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9.5 Quantitative Relations for the Turbulent Boundary
Layer

Description of Turbulent Flow
V and p are random functions of time in a turbulent flow
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The mathematical complexity of turbulence entirely
precludes any exact analysis. A statistical theory is well
developed; however, it is both beyond the scope of this
course and not generally useful as a predictive tool. Since
the time of Reynolds (1883) turbulent flows have been
analyzed by considering the mean (time averaged) motion
and the influence of turbulence on it; that is, we separate
the velocity and pressure fields into mean and fluctuating
components

u=u+u p=p+p'
v=v+ V' and for compressible flow
W=w+WwW p=p+p ' and T=T+T'
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where (for example)

e and tlsufﬁciently large
u=— [udt that the average is
b independent of time

Thus by definition u’' =0, etc. Also, note the following
rules which apply to two dependent variables fand g

f-g=f-g
g af L _ f=(u, v, w,p)
P, [fds = [fds s=(x,¥,21)

The most important influence of turbulence on the mean
motion is an increase in the fluid stress due to what are

called the apparent stresses. Also known as Reynolds
stresses:

!

_ 1ot
12 1t 1t .
—pu —puv —puw Symmetric
d
= _pu'V’ _pV’z —pv’w’ 2n OI'deI'
0 Ty 0 Ty 0 2 tensor
—Ppuw —PVW —PW
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The mean-flow equations for turbulent flow are derived by
substituting V = V + V' into the Navier-Stokes equations
and averaging. The resulting equations, which are called
the Reynolds-averaged Navier-Stokes (RANS) equations
are:

Continuity V-V=0 ie.V-V=0and V-V' =0

DV o

Momentum p—+ p—(u;ug): —pglA< ~Vp+uv?Vv
Dt 6xj
DV S
or —=—pgk-Vp+V.1.
P Dt pg p i
U =u X1 =X
_ 6[11 auj I % i N A2 i y
Tij_“’ +— —puluJ U3—W X3_Z
Comments: T

ij
1) equations are for the mean flow
2) differ from laminar equations by Reynolds stress

terms = u;u’

3) influence of turbulence is to transport momentum
from one point to another in a similar manner as
viscosity

4) since uju’; are unknown, the problem is

indeterminate: the central problem of turbulent flow
analysis 1s closure!

4 equations and 4 + 6 = 10 unknowns
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Hot-wire measurements showing turbulent veiocity fluctuations: (a) typical FIGURE 5-36

trace of a single velocity component in & turbulent flow; (b) trace showing

intermittent turbulence at the edge of a jet.
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Flat-plate measurements of the fluctuating velocities u’ (streamwise),
(normal), and @’ (lateral) and the turbulent shear u'v’. [After Klebanoff (1955).]
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FIGURE 537

The phenomenon of intermittency in a turbulent boundary 1sver: (a) measured
intermittency factors [afler Klebanoff (1955}]; (b) the superlayer interface be-
tween turbulent and nonturbulent fluid. ’
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Fig. 18.3. Measurement of fluctuating tur-
bulent components in a wind tunnel,
at maximum velocity U = 100 cm/sec
after Reichardt {41]

Root quare of itudinal i Vﬁ,

Fig. 18.4. Measurement of fluctuating com-
ponents in a channel, after Reichardt [41]

The product ¥’ v, the shearing stress 7/¢, and the cor-
relation coefficient v

transverse fluctuation )/Fy mean velocity #
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2-D Boundary-layer Form of RANS equations

o, ov_
ox Oy

ou ou  O(p.) 0u O [
Uu—+v_—=—|— +v—2——(uv)
ox oy ox\p dy

— .
requires modeling

Turbulence Modeling
Closure of the turbulent RANS equations require the

determination of —pu'v’, etc. Historically, two approaches

were developed: (a) eddy viscosity theories in which the
Reynolds stresses are modeled directly as a function of
local geometry and flow conditions; and (b) mean-flow
velocity profile correlations which model the mean-flow
profile itself. The modern approaches, which are beyond
the scope of this class, involve the solution for transport
PDE’s for the Reynolds stresses which are solved in
conjunction with the momentum equations.

(a) eddy-viscosity: theories
(mainly used with differential methods)

—_ ou In analogy with the laminar viscous
—puv =l - °
oy stress, 1.e., T, o« mean-flow rate of strain

The problem is reduced to modeling ., 1.e.,
L, = w(x, flow at hand)

Various levels of sophistication presently exist in
modeling
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He = thLtv\ where V, and L, are
turbulent
lenoth scal based an large scale
turbulent ength scale

: turbulent motion
velocity scale

The total stress 1s

B ou
Tiotal = (H + )g
molecular eddy viscosity
viscosity (for high Re flow p; >> )

Mixing-length theory (Prandtl, 1920)

7 [—2 [—2 based on kinetic
“puVv =Ccpyvu AV theory of gases
2 / 51_1
T hy, /1 and / , are mixing lengths

which are analogous to
molecular mean free path,

[—2 66 but much larger
vV = E ) g

oulou

distance across shear layer

Known as a zero ) = g(}a/

equation model since
no additional PDE’s

are solved, only an = f(boundary layer, jet, wake, etc.)
algebraic relation

= —puv =pl?
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Although mixing-length theory has provided a very useful
tool for engineering analysis, it lacks generality. Therefore,
more general methods have been developed.

