

4.27 A nozzle is designed to accelerate the fluid from V_1 to V_2 in a linear fashion. That is, V = ax + b, where a and b are constants. If the flow is constant with $V_1 = 10$ m/s at $x_1 = 0$ and $V_2 = 25$ m/s at $x_2 = 1$ m, determine the local acceleration, the convective acceleration, and the acceleration of the fluid at points (1) and (2).

With u = ax + b, v = 0, and w = 0 the acceleration $\vec{a} = \frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V}$ can be written as $\vec{a} = a_x \hat{c}$ where $a_x = u \frac{\partial u}{\partial x}$. (1)

Since $u = V_1 = 10 \frac{m}{s}$ at x = 0 and $u = V_2 = 25 \frac{m}{s}$ at x = 1 we obtain 10 = 0 + b

25 = a + b so that a = 15 and b = 10

That is, $u = (15x+10) \frac{m}{s}$, where $x \sim m$, so that from Eq.(1)

 $a_X = (15X+10)\frac{m}{s}(15\frac{1}{s}) = (225X+150)\frac{m}{s^2}$

Note: The local acceleration is \overline{zero} , $\frac{\partial \vec{V}}{\partial t} = 0$, and the convective acceleration is $u\frac{\partial u}{\partial x} \hat{i} = (225x+150)\hat{i} \frac{m}{s^2}$

At x = 0, $\vec{a} = 150 \hat{i} \frac{m}{S^2}$; at x = /m, $\vec{a} = 375 \hat{i} \frac{m}{S^2}$