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Chapter 9 Differential Analysis of Fluid Flow

9.1 The Continuity Equation in Differential Form

The governing equations can be expressed in both integral
and differential form. Integral form is useful for large-scale
control volume analysis, whereas the differential form is
useful for relatively small-scale point analysis.

Application of RTT to a fixed elemental control volume
yields the differential form of the governing equations. For
example for conservation of mass

spv-A=-] Py
CS CVat

net outflow of mass = rate of decrease
across CS of mass within CV

Consider a cubical element oriented so that its sides are | | to
» the (x,y,z) axes

{pu + % (pu)dx}dydz

ydok wrr Mo’ - ) +««—%_?—EK“\ A dyde ,— outlet mass flux
eulydt ( Quttad woanan Yoot )

i &2 X
/ ,a\)'
inlet mass flux Az

pudydz ax Taylor series expansion
- retaining only first order term
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We assume that the element 1s infinitesimally small such
that we can assume that the flow is approximately one
dimensional through each face.

The mass flux terms occur on all six faces, three inlets, and
three outlets. Consider the mass flux on the x faces

—pudydz

outflux influx

X = [pu + 8Qx(pu) dx} dydz

_90 (pu)dxdydz
oX

| "

\
Similarly for the y and z faces

0
Yaux = g (p V)dXdde

2 = (pw)ixdydz

The total net mass outflux must balance the rate of decrease
of mass within the CV which is

op
—dxdyd
o
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Combining the above expressions yields the desired result

{?t) + a—(pu) + %(pv) + —(pw)}dxdydz 0

d¥
op
— —(pU) + 2 pv+ —(pW) 0 per unit¥
ot oy differential form of
continuity equations
P v.(pV)=0
ot ——
pV-V+V-Vp
PP pv.v =0 D_%ivy
Dt Dt ot

Nonlinear 1* order PDE; (unless p = constant, then linear)
Relates V to satisfy kinematic condition of mass
conservation

Simplifications:
1. Steady flow: V-(pV)=0

2. p=constant: V-V =0

e, MLV W_4 o3p
ox oy oz
o
Ox 0Oy
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9.3 Navier-Stokes Equations

Differential form of momentum equation can be derived by
applying control volume form to elemental control volume

The differential equation of linear momentum: elemental
fluid volume approach

| " -
' e
X::";l—o Ll x (eny d""‘_x gt
{'b\&a\ho\i »: 5 M

Nt g
b M Tt DR oo

" i

e

> F= d [ pVAV + [VpV-dA 1-D flow approximation
\dt CVY LS J

Y . .
B T = Z(miyi)out —Z(miXi)m
where h =pAV = pdydzu, x-face
Y
mass flux

o~ %(p\_’)dxdydz

© | 2w 2w vy s

x-face y-face  z-face
combining and making use of the continuity equation yields

DV DV oV
_ Y —===4V.VV
ZE—th dxdydz Dt o T VY

WhCI’C ZE = ZEbody + ZEsurface

10
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Body forces are due to external fields such as gravity or
magnetics. Here we only consider a gravitational field; that
1S,

zEbody — dEgraV — pngdde
and gz—gﬁ for gl zT
i'e'a ibody = _pgl2

Surface forces are due to the stresses that act on the sides of
the control surfaces

symmetric (G ij=0 ji)

Gji = - pOj; + Tjj 2" order tensor
normal pressure viscous stress
“5 — +
L 'p Txx Txy Txz
A . Tyx Pty Tyz
- b )

! { % Tzx sz 'p+TZZ

As shown before for p alone it 1s not the stresses
themselves that cause a net force but their gradients.

de,surf = i (GXX ) + 2 (G Xy )+ ag (G X7 ):|dXdeZ
Z

| op O 0 0
— __ o n a_X(TXX )+ 5(rxy )+ &(rxz )}dxdydz

11
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This can be put in a more compact form by defining

