The model is in a rota-

ry yaw (or its heading)  = -0cost motion, turning about its mid-ship point, such that 

the model is always tangent to the path-line while towed at a constant speed UC (depicted 

with a red colored arrow in the figure).  Where, the maximum heading angle 0 = 10.2, 

the yaw motion angular frequency  = 1.672 UC/L (or a cyclic frequency f = /2 = 

0.134 Hz), and the towing speed UC = 1.531 m/s, and the model length L = 3.048 m, re-

spectively.  Angular velocity of the model rotation, yaw rate r = d/dt, is positive when it 

turns to starboard (depicted with a blue colored circular arc arrow in the figure).   At 

every  = t = 45 phase angle positions of the path-line, the outline of the model is 

shown with numbered 1 to 9, respectively.  Below the model trajectory, overviews of the 

flow around the model at each of those phase angles are shown, along with the model 
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path-line (the light-blue colored line) similarly as in Fig. 6-22 for pure sway.  Flow data 

shown are the axial velocity U contours and the cross-flow (V,W) streamlines at five 

model-longitudinal locations, x = 0.135, 0.335, 0.535, 0.735, and 0.935, respectively.  

Under below the sonar dorm of the model drawing shown at each phase position, the 

turning direction, heading angle  and yaw rate r values of the model at the instant are 

presented.   At (1)  = 0, model heading is the maximum to the negative direction,  = -

10.2, yet, the incoming flow is parallel to the model longitudinal as the model is tangent 

to its path-line.  Whereas the model yaw rate r = 0 at the instant, thus the flow pattern ex-

hibits a typical one for the case when the model is in a „straight-ahead‟ condition; down- 

and outward at the bow and up- and inward at the stern as per Longo et al. (2007), Gui et 

al. (2001a), and Olivieri et al. (2001).  However, the apparent size of the vortical flow 

from the figure is considerably bigger than those from the straight-ahead case (e.g. Fig. 6-

23a), obviously formed at the previous cycle of the yaw motion and lasting.  The model, 

then, begins turning to starboard with increasing yaw rate, at (2)  = 45,  = -7.2 with r 

= 0.21, until (3)  = 90 where  = 0 and yaw rate is the maximum r = 0.3 (UC/L), and 

continues turning but with decreasing yaw rate, at (4)  = 135,  = 7.2 with r = 0.21, 

and then finishes the turning at (5)  = 180 where the heading  = 10.2 is the maximum 

to the positive direction with r = 0; which completes the first half cycle of the pure yaw 

motion.  Through the yaw motion, due to the rotary motion of the model, the cross-flow 

at the bow typically becomes down- and inward at the wind side and transversal and out-

ward at the leeward side; and at the stern, vice versa.  The vortical flow, on the other 

hand, changes its size and the direction of its rotation.  The model motion and the flow at 

the second half of the cycle are anti-symmetric mirrors of those at the first half cycle, 

such that  = (5) 180, (6) 225, (7) 270, and (8) 315 to  = (1) 0, (2) 45, (3) 90, and 

(4) 135, respectively, and  = 360 is identical with  = 0. 
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6.2.2.1 Vortical flow structure 

The vortical flow around the DTMB 5512 geometry, the same geometry of the 

model,  in two steady maneuvers, static drift and steady turn, are shown in Fig. 6-46 (a) 

and (b), respectively.  In the figures, vortices in the flow were visualized from the CFD 

simulations by Sakamoto (2009), by using the Q = 30 iso-surfaces (Hunt et al., 1988) 

with colored by the normalized relative helicity density level.  Simulation was with drift 

angle  = 10 for the static drift maneuver (transversal incoming flow left to right from 

Fig. 6-46a) and with a constant yaw rate r = 0.3 for the steady turn maneuver (turning to 

the starboard side; transversal incoming flow right to left at the bow whereas in reverse at 

the stern from Fig. 6-46b), respectively.  Note that Fig. 6-46 (a) for static drift is the same 

as Fig. 6-23 (b), repeated herein for comparisons with the steady turn flow.  Compared to 

static drift, the same kind of vortices are observed from the steady turn maneuver, such as 

SD, BK, and AK vortices (major ones) from the sonar dome, bilge keels, and aft body 

keel, respectively and FK, FS, and T vortices (minor ones) from the fore body keel, free 

surface, and transom, respectively.  Of the vortices, SD vortex exhibits opposite signs 

(red vs. blue in the figure; direction of rotation) between two maneuvers due to the differ-

ent directions of transversal in coming flow, which is generated from the sonar dome at 

the fore body and then convected downstream, whereas the other vortices that formed at 

the aft body show the same signs for both maneuvers as the flow direction is same.  The 

size of vortices for steady turn in general is relatively small compared to static drift (con-

siderably small for BK) as the overall incoming flow direction is more aligned to the hull 

longitude (tangent to the circular path-line) for the former case.  The shape of the vortices 

is rather straight for the static drift case, aligned with the incoming flow direction, whe-

reas rather curvy for the steady turn case, following the circular path-line of the hull 

form. 

Fig. 6-47 (a) and (b) shows the vortical structure of flow around the hull form in a 

pure yaw maneuvering, with visualized from the CFD simulations by Sakamoto (2009) 
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and from the SPIV measurements, respectively, at the four phases of pure yaw cycle,  = 

0, 45, 90, and 135, in a sequence.  From the CFD simulation result shown at Fig. 6-47 