One and two equation models

B Cpk?
3

Mt

C = constant

k* = turbulent kinetic energy
2 2

2, 2
=u“=u"+v +w

¢ = turbulent dissipation rate

Governing PDE’s are derived for k and € which contain
terms that require additional modeling. Although more
general then the zero-equation models, the k-¢ model also
has definite limitation; therefore, recent work involves the
solution of PDE’s for the Reynolds stresses themselves.
Difficulty is that these contain triple correlations that are
very difficult to model.
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(b) mean-flow velocity profile correlations
(mainly used with integral methods)
As an alternative to modeling the Reynolds stresses one can
model mean flow profile directly. For simple 2-D flows
this approach is quite food and will be used in this course.
For complex and 3-D flows generally not successful.
Consider the shape of turbulent velocity profiles.

Outer
turbulent

layer

Overlap layer
¥ Viscous

— wall layer

7.

(a) b)

Fig. 6.8 Typical velocity and shear distributions in turbulent flow near a wall: (a) shear;
(b) velocity. (

Note that very near the wall Tjypin. must dominate since
—pu,u;= 0 at the wall (y = 0) and in the outer part

turbulent stress will dominate. This leads to the three layer
concept:

Inner layer:  viscous stress dominates

Outer layer: turbulent stress dominates

Overlap layer: both types of stress important
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1) Inner layer (Prandtl, 1930)

u=1f(W, tw, p,y) note: not f(J)
From dimer.lsional ut = f(y+ ) law-of-the-wall
analysis
u+ _ y+
where: u' = 1*
u

very near the wall:

_ u +_ o+
T ~ Ty ~ constant = pd— = u=cy or u =y
y

2) Outer layer (Karmen, 1933)

(Ue _u)outer - g(s’rw 9p9 Y)

note: independent of u and actually also depends on j—p
X

) . U —u .
From dimensional ¢ = f(zj velocity defect law
analysis u o
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3) Overlap layer (Milliken, 1937)
In order for the inner and outer layers to merge smooth

Y lln y' o+ log-law

*

u K

!

41 5
k and B from experiments and independent of dp/dx

FIGURE 10.5
Velocity distribution for
mooth pipes. [After 10,000 -
Schlichting (36)]
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Velocity distribution in a
turbulent boundary
layer. Velocity
defect
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u Ny )
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Note that the y* scale is logarithmic and thus the inner
law only extends over a very small portion of o

Inner law region < .20

And the log law encompasses most of the boundary-layer.
Thus as an approximation one can simply assume

1_lhly—f‘lg *

¥ —

u K + _yu

is valid all across the shear layer. This is the approach used
in this course for turbulent flow analysis. The approach is a
good approximation for simple and 2-D flows (pipe and flat
plate), but does not work for complex and 3-D flows.

0.8
0.6 Pressure gradients:
a Strong favorable:.
U, Herring (1967)
Flate plate:
0.4 Wieghardt (1944)
Mild adverse:

Bradshaw (1966)
Strong adverse:
0.2 Ludwieg {1949)
Very strong adverse:
Schubauer {1960}

9? v, =_2ay Separating flow:
v =—24) Moses (1964)
0 1 1 L 1
0 0.2 04 0.6 0.8 1.0

c»|~<

FIGURE 6-4

Expgrimental turbulent-boundary-layer velocity profiles for various pressure
gradients.
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FIGURE 6-5
Replot of the velocity profiles of Fig. 6-4 using inner-law variables y* and u™*
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FIGURE 6-6
Comparison of Spalding’s inner-law expression with the pipe-flow data of

Lindgren (1965).
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Momentum Integral Analysis

Background: History and Modern Approach: FD

To obtain general momentum integral relation which is
valid for both laminar and turbulent flow

oo For flat plate or 6 for general case

[ (momentum equation +(u — v) continuity Jy
y=0

Twz :lcf:@+(2+H)Ed_U _@:pUd_U
pU” 2 dx U dx dx dx
flat plate equation du =0
dx
2 u u :
0= —(1 — —jdy momentum thickness
oU U
6*
H = r shape parameter
« O u . .
O =] (1 — doy displacement thickness
0

Can also be derived by CV analysis as shown next for flat
plate boundary layer.
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Momentum Equation Applied to the Boundary Laver