T, =T 0+ Tyy j+1,k vector stress on x-face
and noting that
dFy suf = {— @ +V.1, }dxdydz
[0);9
__o% ~
£ surf +V.1, per unit volume
oxX
similarly for y and z
fy st = _@+V.Iy Ty =Tyxi+Tyyj+Tka
fzsurf = _@+V'Iz Iz:TZX/i\_Fﬁcz,j—i_’czzl2
, o y
finally 1f we define
T =T, 1+1T,]+1,K then

Putting together the above results

DV
Z£ - £body + £surf - pﬁ
fbody =—pgk
fourface =—VP+ V- Tij
DV 0oV
a= =—+V-VV
Dt ot

12
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pa=—pgk—Vp+V-1;

inertia ~ body \ \
surface force

force force  surface
due to force due due to viscous
gravity top shear and normal
stresses

For Newtonian fluid the shear stress 1s proportional to the
rate of strain, which for incompressible flow can be written

Ty = Mej; n = coefficient of viscosity
gj = rate of strain tensor
ou ov Ou ow Ou
oxX ox Oy ox 0z
o, ov N ow oV
Oy 0OX oy oy 0z
ou @) o, ow ow
0z OX 0z Oy 0z
T= du 1-D flow
d

y
\ rate of strain

13
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p@=—pg13—Vp+V°(u81j)

-
H%(gij): uv:v

1

pa=—pgk-Vp+uv’Vv

pa = —V(p + yz) + uvz \% Navier-Stokes Equation
V-V=0 Continuity Equation

Four equations in four unknowns: V and p
Difficult to solve since 2™ order nonlinear PDE

ou  ou  éu au} op {82u 0%u azu}
+u +w = A )

—=x o+
8X2 8}’2 822

o’v 0*v 0%*v

[ Ov
FU— VW ==+ +
Pat Tox oy az} dy “Laxz oy’ aﬁ}

+
ot  ox oy oz oz | ox* oy® oz’
ou ov ow
+—+—=0
ox 0y 0z

Navier-Stokes equations can also be written in other
coordinate systems such as cylindrical, spherical, etc.

14
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There are about 80 exact solutions for simple geometries.
For practical geometries, the equations are reduced to
algebraic form using finite differences and solved using
computers.

Exact solution for laminar flow in a pipe
(neglect g for now)

use cylindrical coordinates: v, =u

Vi =V
u=u(r) only vo=w=0
o 0
Continuity: g(rv) =0= rv=constant =c¢
v=c/r
vr=0)=0=c¢=0
e, v=0

Momentum:

Du_ dp, az 10/ 1ou o%u
P /892 ror or’

Dt Ox
®é(+u®d+vay/ = @+p{lﬁu+62 }

r 8r 0 OX or or’

15
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12( @j _1op_,
ror\ or) uox
r@ = &rz +A

2

A o
u(r)= Zr +Alnr+B
ur=0)zo=A=0

oy A2 o

ur=r)=0= u(r)—z r°—1;
ie. u(r)= L@(1"2 —r’ ) parabolic velocity profile

16
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9.4 Differential Analysis of Fluid Flow

We now discuss a couple of exact solutions to the Navier-
Stokes equations. Although all known exact solutions
(about 80) are for highly simplified geometries and flow
conditions, they are very valuable as an aid to our
understanding of the character of the NS equations and
their solutions. Actually the examples to be discussed are
for internal flow (Chapter 8) and open channel flow
(Chapter 13), but they serve to underscore and display
viscous flow. Finally, the derivations to follow utilize
differential analysis. See the text for derivations using CV
analysis.