(a), the overall vortical flow structure for pure yaw maneuver is similar as that of the 

steady turn shown previously in Fig. 6-46 (b) with the same kinds of vortices, whereas 

the sign (direction of vortex rotation), shape, size, and location of those vortices are 

changing dynamically in time along with the yaw motion.  At  = 0, the SD vortex is the 

major one, with stretched along the ship length from the bow to the stern.  FK and AK 

vortices are the second largest, whereas BK vortex is very small in size at both the port 

and starboard sides.  At  = 45, the SD vortex generated from earlier phase (SDS in the 

figure) is detached from the sonar dorm and a new one with opposite sign (SDP in the 

figure) is formed.  At  = 90, the newly generated SDP vortex is growing (i.e., convect-

ing to the downstream), and the BK vortex at the portside (BKP in the figure) is as well 

growing, and then those vortices become the major ones at  = 135.  Note that the steady 

turning maneuver shown in Fig. 6-46 (b) corresponds to the  = 90 case where the yaw 

rate is the same as the steady turn case with r = 0.3 but with a non-zero yaw acceleration, 

dr/dt = 0.5 (UC
2
/L).  On the other hand, from Fig. 6-47 (b), the SPIV measurement results 

shows a very similar vortical structure at each phase, with visualized with the axial vor-

ticity x contours.  Each of the vortices are identified by comparing the sign and the posi-

tions of x contours with those of the helicity iso-surfaces from the CFD simulations, and 

labeled in the figures. 

6.2.2.2 Phase-averaged velocity field 

In Fig. 6-48, shown are the phase-averaged axial velocity U field at four phase 

positions,  = 0, 45, 90, and 135, and at six longitudinal locations, x = 0.135, 0.335, 

0.535, 0.735, 0.935, and 1.035.  The flow field is seen from behind the model, i.e. look-

ing upstream, and the incoming flow is coming out of the paper from the figure, and the 

model is turning its head to the starboard side (from left to right in the figure) about the 
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mid-ship point.  The overall trend of U field for pure yaw is similar as for pure sway; at 

the bow appears thin boundary layer that is growing with the model longitudinal length, 

and becomes very thick at the stern.  Dead flow zone (e.g., where U ≤ 0.5, the dark-blue 

colored contour level in the figures) appears at x = 0.735 and 0.935, locally inside the 

boundary layer, and at the wake region, x = 1.035, becomes considerably large near the 

free surface.  The flow is also retarded at the regions where the vortices present, e.g. un-

der below the model where the SD vortices are, near around aft body bilges where the 

BK vortices are, and at the aft body keel where the AK vortices are.  The shape and size 

of the boundary layers are typically asymmetric about the model center plane, and change 

continuously with time, i.e. with , in accordance with the yaw motion, may possibly be 

interacting with the flows induced by the nearby vortices. 

In Figs. 6-49 and 6-50, time histories (top) and FS harmonics (bottom) of U≤0.9 

and those of Umin are shown, respectively.  U≤0.9 is the average U value over the region 

where U ≤ 0.9 and Umin is the minimum U value within the region, respectively, at a giv-

en  and x.  Time histories are shown for all the 32 phase positions available from the 

SPIV measurements, from 0 to 348.75 with a phase step  = 11.25, and FS harmonics 

are shown for the 0
th

- and 2
nd

-order with designated as H0 and H2, respectively, in the 

figures.  From Fig. 49 (top), the U≤0.9 values oscillate with  for all x locations.  The pe-

riod mean values of U≤0.9 time-history is almost flat along the model length, i.e. H0  0.8 

for x = 0.135  0.935 from Fig. 6-49 (bottom), except for x = 1.035 where H0 = 0.75.  The 

oscillation amplitude of U≤0.9 time-history is as well nearly constant with H2  0.009, 

about 1.2% of H0, again except for x = 1.035 where H2 = 0.023 that is about 3% of the H0 

at the same x location.  Next for Umin, from Fig. 50 (top), time-histories as well exhibit 

oscillations along with the  position.  Contrary to U≤0.9, the period mean H0 and the os-

cillation amplitude H2 of Umin time histories are not flat, but change along the model 

length.  From Fig. 6-50 (bottom), H0 = 0.67 at x = 0.135 and decreases nearly linearly 

along x, H0 = 0.39 at x = 1.035, whereas H2 = 0.015 (2% of H0) at x = 0.135 and increases 
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gradually with x, H2 = 0.038 (9% of H0) at x = 0.935, then sharply at x = 1.035 where H2 

= 0.071 (18% of H0). 

Cross-flow vector (V,W) field is shown in Fig. 6-51, and the contours of S = 

(V
2
+W

2
)
1/2

 with overlaid the cross-flow streamlines, showing the magnitude and the di-

rection of the cross-flow, respectively, are shown in Fig. 6-52.  From Fig. 6-51, the cross-

flow vectors are in general pointed to the portside at the bow and to the starboard at the 

stern, as the model is turning its head to the starboard and its tail to the portside, respec-

tively.  Whereas the vectors point outward at x = 0.335 and inward at x = 0.535, respec-

tively, but the velocity magnitude is usually small compared with those at the bow or 

stern.  On the other hand, cross-flow vectors visualize clearly the rotational motions of 

the fluid at the vortical flow regions, such as near around the sonar dome (from the fig-

ures as shown with the model projected into the paper), around the bilge keels at the port- 

and starboard-side, and below the aft body center keel, where the SD, BK, and AK vor-

tices exist, respectively.   

The directions of cross-flow are even more obvious with vortices exposed clearly 

from the cross-flow streamlines as shown in Fig. 6-52.  At x = 0.135, cross-flow in gen-

eral directs toward portside as the model is turning to the starboard side, with accelerated 

locally at the starboard side, i.e., the wind side, where the cross flow velocity magnitude 

S = 0.2  0.3.  Compared to model tangential speed Vt = rdx = 0.11 at  = 90, where the 

model yaw rate r = 0.3 and the radial distance dx = 0.365 from the mid-ship, the cross-

flow speed at the region is about 2  3 times faster than the Vt in general.  The cross-flow 

speed weakens at x = 0.336 and 0.535 typically with S < 0.1, where in general flow is di-

verging from and converging to the hull, respectively.  At the aft body, x = 0.735, 0.935, 

and 1.035, cross-flow is usually toward the starboard side as the model in turning its tail 

to the portside.  Typically cross-flow speed S = 0.05  0.15, usually slower than the mod-

el tangential velocity Vt = 0.13 at x = 0.935 at  = 90, except for the regions near the vor-

tices.  The SD vortex is clearly seen from the streamlines.  Particularly at  = 0 where 
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the model yaw rate r = 0, the concentric or spiral flow discovers the size and position of 

the SD vortex along the entire model length.  The approximate sizes of SD vortex   

0.01 L at x = 0.135, and then grows along the model length,  = 0.02  0.025 L between x 

= 0.335 and 0.535, and  = 0.03  0.04 L between x = 0.735  1.035, where  is an ap-

proximate outer diameter of the concentric streamlines at  = 0, respectively.  The ap-

proximate center point of SD vortex at  = 0 is just below the model keel position, (y,z) 

