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Chapter 9 Flow over Immersed Bodies  
 
Basic Considerations 
 
Recall separation of drag components into form and skin-
friction 
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Streamlining: One way to reduce the drag 
 
Make a body streamlined: 
 
  reduce the flow separation reduce the pressure drag 
  increase the surface area  increase the friction drag 
 

 Trade-off relationship between pressure drag and friction drag 
 

 
Trade-off relationship between pressure drag and friction drag 

 
 
Benefit of streamlining: reducing vibration and noise 
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Qualitative Description of the Boundary Layer  
 
Recall our previous description of the flow-field regions for 
high Re flow about slender bodies 
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τw = shear stress 
 
τw ∝ rate of strain (velocity gradient) 
 

 =
0yy

u

=∂
∂

µ  

 
    
    large near the surface where  

fluid undergoes large changes to 
satisfy the no-slip condition 
 
 
 

Boundary layer theory is a simplified form of the complete 
NS equations and provides τw as well as a means of 
estimating Cform.  Formally, boundary-layer theory 
represents the asymptotic form of the Navier-Stokes 
equations for high Re flow about slender bodies.  As 
mentioned before, the NS equations are 2nd order nonlinear 
PDE and their solutions represent a formidable challenge.  
Thus, simplified forms have proven to be very useful. 
 
Near the turn of the century (1904), Prandtl put forth 
boundary-layer theory, which resolved D’Alembert’s 
paradox.  As mentioned previously, boundary-layer theory 
represents the asymptotic form of the NS equations for high 
Re flow about slender bodies.  The latter requirement is 
necessary since the theory is restricted to unseparated flow.  
In fact, the boundary-layer equations are singular at 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 9 
Professor Fred Stern   Fall 2006  5

separation, and thus, provide no information at or beyond 
separation.  However, the requirements of the theory are 
met in many practical situations and the theory has many 
times over proven to be invaluable to modern engineering. 
 
The assumptions of the theory are as follows:  
 
  Variable     order of magnitude   
 u    U   O(1) 
 v    δ<<L  O(ε)  ε = δ/L 

      
x∂
∂     L   O(1) 

      
y∂
∂     1/δ   O(ε-1) 

 ν    δ2   ε2  
 
The theory assumes that viscous effects are confined to a 
thin layer close to the surface within which there is a 
dominant flow direction (x) such that u ∼ U and v << u.  
However, gradients across δ are very large in order to 
satisfy the no slip condition. 
 
Next, we apply the above order of magnitude estimates to 
the NS equations. 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 9 
Professor Fred Stern   Fall 2006  6

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

µ+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

2

y
u

x
u

x
p

y
uv

x
uu  

 1  1     ε  ε-1         ε2    1        ε-2 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

µ+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

2

x
v

x
v

y
p

y
vv

x
vu  

 1  ε    ε  1  ε2   1 ε-1 

 

 0
y
v

x
u

=
∂
∂

+
∂
∂  

1  1 
 

 
Retaining terms of O(1) only results in the celebrated 
boundary-layer equations 
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Some important aspects of the boundary-layer equations: 

1) the y-momentum equation reduces to 
 

0
y
p
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∂
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elliptic 

parabolic 
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 i.e.,  p = pe = constant across the boundary layer 
 

from the Bernoulli equation:    

=ρ+ 2
ee U

2
1p constant 

i.e.,  
x

UU
x
p e

e
e

∂
∂

ρ−=
∂
∂  

 
Thus, the boundary-layer equations are solved subject to 
a specified inviscid pressure distribution 

 
2) continuity equation is unaffected 
 
3) Although NS equations are fully elliptic, the 

boundary-layer equations are parabolic and can be 
solved using marching techniques 

 
4) Boundary conditions   

 
u = v = 0  y = 0 
 
u = Ue  y = δ 
 

+ appropriate initial conditions @ xi 
 
There are quite a few analytic solutions to the boundary-
layer equations.  Also numerical techniques are available 
for arbitrary geometries, including both two- and three-
dimensional flows.  Here, as an example, we consider the 

edge value, i.e., 
inviscid flow value! 
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simple, but extremely important case of the boundary layer 
development over a flat plate. 
 
 
Quantitative Relations for the Laminar Boundary 
Layer 
 
Laminar boundary-layer over a flat plate:  Blasius solution 
(1908)  student of Prandtl 
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  u = v = 0 @ y = 0  u = U∞ @ y = δ 
 
 
We now introduce a dimensionless transverse coordinate 
and a stream function, i.e., 
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for a flat plate 
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substitution into the boundary-layer equations yields 
 
   0f2ff =′′′+′′   Blasius Equation 
 0ff =′=    @ η = 0  1f =′    @ η = 1 
 
The Blasius equation is a 3rd order ODE which can be 
solved by standard methods (Runge-Kutta).  Also, series 
solutions are possible.  Interestingly, although simple in 
appearance no analytic solution has yet been found.  
Finally, it should be recognized that the Blasius solution is 
a similarity solution, i.e., the non-dimensional velocity 
profile f′ vs. η is independent of x.  That is, by suitably 
scaling all the velocity profiles have neatly collapsed onto a 
single curve. 
 
