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9.5  Quantitative Relations for the Turbulent Boundary  

Layer
 
Description of Turbulent Flow 
V and p are random functions of time in a turbulent flow 

The mathematical complexity of turbulence entirely 
precludes any exact analysis.  A statistical theory is well 
developed; however, it is both beyond the scope of this 
course and not generally useful as a predictive tool.  Since 
the time of Reynolds (1883) turbulent flows have been 
analyzed by considering the mean (time averaged) motion 
and the influence of turbulence on it; that is, we separate 
the velocity and pressure fields into mean and fluctuating 
components 
 
 uuu ′+=     ppp ′+=  
 vvv ′+=     and for compressible flow 
 www ′+=    TTTand ′+=ρ′+ρ=ρ  
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where (for example) 
 and t1sufficiently large 

that the average is 
independent of time 

 ∫=
+ 10

0

tt

t1
udt

t
1u    

 
Thus by definition 0u =′ , etc.  Also, note the following 
rules which apply to two dependent variables f and g 
 

 ff =  gfgf +=+  
 
 gfgf ⋅=⋅  
 

f = (u, v, w, p) 
s = (x, y, z, t)  

s
f

s
f

∂
∂

=
∂
∂   ∫=∫ dsffds  

 
The most important influence of turbulence on the mean 
motion is an increase in the fluid stress due to what are 
called the apparent stresses.  Also known as Reynolds 
stresses: 
 

jiij uu ′′ρ−=τ′  
 
  2u′ρ−      vu ′′ρ−   wu ′′ρ−  
 = vu ′′ρ−      2v′ρ−   wv ′′ρ−  
  wu ′′ρ−      wv ′′ρ−  2w′ρ−  

 

 

Symmetric
2nd order 

tensor
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The mean-flow equations for turbulent flow are derived by 
substituting VVV ′+=  into the Navier-Stokes equations 
and averaging.  The resulting equations, which are called 
the Reynolds-averaged Navier-Stokes (RANS) equations 
are: 
 
Continuity 0Vand0V.e.i0V =′⋅∇=⋅∇=⋅∇  
 

Momentum ( ) Vpk̂guu
xDt

VD 2
ji

j
∇µ+∇−ρ−=′′

∂
∂

ρ+ρ  

 or  ijpk̂g
Dt

VD
τ⋅∇+∇−ρ−=ρ  

u1 = u x1 = x 
u2 = v x2 = y 
u3 = w x3 = z 

 

   ji
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j

i
ij uu

x
u

x
u ′′ρ−

⎥
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⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂
∂

µ=τ  

Comments:         ijτ′  
1) equations are for the mean flow 
2) differ from laminar equations by Reynolds stress 

terms = jiuu ′′  
3) influence of turbulence is to transport momentum 

from one point to another in a similar manner as 
viscosity 

4) since jiuu ′′  are unknown, the problem is 
indeterminate: the central problem of turbulent flow 
analysis is closure! 

 
4 equations and 4 + 6 = 10 unknowns 
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2-D Boundary-layer Form of RANS equations
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      requires modeling 
 
Turbulence Modeling
Closure of the turbulent RANS equations require the 
determination of vu ′′ρ− , etc.  Historically, two approaches 
were developed: (a) eddy viscosity theories in which the 
Reynolds stresses are modeled directly as a function of 
local geometry and flow conditions; and (b) mean-flow 
velocity profile correlations which model the mean-flow 
profile itself.  The modern approaches, which are beyond 
the scope of this class, involve the solution for transport 
PDE’s for the Reynolds stresses which are solved in 
conjunction with the momentum equations. 
 

(a) eddy-viscosity: theories  
(mainly used with differential methods) 

  
y
uvu t ∂

∂
µ=′′ρ−   

The problem is reduced to modeling µt, i.e., 

In analogy with the laminar viscous 
stress, i.e., τt ∝ mean-flow rate of strain 

  µt = µt(x, flow at hand)  
 
Various levels of sophistication presently exist in 
modeling µt



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 9 
Professor Fred Stern    Typed by Stephanie Schrader   Fall 1999 28
  

ttt LVρ=µ  
 
  
 
The total stress is 

  ( )
y
u

ttotal ∂
∂

µ+µ=τ  

 
 
 
 
Mixing-length theory (Prandtl, 1920) 
 

  22 vucvu ′′ρ=′′ρ−  
 

  
y
uu 1

2

∂
∂

=′  

 

  
y
uv 2
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∂
∂

=′  

 

 ⇒ 
y
u

y
uvu 2

∂
∂

∂
∂

ρ=′′ρ−  

 
 
    ( )y=  

turbulent 
length scale 

eddy viscosity  
(for high Re flow µt >> µ) 

 

where Vt and Lt are 
based an large scale 
turbulent motion turbulent 

velocity scale 

molecular 
viscosity 

 

Known as a zero 
equation model since 
no additional PDE’s 
are solved, only an 
algebraic relation 

   = f(boundary lay
based on kinetic
theory of gases 
21 and are mixing lengths 
which are analogous to 
molecular mean free path, 
but much larger 

distance across shear layer 

er, jet, wake, etc.) 
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Although mixing-length theory has provided a very useful 
tool for engineering analysis, it lacks generality.  Therefore, 
more general methods have been developed. 
 