 (0,-0.05) at x = 0.135, and then shifted in both lateral and vertical directions.  In lateral 

direction, the center point first remains near the center plane at the fore body and then 

gradually moves to portside at the aft body, and located at y  -0.028 at x = 1.035.  In ver-

tical direction, the center point first shifts down at the fore body, to z  -0.065 at x = 

0.535, and then up at the aft body, to z  -0.04 at x = 1.035, following the model bottom 

profile.  At the other  positions, the size and location (including the direction of rotation) 

of the SD vortex is changing in time, i.e. with , and is often superposed with the parallel 

transverse flow at the aft body, the vortex streamlines open up or not clearly seen.  The 

strength of the SD vortex including the difference kinds of the vortices will be discussed 

later together with the axial vorticity field. 

6.2.2.3 Turbulent kinetic energy and Reynolds stresses 

Turbulent kinetic energy k field (for k ≥ 0.001) is shown in Fig. 6-53 for  = 0, 

45, 90, and 135 cases.  Reynolds number of the flow Re = UCL/ = 4.610
6
, same as 

for pure sway test.  The overall structure of the field exhibit coherence with the phase-

averaged axial velocity U field shown in Fig. 6-48; at the bow with thin layer that is 

growing along the model length and becomes very thick at the stern, i.e. within the boun-

dary layers and inside the vortical flow regions.  The core regions with high k values (e.g. 

k ≥ 0.01) exist typically near at the model hull surfaces, at the center of the vortical flow 

regions, and near the free surface behind the model transom.  The apparent shapes of the 

k field and the locations of the core region vary in time, i.e. along with the phase of pure 
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yaw motion.  In Figs. 6-54 and 6-55, time histories (top) and FS harmonics (bottom) of 

kmean and those of kmax are shown, respectively.  Similarly for pure sway case, herein the 

kmean and kmax are defined as the average k values respectively within the core regions 

where k ≥ 0.001 and within the overall k field where k ≥ 0.01, which respectively 

represents the approximate maximum and average k value within the turbulent flow.  In 

the figures, time histories are from the all 32 phase positions of the SPIV measurement, 

and the FS harmonics are for the 0
th

- and 2
nd

-order harmonics (with designated respec-

tively as H0 and H2) corresponding to the period mean value and to the dominant ampli-

tude of the time-history oscillations.  From Fig. 6-54 (top), kmean = 0.0025  0.0045 oscil-

lating with  particularly at x = 0.135.  From Fig. 6-54 (bottom), the period-mean value of 

the oscillating kmean is nearly constant along the model length with H0  0.003 whereas 

slightly larger H0 values at x = 0.135 and 1.035.  This indicates that in a mean sense the 

overall turbulence intensity I = (2/3k)
1/2

  0.045 in the flow, or a turbulent velocity fluc-

tuation  4.5% of UC.  The kmean oscillation amplitude is the maximum at x = 0.135 with 

H2 = 0.0007 (19% of H0), and then undulates with x with a mean H2 = 0.0002 that is 

about 7% of H0.  On the other hand, at the core region, kmax = 0.011  0.016 from Fig. 6-

55 (top) as well oscillating with .  From Fig. 6-55 (bottom), the period mean kmax value 

decreases gradually along the model length from H0 = 0.014 at x = 0.135 to H0 = 0.011 at 

x = 0.935, and then just behind the model it increases sharply with H0 = 0.014 at x = 

1.035.  Turbulence intensity I = 0.086  0.097 in the core region, or about 9  10% UC of 

turbulent velocity fluctuations.  The oscillation amplitude of kmax is the maximum at the 

bow with H2 = 0.0015 (11% of H0) at x = 0.135, and drops fast along the model length 

with H2  0.0005 (3  4% of H0) between x = 0.335 and 0.535 and with H2  0.00025 ( 

2% of H0) at the aft body.  

Reynolds normal (uu, vv, ww) and shear (uv, uw, vw) stress fields are shown in 

Fig. 6-56 through Fig. 6-61, respectively.  Despite the quite dissimilar flow structures be-

tween the phase-average axial U and cross-flow (V,W) velocity fields shown in Fig. 6-48 
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and Fig. 6-51 (or Fig. 6-52), respectively, the apparent structures of the Reynolds stress 

fields from the figures exhibit a coherence between the stress components, rather similar 

to the U field.  In general, the order of magnitude of the normal stresses is larger than the 

shear stresses, and typically the uu and uv stresses respectively are the largest of the nor-

mal and shear stresses.  In Figs. 6-62 and 6-63, the average normal (top) and shear (bot-

tom) stress values over the regions for kmean (k ≥ 0.001) and kmax (k ≥ 0.01) are shown, 

which are as well averaged values over the pure yaw motion period, i.e. corresponding to 

H0‟s of the FS for those variables.  Note that shear stresses shown in the figures are root-

mean-squared (rms) values.  From Fig. 6-62, both the normal and shear stresses are near-

ly constant along the model length with average values (uu, vv, ww) = (0.0029, 0.0019, 

