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Chapter 9 Flow over Immersed Bodies

Fluid flows are broadly categorized:

1. Internal flows such as ducts/pipes, turbomachinery, open
channel/river, which are bounded by walls or fluid interfaces:
Chapter 8.

2. External flows such as flow around vehicles and structures,
which are characterized by unbounded or partially bounded
domains and flow field decomposition into viscous and
inviscid regions: Chapter 9.

a. Boundary layer flow: high Reynolds number flow
around streamlines bodies without flow separation.

Re < 1: low Re flow (creeping or Stokes flow)
Re >~ 1,000: Laminar BL
Re > ~ 5x10° (Rey): Turbulent BL
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b. Bluff body flow: flow around bluff bodies with flow
separation.
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3. Free Shear flows such as jets, wakes, and mixing layers,
which are also characterized by absence of walls and
development and spreading in an unbounded or partially
bounded ambient domain: advanced topic, which also uses
boundary layer theory.

wake

FIGURE 4-19
Flow in the wake of a body immersed in a stream. Figure 20.16 Plane laminar jet into an infinite medium.

Basic Considerations

Drag is decomposed into form and skin-friction
contributions:
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Streamlining: One way to reduce the drag

—> reduce the flow separation—>reduce the pressure drag
—> increase the surface area - increase the friction drag

—> Trade-off relationship between pressure drag and friction drag

—~ -
_Fp |
Pl

0.12

0.10
0.08

0.06

Friction
0.04| drag

0.02
Pressure drag

0 \
0 0.1 0.2 0.3 0.4

DIL
Trade-off relationship between pressure drag and friction drag

Benefit of streamlining: reducing vibration and noise
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Qualitative Description of the Boundary Layer

Flow-field regions for high Re flow about slender bodies:
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Tw = Shear stress

Tw oc rate of strain (velocity gradient)

y=0

\ large near the surface where

fluid undergoes large changes to
satisfy the no-slip condition

Boundary layer theory and equations are a simplified form
of the complete NS equations and provides t,, as well as a
means of estimating Cim.  Formally, boundary-layer
theory represents the asymptotic form of the Navier-Stokes
equations for high Re flow about slender bodies. The NS
equations are 2" order nonlinear PDE and their solutions
represent a formidable challenge. Thus, simplified forms
have proven to be very useful.

Near the turn of the last century (1904), Prandtl put forth
boundary-layer theory, which resolved D’Alembert’s
paradox: for inviscid flow drag is zero. The theory is
restricted to unseparated flow. The boundary-layer
equations are singular at separation, and thus, provide no
information at or beyond separation. However, the
requirements of the theory are met in many practical
situations and the theory has many times over proven to be
iInvaluable to modern engineering.
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The assumptions of the theory are as follows:

Variable order of magnitude

u U 0(1)

Y o<<L O(e) e =d/L
o UL 0(1)
O0X

0 -1
— 1/5 O(e™)
oy

\Y, 5 g

The theory assumes that viscous effects are confined to a
thin layer close to the surface within which there is a
dominant flow direction (x) such that u ~ U and v << u.
However, gradients across & are very large in order to

: : » 0
satisfy the no slip condition; thus, i>>—.

oy OX

Next, we apply the above order of magnitude estimates to
the NS equations.
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Retaining terms of O(1) only results in the celebrated

boundary-layer equations

> parabolic
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Some important aspects of the boundary-layer equations:
1) the y-momentum equation reduces to

P _q
oy
Le., P = pe = constant across the boundary layer

from the BernouI‘Iiequmedge value, i.e.,

i inviscid flow value!
p, + —pUZ =constant
2

: 0 ouU
Le., Pe _ —-pU, —=

OoX OX
Thus, the boundary-layer equations are solved subject to

a specified inviscid pressure distribution

2) continuity equation is unaffected

3) Although NS equations are fully elliptic, the
boundary-layer equations are parabolic and can be
solved using marching techniques

4) Boundary conditions

u=v=0 y=0

u==U y=0

+ appropriate initial conditions @ X;
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There are quite a few analytic solutions to the boundary-
layer equations. Also numerical techniques are available
for arbitrary geometries, including both two- and three-
dimensional flows. Here, as an example, we consider the
simple, but extremely important case of the boundary layer
development over a flat plate.

