6.22

6.22 The stream function for an incompressible flow field is given by the equation

$$\psi = 3x^2y - y^3$$

where the stream function has the units of m^2/s with x and y in meters. (a) Sketch the streamline(s) passing through the origin. (b) Determine the rate of flow across the straight path AB shown in Fig. P6.22.

FIGURE P6.22

4=0

4=0 x

(a) Lines of constant ψ are streamlines. For $\psi = 3x^2y - y^3$ the streamline passing through the origin (x=0, y=0) has a value $\psi=0$. Thus, the equation for the streamlines through the origin is

$$0 = 3x^2y - y^3$$

or

$$y = \pm \sqrt{3} x$$

A sketch of these streamlines is shown in the figure.

(b) $\varphi = \psi_B - \psi_A$

At B
$$x=0$$
, $y=1m$ so that
$$\psi_{B} = 3(0)^{2}(1) - (1)^{3} = -1 m^{3}/s \text{ (per unit width)}$$

Thus

$$\varphi = \psi_B = \frac{-1 \, m^3/s}{s}$$
 (per unit width)

The negative sign indicates that the flow is from right to left as we look from A to B.