

2.95

2.95 If the tank of Problem 2.74 slides down a frictionless plane that is inclined at 30° with the horizontal, determine the angle the free surface makes with the horizontal.

From Newton's 2md law,

ZFy: = may

Since the only force in the y-direction

Is the component of weight (mg)sin0,

(mg)sin0 = may

so that

ay = g sin0

$$\frac{d\overline{z}}{dy} = -\frac{a_y}{g + a_{\overline{z}}} \qquad (Eq. \ z.28)$$

$$= -\frac{a_y' \cos \Theta}{g - a_y' \sin \Theta} = -\frac{g \sin \Theta \cos \Theta}{g - g \sin \Theta \cos \Theta}$$

$$= -\frac{\frac{1}{2} \sin 2\Theta}{1 - \frac{1}{2} \sin 2\Theta}$$

and for
$$\theta = 30^{\circ}$$

$$\frac{dz}{dy} = -\frac{\frac{1}{2} \sin 60^{\circ}}{1 - \frac{1}{2} \sin 60^{\circ}} = -0.764$$

Thus,
$$\tan \phi = 0.764$$
 (see figure) and $\phi = 37.4^{\circ}$