Quantitative Relations for the Laminar Boundary
Layer

Laminar boundary-layer over a flat plate: Blasius solution

(1908) student of Prandtl
‘B? ‘s
8_u+ v _ 0 M,_%ﬁii 5
ox oy e M»m x
5
Note: = =0 ou  ou o°u
OX Uu—+Vv—=v——

for a flat plate ox oy oy’

u=v=0@y=0 u=U, @y=9o

We now introduce a dimensionless transverse coordinate
and a stream function, i.e.,
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u="L_YA _y () fr=u/U,
dy  0Om oy
0 1 (vU
ve- o2 e (1)
ox 2 X

Substitution into the boundary-layer equations yields

ff"+2f" =0 Blasius Equation
f=f'=0 @n=0 f’'=1 @n-=1

The Blasius equation is a 3™ order ODE which can be
solved by standard methods (Runge-Kutta). Also, series
solutions are possible. Interestingly, although simple in
appearance no analytic solution has yet been found.
Finally, it should be recognized that the Blasius solution is
a similarity solution, i.e., the non-dimensional velocity
profile ' vs. n is independent of x. That is, by suitably
scaling all the velocity profiles have neatly collapsed onto a
single curve.

Now, lets consider the characteristics of the Blasius
solution:

u
—— VS.y

VS. y

C‘<
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SX
N ﬁ value of y where u/U,, = .99
R e - U ?/O X

Velocity distribution in
laminar boundary layer.
[After Blasius (3)].

TABLE 9.1 RESULTS—& AND 7, FOR DIFFERENT VALUES OF x

x=01ft x=10ft x=2ft x=4ft x=6f

x"? 0.316 1.00 1.414 2.00 2.45
7o, psf 0.552 0.174 0.123 0.087 0.071
8, ft 0.005 0.016 0.022 0.031 0.039
8, in. 0.060 0.189 0.270 0.380 0.466
| : 2 A
%\'\-«\«& \"3 Alrary . L(.'btf\ \,\AKNJ__ e W4 % VHQ\ /7 /
Ane, Toab‘(g q-‘ % 5 y,
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. nu_£7(0)
" [12vx [ U
o0
see below
/

: 21 0.664 0 -
le., C,=——= = — : Local friction coeff.

_pUi Re, X

b -
C, = b—chfdx =2¢,(L) - Friction drag coeff.
0
Note: = 1928 =L
b = plate width
L = plate length Hk/ '

- g2 [PH
Wall shear stress: 7, =0.332U ] «/ L or r, =0.3324 (U, /x)|Re,

Other:

)
5 = j[l— L]dy —1.7208 displacement thickness

0 U

o]

Re

X

measure of displacement of inviscid flow due to
boundary layer

U U Re

[’} o0 X

8 u ) u X :
0= j[l— —j—dy = 0.664 momentum thickness
0

measure of loss of momentum due to boundary layer

*

H = shape parameter = 83:2.5916
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TABLE 4-1

Numerical solution of the Blasius flat-plate
relation, Eq. (4-45)

n fin) Iin) fin)
0.0 0.0 0.0 0.46960
0.1 0.00235 0.04696 0.46956
0.2 0.00939 0.09391 0.46931
0.3 0.02113 0.14081 0.46861
0.4 003755 0,18761 0.46725
05 0.05864 0.23423 0.46503
0.6 0.08439 0.28058 0.46173
0.7 0.11474 0.32653 0.45718
0.8 0.14967 037196 0.45119
0.9 0.18911 0.41672 0.44363 .
1.0 0.23299 0.46063 0.43438
1.1 0.28121 0.50354 0.42337
12 0.33366 0.54525 0.41057
1.3 0.39021 0.58559 0.39598
14 0.45072 0.62439 0.37969
1.5 0.51503 0.66147 0.36180
1.6 0.58296 0.69670 0.34249
1.7 0.65430 0.72993 0.32195
18 0.72887 0.76106 0.30045
19 .80644 0.79000 0.27825
20 0.88680 0.81669 0.25567
22 1.05495 0.86330 0.21058
24 1.23153 0.90107 0.16756
2.6 1.41482 0.93060 0.12861
28 1.60328 0.95288 0.09511
30 1.79557 0.96%05 0.06771
32 1.99058 0.98037 0.04637
34 2.18747 0.98797 0.03054
36 2.38559 0.99289 0.01933
I8 2._58450 0.99594 0.01176
4.0 2.78388 0.99777 0.00687
42 298355 0.99882 0.00386
44 318338 0.99940 0.00208
4.6 3.38329 0.99970 0.00108
4.8 3.58325 0.99986 0.00054
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FIGURE 4-6
The Blasius solution for the flat-plate boundary layer: (a) numerical solution of Eq 14-45% (b)
comparison of f* = u/U with esperiments by Liepmann (1043)
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Quantitative Relationsfor the Turbulent
Boundary Layer