.y =h+ 0*= streamline
starts in uniform flow

merges with 6 at 3
g\ b(ba\

Steady
p = constant
neglect g
v <<u =u, = p = constant
ie.,-Vp=0

Cv=1,23,4

X
—D=drag=b|t dx pressure force = 0 for v << U,
/ AN
force on CV wall shear stress u~ U,

>F =-D= pju( dA)+pju(V dA)

=p(— Uibh)+ pbju’dy
3

0
D(x) = pUZbh —pb[u’dy
0
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next eliminate h using continuity

0=p]V-dA+p[V-dA
1 3

")
U_bh =pbjud
po pg Y\

depends on u(y)
)

U h = [udy
0

o o
D(x) = pbU, [udy - pbJu’dy
0 0

0 = momentum thickness

o
=pbfu(U, —u)dy
0
D 23 u u
CD = 1— = EJ.U—(I —U—jdy
—pUZL  ~0 %o 0
2 N
20
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bit.d
D Jrudx o

Cp = [

1, 1 5
“oU%A -~ pU?bL

| 1 Cw (x)dx = 26(x)
04,{}2
) PLo
I, |_db
21 _ o | dx
—pU
) P,
Or _ a6 c¢ = local skin friction coefficient
2 dx

momentum integral relation for
flat plate boundary layer

6=?i(1—iny

oU, u,
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Approximate solution for a laminar boundary-layer

Assume cubic polynomial for u(y)

UL=A+By+Cy2 + Dy’

o0

2 N
“:a—lzl=0 y=0 A=0 B=13
24 >
u=U; =0 y=s C=0 SELF
oy 7 9)
u_3y 1(yY _yl 33y s
" UT 28 2ls 28258 ) 28
T, 1 _do | &
> =~ C¢; =—— |momentum integral equation for — =0
5
lz{uUi}:.lwd—E) 9=Iu(1—£jdy
pU 20 dx o U U
—
du
Ty =U——
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Compare with
Exact Blassius

ie, = 5= 0 X 7% 4
JRe, Re,
2 2
. 323pV 332pU 3000
~JRe, Re,
.646 .664
Cf =
Re, Re,
Co_ 1.29 1.33
' ~JRep ~JRep
1 L
C; :I—ITW(X)dX
~pU?bL?
2
span length

— —
—~—

total skin-friction drag coefficient
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Approximate solution Turbulent Boundary-Lavyer

Re;~3 X 10° for a flat plate boundary layer
Re.i ~ 500,000

as was done for the approximate laminar flat plate
boundary-layer analysis, solve by expressing ¢ = c¢¢(d) and
0 = 0(9) and integrate, i.e.

assume log-law valid across entire turbulent boundary-layer

sk

i* _ lln& +B neglect laminar sub la){er
u K Vv and velocity defect region
aty=0,u=U
E* = llngl +B
u K Vv
\ c 1/2
Re; (jfj

> ¢t (0)

ce =.02 R65_1/6 power-law fit
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Next, evaluate
5
@_igﬁ_ﬂ@

dx dx o U U
can use log-law or more simply a power law fit
1/7
L (zj Note: can not be
U o

N used to obtain c¢ ()
since Ty, —» ©

0= 5-0()

72
— ’CW:CflpUzszzﬁzl Uzﬁ
2 dx 72 dx
Re; '° = 97290
dx
or o _ 16Re;"’ 1.e., much faster
X growth rate than
laminar
8 oc x®7 almost linear boundary layer
_.027
Cr = Re!/’
031 7
Cr = = _Cf(L)

- RelL/7 6
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Alternate forms given in text depending on experimental
information and power-law fit used, etc. (i.e., dependent on
Re range.)

Some additional relations given in texts for larger Re are as
follows:

Total 455 —~1700
shear-stress Ce = 258 R Re > 10’
coefficient (loglo Re| ) CL
0
[ c;(.98logRe, —.732)
Local 93
shear-stress Cr = (2 logRe, —.65 )
coefficient o

0.0100

0.0090
0.0080

0.0070
0.0060

0.0050 Average shear stress coefficient for
Cp = —=—— /completely turbulent boundary layer
L

0.0040

0.074

IV ARL

Laminar boundary layer

C,

! _ 0.45S _ 1700
0.0030 / /Cf_(lollloReL)z‘SB Re,
0.0025—

T~ Combination of laminar and
0.0020~ turbulent boundary layer
C, = 2974 1700
0.0015+ (A Re M5 Reg
0.0010 Lol boa- 4 a el 4 a s a1l NS
103 106 107 108 109
Uyl
Re, = Yo
v

Finally, a composite formula that takes into account both
the initial laminar boundary-layer (with translation at
Recr = 500,000) and subsequent turbulent boundary layer

is C; = '07;‘5 _1700 10° <Re < 10’
ReL ReL
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