One and two equation models 
 

   
ε
ρ

=µ
2

t
kC  

 
 C = constant 
 
 k2 = turbulent kinetic energy 
     = 2222 wvuu ′+′+′=′  
 
 ε = turbulent dissipation rate 
 
 
Governing PDE’s are derived for k and ε which contain 
terms that require additional modeling.  Although more 
general then the zero-equation models, the k-ε model also 
has definite limitation; therefore, recent work involves the 
solution of PDE’s for the Reynolds stresses themselves.  
Difficulty is that these contain triple correlations that are 
very difficult to model. 
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(b) mean-flow velocity profile correlations 
(mainly used with integral methods) 

As an alternative to modeling the Reynolds stresses one can 
model mean flow profile directly.  For simple 2-D flows 
this approach is quite food and will be used in this course.  
For complex and 3-D flows generally not successful.  
Consider the shape of turbulent velocity profiles.   

 
Note that very near the wall τlaminar must dominate since  

jiuuρ− = 0 at the wall (y = 0) and in the outer part 
turbulent stress will dominate.  This leads to the three layer 
concept: 
 
 
Inner layer:  viscous stress dominates 
 
Outer layer: turbulent stress dominates 
 
Overlap layer: both types of stress important 
 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 9 
Professor Fred Stern    Typed by Stephanie Schrader   Fall 1999 31
  

1) Inner layer (Prandtl, 1930) 
 

u = f(µ, τw, ρ, y)  note: not f(δ) 
 
   ( )++ = yfu    law-of-the-wall 
 

From dimensional 
analysis 

    u+ = y+

 

where:  *u
uu =+  

 
   u* = friction velocity = ρτ /w  
 

   
ν

=+
*yuy  

 
very near the wall: 

τ ∼ τw ∼ constant = 
dy
du

µ        ⇒    cyu =       or      u+ = y+ 

 
2) Outer layer (Karmen, 1933) 

 
( ) ( )y,,,guU woutere ρτδ=−  

  note: independent of µ and actually also depends on 
dx
dp  

    

   ⎟
⎠
⎞

⎜
⎝
⎛
δ

=
− yf

u
uU

*
e  velocity defect law From dimensional 

analysis 
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3) Overlap layer (Milliken, 1937) 
In order for the inner and outer layers to merge smooth 
 

   Byln1
u
u

* +
κ

= +   log-law 

 
    .41  5 
κ and B from experiments and independent of dp/dx 
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Note that the y+ scale is logarithmic and thus the inner 
law only extends over a very small portion of δ 

 
  Inner law region < .2δ 
 
And the log law encompasses most of the boundary-layer.  
Thus as an approximation one can simply assume 
 

  Byln1
u
u

* +
κ

=  

 
is valid all across the shear layer.  This is the approach used 
in this course for turbulent flow analysis.  The approach is a 
good approximation for simple and 2-D flows (pipe and flat 
plate), but does not work for complex and 3-D flows. 

ν
=

ρτ=

+

+

*
w

yuy

/u
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Momentum Integral Analysis 
 
Background:  History and Modern Approach: FD 
 
To obtain general momentum integral relation which is 
valid for both laminar and turbulent flow 
 

For flat plate or δ for general case 

( )dycontinuity)vu(equationmomentum
0y
∫ −+
∞

=
 

 

( )
dx
dU

U
H2

dx
dc

2
1

U f2
w θ

++
θ

==
ρ
τ   

dx
dUU

dx
dp

ρ=−  

   flat plate equation 0
dx
dU

=  

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=θ

δ

0
dy

U
u1

U
u   momentum thickness 

 

θ
δ

=
*

H     shape parameter 

 

dy
U
u1

0

* ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=δ

δ
  displacement thickness 

 
 
Can also be derived by CV analysis as shown next for flat 
plate boundary layer. 
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Momentum Equation Applied to the Boundary Layer 
 
 

y = h + δ*= streamline  
starts in uniform flow 

   merges with δ at 3 
 
 
 
 

Steady 
ρ = constant 
neglect g 
v << u = uo ⇒ p = constant 
i.e., -∇p = 0 

 
 
 
 
 
 
CV = 1, 2, 3, 4 
 

∫ τ==−
x

0
wdxbdragD         pressure force = 0 for v << Uo

force on CV  wall shear stress      u ∼ Uo
 
 

( ) ( )∫ ⋅ρ+∑ ∫ ⋅ρ=−=
31

x dAVudAVuDF  

 
   = ( ) ∫ρ+−ρ U  

3

22
o dyubbh

 

∫ρ−ρ=
δ

0

22
o dyubbhU)x(D  
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next eliminate h using continuity 
 

  