2-D Boundary-layer Form of RANS equations

ou ov
—+—=0
oX oYy

Uu—+VvV—=—-— tV—— -
OX oy ox\p ) oy" oy
requires modeling

ou  ou a(pew o°u a(u,v,)

Momentum Integral Analysis

Historically similarity and AFD methods used for idealized
flows and momentum integral methods for practical
applications, including pressure gradients. Modern
approach: CFD.

To obtain general momentum integral relation which is
valid for both laminar and turbulent flow

For flat plate or & for general case

[(momentum  equation -+ (u — v) continuity )dy
y=0

1 de 0 du d dU
fw =—C,=—+(2+H)—— ——p:pU—
pU? 2 dx U dx dx dx

-

flat plate equation Zi =0
X
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5y u )
0=[—|1-—|dy momentum thickness
o U U
8*
H=— shape parameter
0
. 0 u ) )
S = j(l— —]dy displacement thickness
U
0

Can also be derived by CV analysis as shown next for flat
plate boundary layer.

Momentum Equation Applied to the Boundary Layer

Consider flow of a viscous fluid at high Re past a flat plate, i.e.,
flat plate fixed in a uniform stream of velocityur .

Y
Constant ae? U
pressure -ge ed’ —~1
\ine out‘i\/// |
m
U y=H Sﬁei/’ Control | s
—— 99%
> I'_ volume | |
i : i
b/ 17 ()
| | -
n_y Drag force D I
e i i No-sli
U e e e e | o 0-slip Flat
0
} X > plate

Boundary-layer thickness arbitrarily defined by y = J4,, (Where,
J494, 1S the value of y at u = 0.99U). Streamlines outside &y, Will

deflect an amounts” (the displacement thickness). Thus the
streamlines move outward fromy =H at x=0 to

y=Y=6=H+d at x=x,.
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Conservation of mass:

H H+o
[ovena=0=-[ pUdy+[  pudy

o

Assume incompressible flow (constant density):

UH :J'OYudy =LY(U +u-U)dy =UY +J'OY(u—U)dy

0

Substituting Y = H + 5 defines displacement thickness:

5 =) (1— ijoly

U

s is an important measure of effect of BL on external flow.
Consider alternate derivation based on equivalent flow rate:

d

o0* Lan=6/3

0* Turb=56/8

) o
IUdy =J'udy
5" 0

H_J
Inviscid flow about 6* body

*
Flowrate between & and ¢ of inviscid flow=actual flowrate, i.e., inviscid flow rate
about displacement body = viscous flow rate about actual body

) ) 5 )

. u
_[Udy —jUdy :Iudy = :j(l——de
0 0 0 0 U
w/o BL - displacement effect=actual discharge

For 3D flow, in addition it must also be explicitly required that 5"
IS a stream surface of the inviscid flow continued from outside of
the BL.
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Conservation of x-momentum:

H v
>F =-D= CJ'Spu\LogdAz—jo pU (Udy)+j0 pu (udy)

Drag = D = pU °H —jg puzdy
= Fluid force on plate = - Plate force on CV (fluid)

Again assuming constant density and using continuity:

Y u
H=l oY

Y
D = pU 2J'OYu /Udy—pj'uzdy = onrwdx
0

D u u
=0 = jg —(1— —de
pU 2 U U
where, 6 is the momentum thickness (a function of x only), an

important measure of the drag.

2D 26 1. _
C,=———=—=—[c,dx Perunitspan
pU "X X X
T d do
C,=7"—=>¢, =—(xCy)=2—
1 2 dx dx .
— pU Special case 2D
2 momentum integral
do ¢, ,do equation for dp/dx =0
- = r,=pU"—

0 Coordinate normal to the wail
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Simple velocity profile approximations:

u=U(@2y/s-y2is?)

u(0)=0 no slip
u@®)=uU matching with outer flow
Uy(8)=0

Use velocity profile to get C¢(0) and 6(8) and then integrate
momentum integral equation to get 5(Rey)

0% =9/3
0 =206/15
H= 6*/6=5/2

t,=2uU 19

2uU |6 dé d
=>C=————>=2—=2—(26/15)
1/2pU dx dx

§/x=55/Re’”
Re, =Ux/v;
S /x—183/Re? S~ 10% error, cf. Blasius

61x=0.73/Re?

