9.10 A viscous fluid flows past a flat plate such that the boundary layer thickness at a distance 1.3 m from the leading edge is 12 mm. Determine the boundary layer thickness at distances of 0.20, 2.0, and 20 m from the leading edge. Assume laminar flow.

For laminar flow $\delta = CVX$, where C is a constant.

Thus,
$$C = \frac{\delta}{\sqrt{X}} = \frac{12 \times 10^{-3} m}{\sqrt{1.3 m}} = 0.0105 \text{ or } \delta = 0.0105 \sqrt{X} \text{ where } X \sim m, \delta \sim m$$

$$X = \frac{\delta}{\sqrt{X}} = \frac{12 \times 10^{-3} m}{\sqrt{1.3 m}} = 0.0105 \text{ or } \delta = 0.0105 \sqrt{X} \text{ where } X \sim m, \delta \sim m$$

X, m	δ, m	δ, mm
0.2	0.00470	4.70
2.0	0.0/48	14.8
20.0	0.0470	47.0

9.11

If the upstream velocity of the flow in Problem 9.10 is $\dot{U} = 1.5$ m/s, determine the kinematic viscosity of the fluid.

For laminar flow
$$\delta = 5\sqrt{\frac{\nu x}{V}}$$
, or $\nu = \frac{U\delta^2}{25 x}$

Thus,

$$\nu = \frac{(1.5 \frac{m}{s})(12 \times 10^{-3} \text{m})^2}{25 (1.3 \text{m})} = \frac{6.65 \times 10^{-6} \frac{\text{m}^2}{\text{s}}}{1.3 \text{m}}$$