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Chapter 9:  Surface Resistance 
 
9.1 Introduction: drag and lift on immersed bodies 
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For inviscid fluid, CD = 0 since both the form and skin 
friction components are zero, which is known as 
D’Alembert paradox.  However, CL ≠ 0 and can often be 
predicted accurately with ideal-flow theory. 
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In general, 
 
low Re < 1:  Cf > Cform Stoke’s flow (lab 1) 
 
med & high Re:  1. Cf >> Cform   
     t/c << 1  i.e., streamlined body 
       2. Cform >> Cf

t/c ∼ 1 i.e., bluff body 
 
1. = subject of this chapter 
2. = subject of chapter 11 along with CL
 
Topics of Chapter 9 
 
9.2 Surface Resistance with Uniform Laminar Flow   
1. parallel plates (internal flow) 

2. flow down an inclined plane (open channel flow) 

3. parallel plates with pressure gradient (internal flow) 

 
In this class: 
1. parallel plates 
2. extend as per 3. including inclined flow 
3. flow down an inclined plane 
 
 
9.3 Boundary Layer Flow  
9.4 Laminar external 

flow 9.5 Turbulent 
9.6 Transition control (brief comments) 
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9.2 Surface Resistance with Uniform Laminar Flow 
 
We now discuss a couple of exact solutions to the Navier-
Stokes equations.  Although all known exact solutions 
(about 80) are for highly simplified geometries and flow 
conditions, they are very valuable as an aid to our 
understanding of the character of the NS equations and 
their solutions.  Actually the examples to be discussed are 
for internal flow (Chapter 10) and open channel flow 
(Chapter 15), but they serve to underscore and display 
viscous flow.  Finally, the derivations to follow utilize 
differential analysis.  See the text for derivations using CV 
analysis. 
 
1. Couette Flow 

boundary conditions 
 
First, consider flow due to the relative motion of two 
parallel plates 
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or by CV continuity and momentum equations: 
yuyu 21 ∆ρ=∆ρ  

u1 = u2
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2. Generalization for inclined flow with a constant pressure 
gradient 
 
 
 
 
 
 
 
 

Continutity  0
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now apply boundary conditions to determine A and B 
  u(y = 0) = 0   ⇒   B = 0 
  u(y = t) = U 
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This equation can be put in non-dimensional form: 
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define:  P = non-dimensional pressure gradient 
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parabolic velocity profile 
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For laminar flow 1000tu
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The shape of the velocity profile u(y) depends on P: 
 

1. If P > 0, i.e., 0
dx
dh

<  the pressure decreases in the  

direction of flow (favorable pressure gradient) and the 
velocity is positive over the entire width 
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dx
dpzp

dx
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dx
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a) 0
dx
dp

<  

 

b) θγ< sin
dx
dp  

 
 
 

2. If P < 0, i.e., 0
dx
dh

>  the pressure increases in the 

direction of flow (adverse pressure gradient) and the 
velocity over a portion of the width can become 
negative (backflow) near the stationary wall.  In this 
case the dragging action of the faster layers exerted on 
the fluid particles near the stationary wall is insufficient 
to over come the influence of the adverse pressure 
gradient 
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3. If P = 0, i.e., 0
dx
dh

=  the velocity profile is linear 

y
t
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=  and θ = 0 

b) θγ= sin
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dp  

 
 

Note:  we derived 
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3. Shear stress distribution 
 
Non-dimensional velocity distribution 

( )* 1uu P Y Y
U

Y= = ⋅ − +  

where * uu
U

≡  is the non-dimensional velocity, 

 
2

2
t dhP
U dx

γ
µ

≡ − is the non-dimensional pressure gradient 

 
yY
t

≡ is the non-dimensional coordinate. 
Shear stress  

du
dy

τ µ=  

In order to see the effect of pressure gradient on shear 
stress using the non-dimensional velocity distribution, we 
define the non-dimensional shear stress: 

*
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*
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µ
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    ( )2 2 1PY P
Ut
µ

ρ
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    ( )2 1A PY P= − + +  

where 2 0A
Ut
µ

ρ
≡ >  is a positive constant.  