C, =1.46/Re!" =2C (L)
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Approximate solution Turbulent Boundary-Layer

Re, = 5x10°~ 3x10°for a flat plate boundary layer
Regit ~ 100,000

o
D

Ci
2

o

X

as was done for the approximate laminar flat plate
boundary-layer analysis, solve by expressing ¢t = ¢¢(d) and
0 = 0(d) and integrate, i.e. assume log-law valid across
entire turbulent boundary-layer

u 1 yu neglect laminar sub layer and
—=—In—+B loci ; _

u K v velocity defect region
aty=o,u=U

u 1 38u

—=—In—+B

or il/2—244||rR -
[ ] o ( [

¢, =.02Re, "'° power-law fit
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Next, evaluate

can use log-law or more simply a power law fit
h
1/7

u_ [X) Note: cannot be used to
U o > obtain cs (8) since 1, — o
.
0=—35=0(5)
72 )
1, ,do 7 ,dé
= Ty =Cf —pU =pU" —=—pU" —
2 dx 72 dx
_ do
Re, '° =972 —
dx
or 2-016Re” i.e., much faster
X growth rate than
5o x°'" almost linear  laminar
boundary layer
0.027
“r = Rel’
0.031 7
- - —c, (L
=g (L)

These formulas are valid for a fully turbulent flow over a
smooth flat plate from the leading edge. Assuming the
transition from laminar to turbulent occurs at Re larger than
10°, those formulas in general give better results for
sufficiently large Reynolds number Re_ > 10"
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Alternate forms by using the same velocity profile u/U =
(y/8)Y" assumption but using an experimentally determined
shear stress formula z, = 0.0225pU%(VIUS)™ are:

) s 0.058 0.074

_20'37Re>< Cy = 1/5 C,= 1/5

X Re, Re/
- 0.029pU

shear stress: 7, T

These formulas are valid only in the range of the
experimental data, which covers Re_ = 5 x 10> ~ 10’ for
smooth flat plates.

Other empirical formulas for smooth flat plates are as
follows:

Total 0.455
shear-stress Cr = (log,o Re, )58
coefficient

)
—=1c,(.98log Re | —.732)
L

Local

shear-stress 23
coefficient ¢ =(2log Re , —.65)

For the experimental/empirical formulas, the boundary
layer is usually “tripped” by some roughness or leading
edge disturbance, to make the boundary layer turbulent
from the leading edge.
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Finally, composite formulas that take into account both the
initial laminar boundary layer and subsequent turbulent
boundary layer, i.e. in the transition region (5 x 10° < Re, <
8 x 10") where the laminar drag at the leading edge is an
appreciable fraction of the total drag:

c 0.031 1440
f= 1
Re/ Re,
c 0.074 1700
r = % ReL
ReL
or
0.455 1700

C; = -
! (loglo ReL)z'SS ReL

with transitions at Re; = 5 x 10° for all cases.

0.008

0.007

0.006

Cf = 1.33/Re”(1/2)

0.005 D _
\ \ ———Cf=0.031/Rer1/7)
Cf 0.004 >

R Cf = 0.074/ReM(1/5)
0.003 - = g:{:__‘.‘ Cf=0.455/(log Re)"2.58
& = === Cf=0.031/Re?(1/7)-1440/Re
0.002 ¢ ~ — = =-Cf=0.074/ReM1/5)-1700/Re
\ Cf = 0.455/(log Re)2.58-1700/Re

0.001

0.000
1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Re,
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Bluff Body Drag

Drag of 2-D Bodies

First consider a flat plate
both parallel and normal to
the flow

Us m% f gj ¢
T ¢ ?l.'w

1 .
Cop =7 J(pP-p.)n-i=0
“pVPAS
2
Ci =1 [T, t-i1dA
“poViAS
2
_1.33 .
= T laminar flow
Re |
.074
= T turbulent flow
Re |
flow pattern
%
- N CAR
g D
vortex wake

typical of bluff body flow

where C, based on experimental data
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Positive Negative
relative pressure relative’ pressure
e D /
Yo
FIGURE 11.3 .
Flow past a flat plate.
FIGURE 11.4 Pressure distribution Pressure distribution
Pressure distribution on on front side of plate on rear side of plate
a plate normal to the \ i
approach flow for
Re = 1t
Plate
—_—
V.
_O_’ - b
—n—’ I
L - A . i
+1.0 +0.5 0 -0.5 -1.0 -1.5
_FPTho
P pvdiz
Cop =7 [(p—p,)n-idA
2,58
—pV~ A
= A I 0
S

Cf:O

For bluff body flow experimental data used for Cp.