0.0009) and (uv, uw, vw) = (0.0012, 0.0005, 0.0003), respectively.  The normal stress 

values, however, tend to increase at the bow (x = 0.135) and in the wake (x = 1.035).  Of 

the normal stresses, uu is the largest, followed by vv, and ww is the smallest, whereas for 

the shear stresses, uv is the largest and uw and vw are both small.  On the other hand, at 

the core region where k ≥ 0.01, from Fig. 6-63 the normal (top) and shear (bottom) 

stresses are nearly constant with x, (uu, vv, ww)  (0.0167, 0.0072, 0.0011) and (uv, uw, 

vw)  (0.0077, 0.0013, 0.0008), up to x = 0.735, where the uu and uv are respectively the 

largest normal and shear stresses.  After x = 0.735 at the stern part, nevertheless the sharp 

increase in kmax value as shown in Fig. 6-55 (bottom), those uu and uv stress values de-

crease fast whereas the other stresses values increase with x, respectively, thus the Rey-

nolds stress field becomes more of isotropic than at the front part of the model.  The Rey-

nolds stress anisotropic tensor bij = uiuj/2k - ij/3 values shown in Fig. 6-64 for the normal 

(top) and the shear (bottom) stresses reveals this more clearly.  The Reynolds stress ani-

sotropic tensor bij is the deviatoric part of the Reynolds stress tensor, aij = uiuj – (2/3)kij 

with normalized with 2k.  The bij values show how far the elemental stress is deviated 

from the mean value, thus bij values close to zero indicate more isotropic stress tensor. 
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Consequently, the flow has a turbulent kinetic energy k
1/2

  5.4%, the normal 

Reynolds stresses (uu
1/2

, vv
1/2

, ww
1/2

)  (5.4%, 4.4%, 3%), and the rms of the shear Rey-

nolds stresses (uv
1/2

, uw
1/2

, vw
1/2

)  (3.5%, 2.2%, 1.7%) of UC, respectively, in average 

over the turbulent flow field.  Locally, the flow may have turbulent kinetic energy k
1/2

 ≥ 

11.3%, and normal stresses (uu
1/2

, vv
1/2

, ww
1/2

) ≥ (12.9%, 8.5%, 3.3%) of UC, and the rms 

values of the shear Reynolds stresses (uv
1/2

, uw
1/2

, vw
1/2

) ≥ (8.8%, 3.6%, 2.8%) of UC, re-

spectively.  The Reynolds stresses are anisotropic; however, locally those may become 

less anisotropic at the stern part and in the wake region.  Those average k and Reynolds 

stress values are similar or smaller than the maximum values of (k
1/2

, uu
1/2

, vv
1/2

, ww
1/2

, 

uv
1/2

, uw
1/2

) = (5.4%, 5.3%, 4.1%, 3.7%, 2.4%, 2.8%) of UC from the steady test by Lon-

go et al. (2007).  The steady test was using the same model with a straight-ahead condi-

tion and the flow was measured at the nominal wake region (i.e., x = 0.935). 

6.2.2.4 Axial vorticity 

Axial vorticity x field (for x ≤ -10 and x ≥ 10) is shown in Fig. 6-65 for  = 0, 

45, 90, and 135.  From the figures vortices such as the sonar dome (SD), bilge keel 

(BK), and aft body center keel (AKC) vortices are more clearly seen than from the cross-

flow vector or streamline field shown in Figs. 6-51 and 6-52, respectively, from which 

the vortices at certain phases are not obvious with superposed with the nearby parallel 

transverse flow and streamlines open up.  SD vortex is the most dominant one, which can 

be seen most clearly from the Fig. 6-65 at  = 0 (the first column from the left), where 

the SD vortex is located at the portside of the model within a range of y = -0.04  0.01 

and z = -0.03  -0.07 in general.  At  = 45, a new counter rotating SD vortex is formed 

at the fore body, x = 0.135  0.535, and the old one from  = 0 is detached from the so-

nar dome and weakens at the aft body, x = 0.735  1.035.  At  = 90 and 135, the new 

SD vortex strengthens and propagates to the aft body and moves to the starboard side.  

BK vortex is the second dominant one, which can be seen most clearly from the Fig. 6-65 
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at x = 0.735 (the third row from the bottom), where two BK vortices are respectively lo-

cated near around the portside and starboard bilge keel positions (as appears in the figures 

with the model projected).  The BK vortices are first generated at x = 0.535 near around 

the port- and starboard side bilge keels but very locally, and grows in size at x = 0.735, 

and then both BK vortices converge toward the model center plane at x = 0.935 and 

1.035, but usually diffused and not clearly seen from the figures.  AKC vortex is the third 

dominant one, which can be seen most clearly from the Fig. 6-65 at x = 0.935 (the second 

row from the bottom), where the AD vortex is located near below the aft body center keel 

position at (y,z) = (0.0, -0.015).  The AKC vortex remains in the wake at x = 1.035, nearly 

at the similar (y,z) position, but typically defused and mixed with other vortices such as 

BK and not clearly seen from the figures.  Other than those three vortices a couple of vor-

tices as well can be seen from the figures.  This includes the vortices near below the fore 

body keel (FK) at x = 0.335 and 0.535, near below the aft body keel (AK) at x = 0.735 

and 0.935, and near the free surface (FS).  Typically, however, these vortices are weak in 

strength compared to those dominant three vortices, and data were not sufficient for anal-

ysis due to limited longitudinal resolution of the measurement (six x locations along the 

model length), and data may contaminated for the FS vortex from the errors of SPIV 

measurement near the free surface, which precludes further discussions for those vortices.  

In Fig. 6-66, shown are the SD vortex (top) time histories of the maxi-

mum/minimum x values, x,max/min, for x = 0.135  1.035 and (bottom) the FS 1
st
-order 

amplitude H and phase angle  values of the x,max/min time histories such that f(t) = 

Hsin(t+) at give x locations.  The x,max/min is defined herein such that the maximum 

x value when x > 0 and the minimum x value when x < 0 at a given phase position .  