So the shear stress always varies linearly with across any 
section. 

Y
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At the lower wall ( )0Y = : 

    ( )* 1lw A Pτ = +  

At the upper wall : ( )1Y =

    ( )* 1uw A Pτ = −  
 
For favorable pressure gradient, the lower wall shear stress 
is always positive: 
 1. For small favorable pressure gradient ( )0 1P< < : 
     and  * 0lwτ > * 0uwτ >

 2. For large favorable pressure gradient ( )1P > : 
     and * 0lwτ > * 0uwτ <  
 
 
 
 

τ τ

 
 
 
 
 
 
 
 
 
              (0 P< < )1 ( )1P >  
 
 
For adverse pressure gradient, the upper wall shear stress is 
always positive: 
 1. For small adverse pressure gradient ( )1 0P− < < : 
     and  * 0lwτ > * 0uwτ >

 2. For large adverse pressure gradient ( )1P < − : 
    * 0lwτ <  and  * 0uwτ >
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τ τ

 
 
 
 
 
 
 
 
 
              ( )  ( 1 P− < < )0 1P < −
 
 
 
For , i.e., channel flow, the above non-dimensional 
form of velocity profile is not appropriate. Let’s use 
dimensional form: 

0U =

    ( ) ( )
2

1
2 2
t dh dhu Y Y y t

dx dx
γ γ
µ µ

y= − − = − −  

Thus the fluid always flows in the direction of decreasing 
piezometric pressure or piezometric head because 

0, 0
2

yγ
µ
> >  and . So if 0t y− > dh

dx  is negative, is 

positive; if 

u
dh
dx  is positive, is negative. u

 
 
Shear stress: 

    
1

2 2
du dh t y
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γτ µ ⎛ ⎞= = − −⎜ ⎟
⎝ ⎠

 

Since 1 0
2

t y⎛ ⎞− >⎜ ⎟
⎝ ⎠

, the sign of shear stress τ  is always 

opposite to the sign of piezometric pressure gradient dh
dx , 
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and the magnitude of τ  is always maximum at both walls 
and zero at centerline of the channel. 
 
 For favorable pressure gradient, 0dh

dx
< , 0τ >  

 For adverse pressure gradient, 0dh
dx

> , 0τ <  
 
 

τ τ

 
 
 
 
 
 
 
 
 
 

   0dh
dx

<       0dh
dx

>  
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Flow down an inclined plane 

 
uniform flow ⇒ velocity and depth do not 

       change in x-direction 
 

Continuity 0
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du
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in terms of the slope So = tan θ ∼ sin θ 
 

  
ν

=
3

SgdV o
2

 

 
Exp. show Recrit ∼ 500, i.e., for Re > 500 the flow will 
become turbulent 
 

  θγ−=
∂
∂ cos
y
p       

ν
=

dVRecrit  ∼ 500 

 
  Cycosp +θγ−=  
 
  ( ) Cdcospdp o +θγ−==  
 
i.e.,  ( ) opydcosp +−θγ=  
 
*  p(d) > po
 
*  if θ = 0  p = γ(d − y) + po      

entire weight of fluid imposed 
 
    if θ = π/2 p = po
   no pressure change through the fluid  
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9.3 Qualitative Description of the Boundary Layer  
 
Recall our previous description of the flow-field regions for 
high Re flow about slender bodies 
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τw = shear stress 
 
τw ∝ rate of strain (velocity gradient) 
 

 =
0yy

u

=∂
∂

µ  

 
    
    large near the surface where  

fluid undergoes large changes to 
satisfy the no-slip condition 
 
 
 