= 2 using numerical integration of experimental data
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In general, Drag =f(V, L, p, u, C, t, &, T, etc.)

from dimensional analysis

Drag /t

Cp,=-—"—""="1|Re, Ar,

1 2
—pV° A
2

- J
Y

scale factor

c/L

DRAG ON IMMERSED BODIES

13 % 60° { ° o /_ l o [}
2

P

i 3 \\ | /»i"'z/—-. ————— Supercritical flow Ll“,, fade
- s )
n= =1 \:‘v == l"“' lnvlscid flow Rey B‘TX 10 _..—‘,\-\r».:f.—-v§
° 2 \ .v] Dé ******* r Subcritical flow5 v |
- = = Rey = 1.9 X 1087
P
{ Sl &*\'F & u.r‘i_h\
-3

Figure 10.23 Pressure distributions around a cylinder for subcritical, supercritical. and inviscid

flows.

Streamlines converge,
high-velocity region

Singularity
at the origin

Fig. E4.7
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2
Potential Flow Solution: v = —Uw(r = a—J sin 0
r

1 1
p+=pV’=p, +-pU’ Fi
2 2 r 00
p—p u’+u’
C = © _q1__r "6 oy
1 u? Ug =~
ZPUOO * or

.2
C,(r=a)=1-4sin = 0 — surface pressure

Flow Separation

Flow separation:
—> The fluid stream detaches itself from the surface of the body at
sufficiently high velocities. Only appeared in viscous flow!!

Flow separation forms the region called ‘separated region’

Separation point ~ Reattachment point

L
\

Separated flow region
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Inside the separation region:
—> low-pressure, existence of recirculating/backflows
—>viscous and rotational effects are the most significant!

Important physics related to flow separation:

—>’Stall’ for airplane (Recall the movie you saw at CFD-PreLab2!)
—>Vortex shedding

(Recall your work at CFD-Lab2, AOA=16°! What did you see in
your velocity-vector plot at the trailing edge of the air foil?)




57:020 Mechanics of Fluids and Transport Processes

Professor Fred Stern Fall 2012

Chapter 9
28

5 : : . —
| ]
| ‘ | | |
| | i | a
4 | ' i
| 1 i | ! Cylind_er
! l Transition to turbulent ! length effect
" ! boundary layer \ (10* < Re < 10%)
3 \ : ! : ;
) | | . 27
| I = 1.20
C I i ! 40 0.98
22 ’ 1 20 091
| i 10 0.82
| I ‘i 5 74
Cylinder {two dimensional) . * H g_?:
| TN 2 0.68
K | S ! 1% i : 0.64
i ’ { Sphere | \/_ —_—
T~ \u 2
0 ‘ ‘ ‘ ’ Lt 2
10 Loz 10? 10% 108 106 107 -
Rey = p_Ud
m
(@)
1.5
0 Cylinder
1. 1 . ~ .
. é = ooy Ai— B ST A '\‘.\':':,T—
i ‘ b < N
Cp 0.7 ; ]
0.5 . \\[/ _
0002 — |~
0.3 0.0005 | Smooth
104 10% 106
Rey
(&)

Fig. 5.3 The proof of practical dimensional analysis: drag coefficients of a cylinder and
sphere: {(a) drag coefficient of a smooth cylinder and sphere (data from many sources);
(b) increased roughness causes earlier transition to a turbuient boundary layer.

Fio. 34.—Flow round sphere below critical point.

{Wieselsberger.)

F1u. 35.—0wing to a thin wire ring round the sphere, the 82w becomes of the
other type with turbulent boundary layer.

(Wiesclaberger.)
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426 XV. Non-stcady boundary layers

Fig. 15.5a to f. Formation of vortices in flow pa:!t.d. circular cylinder after acceleration from rest
(L. Prandtl)

$§ = point of separation

Fig. 2.12. Diagrammatic represen-
tation of flow in the boundary
layer near a point of separation
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alternate formation and shedding of vortices also creates a regular change § in
pressure with consequent periodicity in side thrust on the cylinder. Vortex shed-
ding was the primary cause of failure of the Tacoma Narrows suspension bridge
in the state of Washington in 1940. Another, more commonplace, effect of vor.
tex shedding is the “singing” of wires in the wind.