Now, lets consider the characteristics of the Blasius 
solution: 
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Quantitative Relations for the Turbulent 
Boundary Layer 
 
2-D Boundary-layer Form of RANS equations 
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For flat plate or δ for general case 
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      requires modeling 
 
Momentum Integral Analysis 
 
Background:  History and Modern Approach: FD 
 
To obtain general momentum integral relation which is 
valid for both laminar and turbulent flow 
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y = h + δ*= streamline  
starts in uniform flow 

   merges with δ at 3 

Steady 
ρ = constant 
neglect g 
v << u = uo ⇒ p = constant 
i.e., -∇p = 0 

Can also be derived by CV analysis as shown next for flat 
plate boundary layer. 
 
Momentum Equation Applied to the Boundary Layer 
 
 
 
 
 
 
 
 
 
 
 
 
CV = 1, 2, 3, 4 
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force on CV  wall shear stress      u ∼ Uo 
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next eliminate h using continuity 
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Approximate solution for a laminar boundary-layer 
 
Assume cubic polynomial for u(y) 
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i.e., 
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total skin-friction drag coefficient 
 
Approximate solution Turbulent Boundary-Layer 
 
  Ret ∼ 3 X 106 for a flat plate boundary layer 
        Recrit ∼ 500,000 

  
dx
d

2
cf θ

=      

 
as was done for the approximate laminar flat plate 
boundary-layer analysis, solve by expressing cf = cf (δ) and 
θ = θ(δ) and integrate, i.e. 
 
assume log-law valid across entire turbulent boundary-layer 
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Alternate forms given in text depending on experimental 
information and power-law fit used, etc.  (i.e., dependent on 
Re range.) 
 
Some additional relations given in texts for larger Re are as 
follows: 
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Finally, a composite formula that takes into account both 
the initial laminar boundary-layer (with translation at  
ReCR = 500,000) and subsequent turbulent boundary layer  

is 
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Drag of 2-D Bodies 
 
First consider a flat plate both parallel and normal to the 
flow 
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where Cp based on experimental data 
 
 

vortex wake 
typical of bluff body flow 

flow pattern 
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Cf  = 0 
 
For bluff body flow experimental data used for cD. 
 
In general, Drag = f(V, L, ρ, µ, c, t, ε, T, etc.) 
from dimensional analysis 
      c/L 
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Potential Flow Solution:  θ⎟⎟
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Flow Separation 
 
Flow separation:  

The fluid stream detaches itself from the surface of the body at 
    sufficiently high velocities. Only appeared in viscous flow!! 
 
Flow separation forms the region called ‘separated region’ 
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Inside the separation region: 
low-pressure, existence of recirculating/backflows 
viscous and rotational effects are the most significant! 

 
Important physics related to flow separation: 

’Stall’ for airplane (Recall the movie you saw at CFD-PreLab2!) 
Vortex shedding  

(Recall your work at CFD-Lab2, AOA=16°! What did you see in 
your velocity-vector plot at the trailing edge of the air foil?) 
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Magnus effect: Lift generation by spinning 
 
Breaking the symmetry causes the lift!  

 
 
Effect of the rate of rotation on the lift and drag coefficients of a 
smooth sphere: 
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Lift acting on the airfoil 
 
Lift force: the component of the net force (viscous+pressure) that 
is perpendicular to the flow direction 
 

 
 
Variation of the lift-to-drag ratio with angle of attack: 

 
The minimum flight velocity: 

Total weight W of the aircraft be equal to the lift 
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< 0.3 flow is incompressible, 
                  i.e., ρ ∼ constant 

Effect of Compressibility on Drag: CD = CD(Re, 
Ma) 
 

a
UMa ∞=  

   speed of sound = rate at which infinitesimal 
disturbances are propagated from their 
source into undisturbed medium 

 
Ma < 1  subsonic    
Ma ∼ 1  transonic  (=1 sonic flow)  
Ma > 1  supersonic 
Ma >> 1  hypersonic 
 
CD increases for Ma ∼ 1 due to shock waves and wave drag 
 

Macritical(sphere) ∼ .6 
 
Macritical(slender bodies) ∼ 1 
 
For U > a:   upstream flow is not warned of approaching  

disturbance which results in the formation of 
shock waves across which flow properties 
and streamlines change discontinuously 
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