From Fig. 6-66 (bottom), H = 292 is the largest at x = 0.135 and drops fast to H = 159 at x 

= 0.335 and increases gradually with x to H = 189 at x = 0.735 and then decreases to H 

=129 at x = 1.035.  Whereas, phase angle  decreases nearly linearly along the model 

length with a slop d/dx = -118.9/L  -2/3L where L is the model length and an inter-
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cept 0 = 191.3  .  This suggests that the phase term  in f(t) is a function of x such 

that (x) = -(m/L)x + 0 where m = 2/3 and 0 = , and thus the x,max/min propagates in 

space and time in a wave-like form such that f(x,t) = H(x)sin(kx - t).  The wave number 

k = m/L (wave length  = 2/k = 2L/m) and the circular frequency  = 2f where f = T
-1

 

and T is the period of pure yaw motion (note that the f is as well the shedding frequency 

for SD vortex).  Then, the phase velocity vp = /k = /T = 2fL/m, or in a non-

dimensional form vp/UC = (2/m)St, where m is the phase change over a ship length L 

and St = fL/UC is the Strouhal number of the SV vortex shedding.  For f = 0.134 Hz, L = 

3.048 m, and UC = 1.531 m/s, which gives St  = 0.2668, and with m = 2/3, then the 

phase velocity vp = 0.8 UC.  This indicates that x,max/min propagates along the model 

length with a speed about 80% of the model towing speed UC.  At a given x location, 

f(x,t) becomes pure sine waves with a amplitude H(x) and with a phase shift  =  - kx as 

shown in Fig. 6-66 (top) for six x location.  On the other hand, at a given time t (or at a 

phase angle ), f(x,t) becomes a sine-like wave of which amplitude H(x) is not a constant 

value but changes with x and with a phase shift  = -t (or  = -).  Examples of the wave 

form at four phase positions,  = 0, 45, 90, and 135 are shown in Fig. 6-67 with com-

pared with the x,max/min values measured from the SPIV.  From the figure, the wave 

model (shown as lines) agrees well with the measured x,max/min values (shown as sym-

bols) except for  = 45 case, may possibly due to the effect of higher order of harmonics 

in the x,max/min time histories shown in Fig. 6-66. 

BK vortices are generated in pairs; one is the portside and another at the starboard 

side, which can be best seen from figures in Fig. 6-65 for x = 0.735 (the third row from 

the bottom), near around the bilge keels positions.  These two vortices typically have the 

same direction of rotation whereas different strength according to direction and magni-

tude of the nearby incoming cross-flow velocity around the bilge keels.  From the vector 

field figures in Fig. 6-51 (or Fig. 6-52 for streamlines) for x = 0.535 (the third row from 

the top), at first when  = 0 the cross-flow near the bilge keels is stronger at starboard 
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than at portside, next at  = 45 the flow weakens at both sides, and then at  = 90 and 

135 the stronger cross-flow comes from the other side, i.e. from the portside.  Accor-

dingly the BK vortex and the axial vorticity is stronger first at the starboard side and then 

switches its position to the portside and continues to develop (with changed its sign), and 

vice versa for the weaker BK vortex at the other side.  Herein the side where the incom-

ing flow is stronger is referred as the „wind‟ side and the other side as the „leeward‟ side, 

respectively.  In Fig. 6-68 the time histories of the x,max/min values of the BK vortices at 

the wind and leeward sides for x = 0.535 (left) and x =0.735 (right), respectively.  In the 

figures two different symbols („delta‟ and „gradient‟) are use to indicate from which side 

came the vortices.  At x = 0.535, although the BK vortices are very local and small in 

size, the x,max/min value is large with H = 115 at the wind side and H = 71 at the lee-

ward side, respectively, from the FS, where the phase angle  = -48.4 and -51.3, respec-

tively.  At x = 0.735, the BK vortices grow in size but decayed in strength with H = 80 at 

the wind side and H = 25 at the leeward side, respectively, where the phase angle  = -

27.5 and -30.3, respectively.  Compared to H = 292 of the SD vortex at x = 0.135 (the 

strongest), the H‟s at x = 0.535 and 0.735 are about 39% and 27% for wind side, respec-

tively, and about 24% and 9% for leeward side, respectively.   

Time histories of the x,max/min values of AKC vortex is shown in Fig. 69 for x = 

0.935 and 1.035.  When FS reconstructed, at x = 0.935 and 1.035, H = 95 and 63, respec-

tively, and  -36.9 and -52.1.  The H‟s are about 33% and 22% of the SD vortex H val-

ue at x = 0.135. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

 

Figure 6-45 Trajectory of model (top) in pure yaw motion and overviews of the flow around the model (below).  
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(5)  = 180 (6)  = 225 (7)  = 270 (8)  = 315 

    

 

 

Figure 6-45–Continued  

 = 10.2; r = 0  = 7.2; r = -0.21  = 0; r = -0.3  = -7.2; r = -0.21 
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(a) (b) 

  

Figure 6-46 Vortical flow structures around the DTMB 5512 geometry in steady maneuver for: (a) static drift at  = 10 and (b) steady 
turn at r = 0.3 cases. (CFD simulations by Sakamoto 2009). 
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 (a) CFD (b) SPIV 

 = 0 

  

 = 45 

  

 = 90 

  

 = 135 

  

Figure 6-47 Vortical flow structures around the DTMB 5512 geometry in pure yaw ma-
neuvering with rmax = 0.3: (a) Iso-surfaces of relative helicity (CFD simula-
tions by Sakamoto 2009) and (b) contours of axial vorticity (SPIV).  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-48 Phase-averaged axial velocity U field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-48–Continued 
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Figure 6-49 Average axial velocity for U ≤ 0.9 (top) and FS harmonics (bottom).  
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Figure 6-50 Minimum axial velocity (top) and FS harmonics (bottom). 
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Figure 6-51 Phase-averaged cross-flow (V,W) vector field for pure yaw test. 
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Figure 6-51–Continued  
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Figure 6-52 Cross flow velocity vector magnitude S = (V
2
 + W

2
)
1/2

 and streamlines for pure yaw test. 
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Figure 6-52–Continued  



 
 

 