If the frequency of the vortex shedding is in resonance with the natural fre-.
quency of the member that produces it, large amplitudes of vibration with con.
sequent large stresses can develop. Experiments show that the frcquency of
shedding is given in terms of the Strouhal number S, and this in turn is a func-
tion of the Reynolds number. Here the Strouhal number is defined as

nd e
== _ 11-
7 (arn
where 7 is the frequency of shedding of vortices from one side of cylinder, in
Hz, d is the diameter of cylinder, and V, is the free-stream velocity.
The relationship between the Strouhal number and the Reynolds numbcr for.
vortex shedding from a cxrcular cylinder is given in Fig. 11-10. :

0.40
'Ef::' i H
] B .
C ' Spread of data
“ 030 al |
2 _
. E : %
g } il %! Cc I
- b ”,’ "
$ 0.0 7—‘-" - e e P - ,,’,,j;-.
“ T R T -1
0.10 .
102 10 : 10% 10 10t 107
Vod )
Re = 2=

FIGURE 11-10 Strouhal number versus Rcynolds number for flow past a circular cylm-.
der. [After Jones (14) and Roshko (23)]

Other cylindrical and two-dimcnsional bodies also shed vortices. Conse-
quently, the engineer should always be alert to vibration problems when design-
ing structures that are exposed to wind or water flow.

Empus 11-2  For the cylinder and conditions of Example 11-1, at what fl’"
quency will the vortices be shed?
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Fig. 7.16 Drag versus Reynolds number for nearly two-dimensional bodies.

Table 7.2
DRAG OF TWO-DIMENSIONAL BODIES AT Re = 10*

Shape C, based on frontal area Shape Cp based on frontal area

Plate: Half-cylinder:

—_— 20 —_ G 12
Square cylinder:

—_— 21 _— D L7

Equilateral triangle:

- <> 1.6 —_— Q 16
Half tube: '

_ C 12 _— D 20

E— ) 23
Elliptical cylinder: Laminar Turbulent

11— O 1.2 0.3

21 O 0.6 02

41 CD 0.35 0.15

8:1 —— <5 025 0.1
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Fig 7.12 Drag of a streamlined two-dimensional cylinder at Re, = 10%: {a) effect of thick-
ness ratio on percentage friction drag; (b) total drag versus thickness when based upon
two different arcas.

Cross section
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Cp =
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.04 "
Pressure drag ~ ><“‘-—Cik_i?_@ion o9

____.————'-'_._-_.-
.02 1 l H
0 L :
0.1 0.2 0.3 0.4 0.5

tIiL

Figure 10.24 [;rng coefficients for a family of struts. (. Goldstein. “Modern Developments in
Fluid Dynamics,” Dover Publications, New York, 1965.)
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1IGURE .11-11  Coefficiem of drag versus Reynqlds number for axisymmetric
sodies. [Data sources: Abbott (1), Breevoort (4), Freeman (9). and Rouse (24).]
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Table 73

DRAG OF THREE-DIMENSIONAL BODIES AT Re = 10°

Body Ratio Cp based on frontal area

Cube:

— 1.07

— O 0.1
60° cone:

. — <?) 0.5

bisk:

—_— I 117
Cup:

. ) 14
— C 6
Parachute (low porosity):
— D) .
Rectangular plate:
) bk 1 1.18
— h 5 - 1.2
b 10 1.3
20 1.5
h o 20
Flat-faced cylinder:
L/d 0.5 1.15
1 0.90
—_— d 2 0.85
4 0.87
L 8 0.99
Ellipsoid: . Laminar Turbulent
T L/d 075 0.5 02
—_— d 1 0.47 0.2
_ 2 027 0.13
| L | 4 0.25 0.1
8 0.2 0.08
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Figure 10.25 Time history of the aerodynamic drag of cars in comparison with streamlined
bodies. ( From Hucho, W. H., Janssen, L. J., Emmelmann, H. 1., 1976, “‘The Opitimisation o)
Body Details—A Method For Reducing The Aerodynamic Drag of Road Vehicles,” SAE

760185.)
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Figure 3. Drag coefficients of “standard™ passenge I €ars.
tested either in wind tunnels on geometrically similar

models or by deceleration of the full-scale vehicles.