1. Couette Flow

= - 3 -A.-ﬁ"u-.-'d
LB

X s 7 7 7 T T T 77 77 Qo mso

boundary conditions

First, consider flow due to the relative motion of two
parallel plates

L ou )
Continuity Pl 0 u=u(y)
> V=0
d*u % = % =0
Momentum O=pu—r7r ox O
dy* Y

J

17
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or by CV continuity and momentum equations:
pu,Ay = pu,Ay > atw_a Py
U =u —

Pl e

> F, =X upV-dA =pQ(u, —u,)=0 -~

:pAy—(p+@AX)Ay—TAX+ T+Edy Ax=10
dx dy

de_

: d du
.e. —|u—|=0
dy\ dy

u0)=0=D=0
u(t)ZU:CZM%

LU
ty

du nU
T=Uu—=—=constant
dy t

18
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2. Generalization for inclined flow with a constant pressure
gradient

. [>\> \‘“‘ A By (=T
PN R P
s
ﬁ M) = o
\
Continutity ou =0 u=u(y)
OX V=0
r o Op
0 d*u —~ =0
Momentum 0= ——(p + yz)+ H—F oy
OX dy
J
1.e d’u _,dn h =p/y +z = constant
.., K dy’ Y dx
: dz
plates horizontal — =0
dx
plates vertical %2—1
dx
which can be integrated twice to yield
du dh
—=7y—Yy+A
2 dy Y dx y
dh y*

u=y—-—+Ay+B
K dez y

19
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now apply boundary conditions to determine A and B
uy=0)=0 = B=0
uy=t)=U

2
dx 2 t dx 2

u(y)=1 L2 EE

vy dh y* I{MU dht}
ndx 2 ul t dx 2

This equation can be put in non-dimensional form:

3__ﬁﬁ(1_zjz+z
t

U 2uU dx t)t

define: P =non-dimensional pressure gradient

2
_ ﬁ h=B+Z
2uU dx Y
Y =yt :_y22 ldp+dZ
2uU | ydx dx

= —=P-Y(I-Y)+Y
U

parabolic velocity profile

20
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Fig. 5.2. Couette flow between two parallel flat walls
P > 0, pressure decrease in direction of wall motion; P < 0, pressure increase; P = 0, zero pressure gradient

21
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u P 1 - tz( dhj U
—=—+-—>Du=—|-y— [+—
U 6 2 12u dx /) 2

For laminar flow ut <1000 ——Re.,ii~ 1000
\Y

The maximum velocity occurs at the value of y for which:

du d(u P 2P 1
dy dy\U t t t
= _L(P”)_EWLL@H forU=0,y=1t/2
¥ T op 2 2P ™™ Y
max Ymax 4 2 4P
note: 1f U=0: L:P/PZZ
u 6/ 4 3

22
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The shape of the velocity profile u(y) depends on P:

1.IfP>0, i.e.,j—h < 0 the pressure decreases in the
X

direction of flow (favorable pressure gradient) and the
velocity is positive over the entire width

yﬁzyi P, :d—p—ysin9
dx dx\y dx
a) d—p<0
dx
b) d—p<ysin6
dx

2. If P<O,1e., 3—}1 > ( the pressure increases in the
X

direction of flow (adverse pressure gradient) and the
velocity over a portion of the width can become
negative (backflow) near the stationary wall. In this
case the dragging action of the faster layers exerted on
the fluid particles near the stationary wall 1s insufficient
to over come the influence of the adverse pressure
gradient

23
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d :
P _ vsin® >0
dx
d : : d
—p>ysm9 or ysm6<—p
dx dx

3. IfP=0,1.e,, dh =0 the velocity profile is linear

dx
u= H
: y

dp Note: we derived

a) ol 0and0=0 this special case
X

b) dp =7vsin0

dx

For U = 0 the form % =PY(1-Y)+Y is not appropriate

u=UPY(1-Y)+UY

2
= —“—@Y(l—Y)+ UY
2u dx
2
Now let U= 0: u:—yt—%Y(l—Y)
2p dx

24
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3. Shear stress distribution

Non-dimensional velocity distribution
« U
=—=P-Y(1-Y)+Y
=3 (1-Y)+
u
U

t* dh. - - :
- 27/,1 T the non-dimensional pressure gradient

where u” =— is the non-dimensional velocity,

y. . . )
Y = 118 the non-dimensional coordinate.