2
8
3
 

(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-53 Phase-averaged turbulent kinetic energy k field for pure yaw test. 
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Figure 6-53–Continued  
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Figure 6-54 Average turbulent kinetic energy kmean (top) and FS harmonics (bottom).  
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Figure 6-55 Maximum turbulent kinetic energy kmax (top) and FS harmonics (bottom).  
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Figure 6-56 Phase-averaged Reynolds stress uu field for pure yaw test. 
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Figure 6-56–Continued  
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Figure 6-57 Phase-averaged Reynolds stress vv field for pure yaw test. 
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Figure 6-57–Continued  
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Figure 6-58 Phase-averaged Reynolds stress ww field for pure yaw test. 
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Figure 6-58–Continued  



 
 

 

2
9
3
 

(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-59 Phase-averaged Reynolds stress uv field for pure yaw test. 
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Figure 6-59–Continued  
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Figure 6-60 Phase-averaged Reynolds stress uw field for pure yaw test. 
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Figure 6-60–Continued  
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Figure 6-61 Phase-averaged Reynolds stress vw field for pure yaw test. 
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Figure 6-61–Continued  
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Figure 6-62 Average Reynolds normal (top) and shear (bottom) stresses for kmean.  
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Figure 6-63 Average Reynolds normal (top) and shear (bottom) stresses for kmax.  
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Figure 6-64 Average anisostropy bij of normal (top) and shear (bottom) Reynolds stresses 
for kmax.  

 

x

b
ij

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

1
b

11

b
22

b
33

x

b
ij

0 0.25 0.5 0.75 1 1.25
-1

-0.5

0

0.5

1
b

12

b
13

b
23



 
 

 

3
0
2
 

(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-65 Axial vorticity x field for pure yaw test. 
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Figure 6-65–Continued  
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Figure 6-66 Time histories of the maximum/minimum axial vorticity x values of sonar dome 
(SD) vortex (top) and FS harmonics (bottom) for pure yaw.  
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Figure 6-67  Measured (symbols) and reconstructed (lines) x,max/min values of the sonar dome 
(SD) vortex for pure yaw.  
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Figure 6-68 Time histories of the maximum/minimum axial vorticity x values of the bilge keel (BK) vortices at x = 0.535 (left) and x 
= 0.735 (right), respectively, for pure yaw.  
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Figure 6-69 Time histories of the maximum/minimum axial vorticity x values of the aft-
body keel (AK) vortex for pure yaw test.  
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CHAPTER 7 SUMMARY AND CONCLUSIONS AND FUTURE WORK 

Towing-tank experiments are performed for a surface combatant advancing in 

calm water as it undergoes static and dynamic planar motion mechanism (PMM) ma-

neuvers.  The geometry is DTMB model 5512, which is a 1/46.6 scale geosym of DTMB 

model 5415 (DDG-51), with L = 3.048 m.  The experiments are performed in a 3.048  

3.048  100 m towing tank.  The measurement system is a custom-designed towing-tank 

maneuvering test flow-map measurement system, which features a PMM for captive 

model testing with an integrated stereoscopic particle image velocimetry (SPIV), a Kryp-

ton contactless motion tracker, and a 6-component load cell.  The data includes static drift 

and dynamic maneuvering forces and moments, motions, and phase-averaged local flow-

fields for dynamic maneuvers.  Quality of the data is assessed by evaluating the statistical 

convergence and by estimating the measurement uncertainty.  The forces/moment mea-

surements and UA are conducted in collaboration with Force Technology 

(FORCE)/Danish Maritime Institute (DMI), Istituto Nazionale per Studi ed Esperienze di 

Architettura Navale (INSEAN), and the 24
th

-25
th

 ITTC Maneuvering Committee.  The 

collaboration includes overlapping tests using the same model geometry with different 

scales, for validation of procedures and identification of facility biases and scale effects. 

Statistical convergence of data is evaluated by monitoring the convergence of 

confidence interval of mean value while increasing the number of data, N.  Data are first 

tested for randomness, stationarity, and normality.  For the tests, deterministic compo-

nents of the data are removed from the data time histories, which are the time-mean val-

ues for static drift data and the harmonic oscillations with the PMM frequency as the fun-

damental harmonic for the dynamic tests.  Test for randomness is by inspecting the fre-

quency spectrum of the data via Fast Fourier Transform (FFT).  Forces and moment data 

are random fluctuations, but narrow-banded with peak frequencies near at 3, 4, 5, 7, and 

10 Hz, for both static drift and dynamic tests.  The peak frequencies are from the natural 
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frequencies and the mechanical vibrations of the loadcell and the PMM and the deriving 

carriages, or in combination.  Motions (heave and pitch) data are superposition of random 

fluctuations on a transient oscillation.  The transient oscillation is of typical frequency ftr 

 0.255 Hz due to start-up transient, which decays with time.  Test for stationarity is by 

using two non-parametric (i.e., distribution-free) statistical procedures, „Run test‟ and 

„Trend test‟.  Forces and moment and motions data for the most of cases of static drift 

and dynamic tests are stationary from the tests at a 5% level of significance (i.e., with a 

95% probability).  Normality of data is examined by using the Chi-square (X
2
) goodness-

of-fit test.  Test results indicate that all data variables are not normal as those fail the test 

with typical X
2
 values, 61, 72, 120, 122, 146 for Fx, Fy, Mz, z, , respectively, at a 5% 

significance level (the acceptance region is X
2
 ≤ 51 for a degree of freedom n = 36).  