∫=

∫ρ=ρ

∫ ⋅ρ+∫ ⋅ρ=

δ

δ

0
o

0
o

31

udyhU

udybbhU

dAVdAV0

 
depends on u(y) 

 
   

  ( ) ∫ρ−∫ρ=
δδ

0

2

0
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    =  ( )∫ −ρ
δ

0
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  ∫ ⎟⎟
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             θ = momentum thickness 
 
 
  

  
L
2CD
θ
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∫ τ
=

ρ
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  ( ) ( )∫ θ=
ρ

τx
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w x2dxx
U

2
1

 

 

  
dx
d
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⎟
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⎜
⎜
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⎛

ρ
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dx
d

2
cf θ

=    cf = local skin friction coefficient 

 
    momentum integral relation for  

flat plate boundary layer 
 

  ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=θ
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u
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u
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Approximate solution for a laminar boundary-layer 
 
Assume cubic polynomial for u(y) 
 

32 DyCyByA
U
u

+++=
∞

 

 

0
y
uu 2

2
=

∂
∂

=   y = 0  A = 0 B = δ
2
3  

0
y
u;Uu =
∂
∂

= ∞  y = δ  C = 0 D = 3

2
1
δ−  

 
 

i.e., 
3y

2
1y

2
3

U
u

⎟
⎠
⎞

⎜
⎝
⎛
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+
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dx
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2
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U f2
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==
ρ
τ    momentu
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d139.

2
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U
1

2
δ

=⎥⎦
⎤

⎢⎣
⎡

δ
µ

ρ
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m integral equation for 0
dx
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=  

 dy
U
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U
u

0
∫ ⎟
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⎜
⎝
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=⎟⎟
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⎜⎜
⎝

⎛
δ

+
δ

=
=

2
3Uy

2
3

2
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0y
y  
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        Compare with 
          Exact Blassius 

i.e.,  
xRe
x65.4

=δ     
xRe

x5      7% ↓ 

 

  
x

2

w Re
V323. ρ

=τ     
x

2

Re
U332. ρ      3%↓  

  

  
x

f Re
646.c =     

xRe
664.  

 

  
L

f Re
29.1C =     

LRe
33.1  

 

( )∫ τ
ρ

=
L

0
w

2
f dxx

bLU
2
1

1C  

   span length 
 
total skin-friction drag coefficient
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Approximate solution Turbulent Boundary-Layer
 
  Ret ∼ 3 X 106 for a flat plate boundary layer 
        Recrit ∼ 500,000 

  
dx
d

2
cf θ

=      

 
as was done for the approximate laminar flat plate 
boundary-layer analysis, solve by expressing cf = cf (δ) and 
θ = θ(δ) and integrate, i.e. 
 
assume log-law valid across entire turbulent boundary-layer 
 

Byuln1
u
u *

* +
νκ

=    neglect laminar sub layer 
and velocity defect region 

 
at y = δ, u = U 
 

Buln1
u
U *

* +
ν
δ

κ
=  

     
2/1

f

2
cRe ⎟
⎠
⎞

⎜
⎝
⎛

δ  

 

or 5
2
cReln44.2

c
2 2/1

f
2/1

f
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
δ  

           
cf (δ) 

  power-law fit 6/1
f Re02.c −

δ≅
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Next, evaluate 

  ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=

θ δ

0
dy

U
u1

U
u

dx
d

dx
d  

 
can use log-law or more simply a power law fit 

7/1y
U
u

⎟
⎠
⎞

⎜
⎝
⎛
δ

=  Note: can not be 
used to obtain  cf (δ) 
since τw → ∞  

( )δθ=δ=θ
72
7  

 

⇒  
dx
dU

72
7

dx
dUU

2
1c 222

fw
δ

ρ=
θ

ρ=ρ=τ  

 

dx
d72.9Re 6/1 δ

=−
δ  

 

or 7/1
xRe16.

x
−=

δ  i.e., much faster 
growth rate than 
laminar 
boundary layer  

 
7/6x∝δ  almost linear 

 

7/1
x

f Re
027.c =  

 

( )LC
6
7

Re
031.C f7/1

L
f ==  
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Alternate forms given in text depending on experimental 
information and power-law fit used, etc.  (i.e., dependent on 
Re range.) 
 
Some additional relations given in texts for larger Re are as 
f

  
( ) L

58.2
L10

f Re
1700

Relog
455.C −

=   Re > 107

 

sh  
co

 

 
 
 
 

sh
c

 
 
 
 
 
 
 
 
 
F
th
R

is
ollows: 

 
Total 

ear-stress
efficient 
  ( )732.Relog98.c
L Lf −=
δ  

  ( ) 3.2
xf 65.Relog2c −−=  

Local  
ear-stress 
oefficient 

inally, a composite formula that takes into account both 
e initial laminar boundary-layer (with translation at  
eCR = 500,000) and subsequent turbulent boundary layer 

 
L

5/1
L

f Re
1700

Re
074.C −=   105 < Re < 107
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