Boundary layer theory is a simplified form of the complete 
NS equations and provides τw as well as a means of 
estimating Cform.  Formally, boundary-layer theory 
represents the asymptotic form of the Navier-Stokes 
equations for high Re flow about slender bodies.  As 
mentioned before, the NS equations are 2nd order nonlinear 
PDE and their solutions represent a formidable challenge.  
Thus, simplified forms have proven to be very useful. 
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Near the turn of the century (1904), Prandtl put forth 
boundary-layer theory, which resolved D’Alembert’s 
paradox.  As mentioned previously, boundary-layer theory 
represents the asymptotic form of the NS equations for high 
Re flow about slender bodies.  The latter requirement is 
necessary since the theory is restricted to unseparated flow.  
In fact, the boundary-layer equations are singular at 
separation, and thus, provide no information at or beyond 
separation.  However, the requirements of the theory are 
met in many practical situations and the theory has many 
times over proven to be invaluable to modern engineering. 
 
 
The assumptions of the theory are as follows:  
 
  Variable     order of magnitude   
 u    U   O(1) 
 v    δ<<L  O(ε)  ε = δ/L 

      
x∂
∂     L   O(1) 

      
y∂
∂     1/δ   O(ε-1) 

 ν    δ2   ε2  
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The theory assumes that viscous effects are confined to a 
thin layer close to the surface within which there is a 
dominant flow direction (x) such that u ∼ U and v << u.  
However, gradients across δ are very large in order to 
satisfy the no slip condition. 
 
Next, we apply the above order of magnitude estimates to 
the NS equations. 
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Retaining terms of O(1) only results in the celebrated 
boundary-layer equations 
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Some important aspects of the boundary-layer equations: 
1) the y-momentum equation reduces to 
 

0
y
p
=

∂
∂  

 
 i.e.,  p = pe = constant across the boundary layer 
 

from the Bernoulli equation:    

=ρ+ 2
ee U

2
1p constant 

edge value, i.e., 
inviscid flow value! 

i.e.,  
x

UU
x
p e

e
e

∂
∂

ρ−=
∂
∂  

 
Thus, the boundary-layer equations are solved subject to 
a specified inviscid pressure distribution 

 
2) continuity equation is unaffected 
 
3) Although NS equations are fully elliptic, the 

boundary-layer equations are parabolic and can be 
solved using marching techniques 

 
4) Boundary conditions   

 
u = v = 0  y = 0 
 
u = Ue  y = δ 
 

+ appropriate initial conditions @ xi
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There are quite a few analytic solutions to the boundary-
layer equations.  Also numerical techniques are available 
for arbitrary geometries, including both two- and three-
dimensional flows.  Here, as an example, we consider the 
simple, but extremely important case of the boundary layer 
development over a flat plate. 
 
 
9.4 Quantitative Relations for the Laminar Boundary Layer
 
Laminar boundary-layer over a flat plate:  Blasius solution 
(1908)  student of Prandtl 
 

  0
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x
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 = 0 

for a flat plate 
 

  u = v = 0 @ y = 0  u = U∞ @ y = δ 
 
 
We now introduce a dimensionless transverse coordinate 
and a stream function, i.e., 
 

  
δ

∝
ν

=η ∞ y
x

Uy  

 
  ( )ην=ψ ∞ fxU  
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 ( )η′=
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η∂

η∂
ψ∂
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 ( )ff
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ν
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∂
ψ∂
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substitution into the boundary-layer equations yields 
 
   0f2ff =′′′+′′   Blasius Equation 
 
 0ff =′=    @ η = 0  1f =′    @ η = 1 
 
The Blasius equation is a 3rd order ODE which can be 
solved by standard methods (Runge-Kutta).  Also, series 
solutions are possible.  Interestingly, although simple in 
appearance no analytic solution has yet been found.  
Finally, it should be recognized that the Blasius solution is 
a similarity solution, i.e., the non-dimensional velocity 
profile f′ vs. η is independent of x.  That is, by suitably 
scaling all the velocity profiles have neatly collapsed onto a 
single curve. 
 
Now, lets consider the characteristics of the Blasius 
solution: 
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U
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