Monitoring the statistical convergence of data is by defining a statistical convergence er-

ror, Esc = cs/N
1/2

, where c is a constant, s is the standard deviation of data, and N is the 

number of data.  For a 95% confidence level, the constant c = 2.0 by using the Student-t 

statistic when data is normal, whereas c = 4.5 by using the Tchebycheff inequality when 

data is not normal with an unknown distribution.  For static drift data, Esc ≤ 3% for all the 

forces and moment and motions data with N = 2,000, a typical data number, and with c = 

4.5 by using the Tchebycheff inequality as those data variables are not normal from the 

normality test.  Nonetheless, for forces and moment, the apparent shapes of the probabili-

ty density function (pdf) are close to a normal pdf, suggesting that those variables data 

may be close to normal in a practical sense.  If normality is assumed for those data, then 

Esc ≤ 1% with c = 2.0 from the Student-t statistic.  Evaluations of statistical convergence 

for dynamic tests data are still on going.  On the other hand, for the SPIV flow field data, 

phase-averaged velocity data are normal (as well in a practical sense).  Then, the phase-

averaged normal Reynolds stresses (corresponding to the variance of velocity in terms of 

statistics) follow the 2
-distribution.  Accordingly, the statistical convergence error E is 

defined for phase-average velocity by using the Student-t statistic and EU for Reynolds 
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stress by using the 2
-statistic, respectively, similarly as Esc for forces and moment and 

motions data.  Even with a relatively smaller number of data for phase-averaging, N  

200, the statistical convergence error values are fairly small, usually E  1% of UC for 

velocity data and EU  10% of the range value of turbulent kinetic energy, [k], for Rey-

nolds stress data. 

UA for forces and moment and motions data follows the ASME (1998) and AIAA 

(1999) Standard and guidelines; errors/uncertainties definitions, systematic/random cate-

gorization, and large sample size/normal distribution 95% level of confidence assump-

tions.   The procedures are based on estimates of systematic bias and random precision 

limits, and their root-sum-square combination to ascertain total uncertainty, Ur.  For static 

drift test, Ur is typically about 2  4% for forces and moment and about 1  2% for heave 

and 20  30% for pitch motions, respectively.  For both forces/moment and motions data, 

bias limit is predominant over the precision limit, contributing more than 90% to Ur for 

the most of cases.  For dynamic tests, Ur is about 1   10% for forces and moment, usual-

ly larger for X force, and about 2  6% for heave and 10  40% for pitch motions.  Preci-

sion limit is dominant for X force and heave motion, while bias limit is dominant for Y 

and N and pitch motion, respectively contributing more than 70% to Ur in most of cases.  

For forces and moment data, compared with two different facilities (FORCE and IN-

SEAN) using different scales (model length L = 4 m and 5.7 m, respectively), the overall 

Ur values are almost independent of L for static drift test, whereas decreasing with L for 

dynamic tests.  The Ur values as well show a trend with Fr, usually decreasing with Fr.  

In addition to the aforementioned UA procedures, two conceptual biases, data asymmetry 

bias Basym and facility bias BFB, are defined and evaluated.  Basym is to account for data 

asymmetry that exceeds Ur estimations.  Basym is typically large for X force and heave and 

pitch motions, in general about 7%, 20%, 40%, respectively.  Basym for X is negligible for 

FORCE data and about 8% for INSEAN data.  However, Basym for Y and N are typically 

small or negligible for all the facilities data.  BFB is to account for the use of different test 
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facilities and different measurement equipments between the facilities.  For static drift, 

IIHR and INSEAN data are certified within a certificate interval UD about 3  11%, whe-

reas INSEAN data include BFB about 3  4%.  For dynamic test data, most of IIHR data 

are certified but with relatively large UD about 3  30%, whereas FORCE and INSEAN 

data for several cases are uncertified with BFB about 2  7%.   

On the other hand, the UA for phase-average SPIV flow field data follows the 

ASME PTC 19.1-2005 Standard (ASME 2005) that is a revision of the ASME (1998) 

Standard.  The procedures are estimations of the systematic and random standard uncer-

tainties at the standard deviation level, and their root-mean-square combination to ascer-

tain the combined standard uncertainty and subsequently the expanded uncertainty UR,95.  

The systematic standard uncertainty is estimated by calibrating the SPIV to the „open-

water‟ test results.  The open-water test is to measure the free-stream flow field without 

the model installed, while the SPIV is towed straight (for uniform flow test) or in pure 

yaw motion (for open water pure yaw test).  The random standard uncertainty is esti-

mated end-to-end by repeating the test (the actual test with model installed).  From the 

UA, the absolute uncertainty (UR,95) of the SPIV measurement is about 2  3% of UC for 

U (out of plane component), and about 1  2% of UC for V and W (in-plane components), 

respectively.  Whereas the relative uncertainty (UR,95/R) is about 3  4%, 12  29%, and 

26  32% for U, V, and W, respectively.  For Reynolds stresses, the square root of abso-

lute uncertainties, UR95
1/2

, are about 2  3% of UC for the normal (uu, vv, ww) stresses and 

about 1  2% of UC for the shear (uv, uw, vw) stresses, respectively.  The relative uncer-

tainties are about 25  50% inside the boundary layer region, whereas typically large > 

100% at the outer region due to the small magnitude of the R.  The present UA results are 

generally similar with Gui et al. (2001a) for steady test and relatively larger than Longo 

et al. (2007) for unsteady tests. 

Forces and moment data trends with the drift angle  for static drift test are as per 

predicted by the Abkowitz (1966) mathematic model; quadratic for X and cubic for Y and 
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N.  Time histories of forces and moment data for dynamic pure sway and pure yaw tests 

are typically the 2
nd

-order dominant (about 70% of amplitude) oscillations for X with su-

perposed on mean values, whereas the 1
st
-order dominant (90  99% of amplitude) oscil-

lations for Y and N with phase shifted with respect to the forced motions.  For yaw and 

drift tests, all of the X, Y and N time histories are the 1
st
-order dominant oscillations with 

superposed on non-zero mean values.  Hydrodynamic derivatives are evaluated from the 

forces and moment data by using two different methods; „Multiple-Run (MR)‟ method 

and „Single-Run (SR)‟ method.  The MR method is by curve fitting the forces and mo-

ment data obtained from a series of tests over a range of PMM parameter of interest.  In 

contrast, the SR method is using the data from a single realization of dynamic test.  Li-