Upsweep angle 8, deg

) o‘:w'f "‘/d——

Figure 1. Interaction between two disks placed one behind the

Figure 4.

other; (reference 1,1).

fa) "BOX " SHAPE WiTH SHARP EOGES ON WHEELS (4.0

S

r\\, o

. 22k CE=E
e -

a23
035

(bl BASIC CAR BODY wiTr SHARP LATERAL EDGES i4.¢)

T\ # i

(e} WITH SHARP EDGED winDSHIELD, T

TAPERING

fo) REID (401 STREAMLINE CAR SHAPE

e e

) EXTREME STREAMLING SHAPE, TESTED BY AVA (1)

Drag coefficients of several sinooth wind
tunnel models (tested over fixed ground plate).
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Figure 2-4. Typical naval ship stern appendages (from Kirkman,
et al., 1979) '

| Cylimder with ferverd
ond aft and deug Isteriersase drap emiy

- {at the intersection of
the bull sad shaft beening)

E Cylinder wirk aft and drag
Cylisdet with ne end dreg

Crlinder with forveard ead drag

Totl with ae tacerferense drag -

Figure 2-5. Appendage decomposition (from Kirkman, et al., 1979)

\

DWL7

< _Propeiler Shalt . ‘-/ﬂ.ﬂiﬂnn_;
AP. _ " l " " *

= Model Scale
———— Ful Scale
kst Nomingl Boundary Layer Thickness

Fiéure 2-6. Nominal boundary layer thickness in way of the DOG 51
appendages. -



57:020 Mechanics of Fluids and Transport Processes Chapter 9
Professor Fred Stern Fall 2012 37

Terminal Velocity

Terminal velocity is the maximum velocity attained by a
falling body when the drag reaches a magnitude such that
the sum of all external forces on the body is zero. Consider
a sphere using Newton’ Second law:

> E=F,+F -F =ma

g

when terminal velocity is attained

> E=a=0:

F.+F =F

d b g

or

1 .
EpVO CD Ap = (ySphere = 7 fluid )‘V_Sphere

For the sphere

Ap =£d2 and Y-sphere =£d3
4 6

The terminal velocity is:

_ Ir(ysphere - 7/fluid )(4/3)d —I
L C 52 fuia J

1/2

VO

Magnus effect: Lift generation by spinning

Breaking the symmetry causes the lift!
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Lift
Stagnation Stagnation High velocity,
points points low pressure

\f

v

(a) Potential flow over a stationary cylinder

—.\;{—.—

ow velocity,
high pressure

(b) Potential flow over a rotating cylinder

Effect of the rate of rotation on the lift and drag coefficients of a

smooth sphere:

0.8

0.6

0.4

Cp. Cp.

0.2

0

fwDIV

Lift acting on the airfoil

Lift force: the component of the net force (viscous+pressure) that

is perpendicular to the flow direction
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(a) 5° (b) 15° (¢) 30°

Variation of the lift-to-drag ratio with angle of attack:
120

NACA 64(1) — 412 airfoil
Re=7x 107

100

80

a degrees

The minimum flight velocity:
—> Total weight W of the aircraft be equal to the lift

1 , 2W
W :FL:_CerxIOVrrinA_)Vm'n =

2 - PC L e A
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Effect of Compressibilityon Drag: CD = CD(Re,
Ma)

UOO
Ma = —

d
I speed of sound = rate at which infinitesimal
disturbances are propagated from their
source into undisturbed medium

Ma<1 subsonic < 0.3 flow is incompressible,
Ma~ 1 transonic (=1 sonic flow) e, p ~ constant
Ma>1 supersonic
Ma >>1 hypersonic

Cp increases for Ma ~ 1 due to shock waves and wave drag

Magiical(SPhere) ~ .6

Magiical(Slender bodies) ~ 1

For U >a: upstream flow is not warned of approaching
disturbance which results in the formation of

shock waves across which flow properties
and streamlines change discontinuously
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FIGURE 11.12 2.0

Drag characteristics of
projectile, sphere, and

T T

cylinder with 15

compressibility effects.

- lind
[After Rouse (26)] Square-ended cylinder
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FIGURE 11.13

Contour plot of the drag
coefficient of the sphere
versus Reynolds and
Mach numbers.