Shear stress
_du
T= ,ud—y
In order to see the effect of pressure gradient on shear
stress using the non-dimensional velocity distribution, we

define the non-dimensional shear stress:

T* _ T
1
~ oU?
5 P
Then
o 1 Ud(uU) 24 du’
1pU2 # td(y/t) puUtdy
2
2u
=—"—(-2PY +P+1)
pUt
:2—“(—2PY +P+1)
PUt
= A(-2PY +P+1)
2u . .
where A=——>0 is a positive constant.

Ut

So the shear stress always varies linearly with Y across any

section.

25
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At the lower wall (Y =0).

7w = A(1+P)
At the upper wall (Y =1):
7o = A(1-P)

For favorable pressure gradient, the lower wall shear stress
is always positive:
1. For small favorable pressure gradient (0<P <1):
‘L':N >0 and Z':W >0
2. For large favorable pressure gradient (P >1):

7, >0 and 7, <0

(0<P<1) (P>1)

For adverse pressure gradient, the upper wall shear stress 1s
always positive:
1. For small adverse pressure gradient (-1<P <0):

T::N >0 and T:W > ()
2. For large adverse pressure gradient (P <-1):

7w <0 and 7, >0

26
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(-1<P<0) (P<-1)

For U =0, 1.e., channel flow, the above non-dimensional
form of velocity profile is not appropriate. Let’s use
dimensional form:
yt* dh y dh
U=—2—"Y(1-Y)=—Z—y(t-
2u dx ( ) 2 dx y(t-y)
Thus the fluid always flows in the direction of decreasing
piezometric pressure or piezometric head because
.. dh : :
250, y>0 and t—=y>0.Soif — is negative, U is
2u dx

.. ..dh i . :
positive; if ix 8 positive, U is negative.

Shear stress:

du y dh 1
= e — t__
‘ ﬂdy 2 dx( 2yj

. 1 . .
Since (t Y y) >0, the sign of shear stress 7 is always

dh

opposite to the sign of piezometric pressure gradient ol

27
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and the magnitude of - 1s always maximum at both walls
and zero at centerline of the channel.

. dh
For favorable pressure gradient, <0 T> 0

For adverse pressure gradient 30 T 0

- T
S
ﬁ<0 %>O
dx dx

28
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Flow down an inclined plane

uniform flow = velocity and depth do not
change in x-direction

Continuity j—u =0
X
d*u
(p+7vz)+u—

x-momentum (0=-——
OX dy

0
y-momentum 0=-— (p +YZ ) — hydrostatic pressure variation

du = —xsin9y+c

dy

29
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y 2
u= ——sin@y—+Cy+D
) 2
du Y . Y .
—| =0=-—-sinbd+c=c=+-+sin06d
dy|,_q i i
u(0)=0 = D=0
Yoy LY
u=-—-sin0=—+-sin0dy
H 2
_ T
="' sin0y(2d-y)
2p
_gsin0
u(y) ==~ ——y(2d-y)
d 3¢ .
q=[udy = ¥ sin® dy? — Yy dlscharge per
0 21 3 0 unit width
= l1d3 sin 0
3
v _9_ly o . gd
Vaye =—=—-d"sinf==—sinb
d 3pu \Y

30
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in terms of the slope S, =tan 6 ~ sin 0

2
v: gd S0
3v

Exp. show Re.;; ~ 500, i.e., for Re > 500 the flow will
become turbulent

@ = —’Y COSO Recrit = V_d ~ 500
A%

p=—-ycosOy+C
p(d)=p, =-ycosbd +C
ie., p=ycosO(d—y)+p,

* p(d)>po

*it0=0  p=vd-y)*+po
entire weight of fluid imposed

if0=n/2 p=p,
no pressure change through the fluid
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