near derivative values by using the MR and the SR methods are similar each other, with a 

ratio value, SR/MR = 0.5  1.5 in general.  The ratio value approaches closer to a unity as 

the PMM motion becomes larger.  In contrast, non-linear hydrodynamic derivatives val-

ues using the SR method are considerably different from those using the MR method, 

with the ratio SR/MR = 10
-1

  10
2
.  The ratio value is particularly larger/smaller when the 

PMM motion is small.  Validities of the hydrodynamic derivatives are examined by eva-

luating the error, ER (%), in reconstructing the forces and moment time history by substi-

tuting the derivative values back into the Abkowitz (1964) mathematic model.  For MR 

method, the error value is in general ER (%) < 20 over the whole range of the tested PMM 

parameters.  However, for SR method, the error value is typically huge, ER (%) < 600, 

when the PMM motion is small and relatively large, ER (%) < 50, as the PMM motion 

becomes larger.  Consequently, the MR method is more rigorous than the SR method, 

and the SR method is only suggested when the PMM motion is large enough.  From the 

speed variation test, the hydrodynamic derivative values exhibit trends with Fr.  Typical-

ly the linear derivatives are nearly independent of Fr, whereas the non-linear derivatives 

exhibit rather strong dependency on Fr.  Hydrodynamic derivative values as well exhibit 

a trend with the model size (scale).  When compared with the two different facilities 
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(FORCE and INSEAN) data, generally the sway derivatives are nearly independent of 

model size whereas the yaw derivatives (particularly yaw acceleration derivatives) exhi-

bit considerable dependency on the model size.  However, for the non-linear derivatives, 

general conclusions are precluded as the data exhibit large scatters in the comparisons.   

Motions data trends with drift angle  for static drift test and the trends of the time 

histories for dynamic tests resemble those of the forces and moment data; the overall 

trends of heave and pitch motions are similar to X (quadratic with  and the 2
nd

-order 

dominant oscillations) and those of roll motion is similar to Y and N (cubic with  and the 

1
st
-order dominant oscillations).  Between the motions, heave and roll motions are nearly 

independent, whereas pitch and roll motions are rather strongly coupled each other.  Mo-

tions data as well exhibit correlations with forces and moment.  Four different mount 

conditions are compared to see the effect of motions on the forces and moment; FX0 

(fixed at evenkeel), FX (fixed sunk and trim), FRz (free to heave and pitch), and FRz 

(free to heave, pitch, and roll).  Between FX0 and FX, forces and moment usually in-

crease up to about 10% ( = 1  1.1) due to the effect of sinkage and trim.  Between 

FX0 and the FRz, the increase in forces and moment is typically 10%  30% (z = 1.1  

1.3) due to the effect of heave and pitch motions.  Between FRz and FRz, forces and 

moment are similar each other (  1) indicating the effect of roll motion on the forces 

and moment is small or negligible.  Despite the differences in forces and moment, the 

linear hydrodynamic derivatives from the FX0 and FX conditions are usually similar 

with those of the FRz condition (0, = 0.9  1.1), whereas the non-linear derivatives for 

the former conditions are smaller than for the later condition (0, = 0.2  1.0).  Between 

the FRz and FRz conditions, in general linear derivatives are similar ( = 0.9  1.1) 

between the mount conditions, whereas the non-linear derivatives values show rather 

large differences ( = -0.4  3.6).  Consequently, the effects of the motions on hydrody-

namic derivatives are small for linear derivatives, however may large for non-linear de-

rivatives.  
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Phase-averaged flow field measurement results indicate maneuvering-induced 

vortices and their interactions with the turbulent boundary layers.  The data comprises 

axial velocity contours, cross-flow velocity vectors and streamlines, turbulent kinetic 

energy and Reynolds stresses contours, and axial vorticity contours, respectively for pure 

sway and pure yaw tests.  The vortical flow structure includes sonar dome vortex, bilge 

keel vortices, fore and aft body keel vortices, and free surface vortices, which can be 

more clearly identified from the complementary CFD simulation results.  The average 

axial velocity within the boundary layers and inside vortices is about 0.8 UC, nearly con-

stant along the model length.  Local minimum value is 0.65  0.4 UC, larger at the bow 

and decreases monotonically along the model length.  Turbulent kinetic energy k
1/2

 is 

about 5% of UC for pure sway and about 7% of UC for pure yaw, respectively, in average.  

The local maximum k
1/2

 value is about 11% of UC for both tests.  Reynolds stress is ani-

sotropic, where uu and uv are the largest normal and shear stresses, respectively.  Sonar 

dome vortex is the strongest one, and bilge keel and aft body keel vortices are the second 

and third ones.  The maximum axial vorticity value of the sonar dome vortex is similar 

for both pure sway and pure yaw tests, whereas the bilge keel and the aft body keel vor-

tices are about 2  3 times stronger for pure sway. 

Limitations of the present work include: 1) the model is un-appended except for 

portside and starboard bilge keels, and not equipped with shafts, struts, propellers, or 

rudders.  Accordingly the hydrodynamic derivatives values evaluated from the forces and 

moment data and the vortical flow field data (particularly at the stern where the rudders 

and propellers are working) may differ from those from a fully appended condition, 2) 

the model is constrained in heave, pitch, and roll motions for the SPIV measurements, 

thus the flow field data may differ from the free motions condition, 3) the number of lon-

gitudinal locations for SPIV measurements is limited (six x-locations) and the flow field 

data in the direction are sparse and not sufficient to be connected to show the fully three 

dimensional flow structures.  The near future works planed, in conjunction with and to 
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resolve those limitations, include a PMM test in headwind and/or wave for a fully ap-

pended (except for propellers) model (ONR Tumblehome), a fully three-dimensional PIV 

(e.g., a tomographic PIV) flow field measurement for the DTMB 5512 model in a static 

drift maneuver with a large drift angle  = 20, and a fully 3-D (or Stereoscopic) PIV 

flow field measurement for a free running model. 
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