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Chapter 9 Flow over Immersed Bodies

Fluid flows are broadly categorized:

1. Internal flows such as ducts/pipes, turbomachinery, open
channel/river, which are bounded by walls or fluid interfaces:
Chapter 8.

2. External flows such as flow around vehicles and structures,
which are characterized by unbounded or partially bounded
domains and flow field decomposition into viscous and
inviscid regions: Chapter 9.

a. Boundary layer flow: high Reynolds number flow
around streamlines bodies without flow separation.

Re < 1: low Re flow (creeping or Stokes flow)
Re >~ 1,000: Laminar BL
Re > ~ 5x10° (Regq): Turbulent BL
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3. Free Shear flows such as jets, wakes, and mixing layers,
which are also characterized by absence of walls and
development and spreading in an unbounded or partially
bounded ambient domain: advanced topic, which also uses
boundary layer theory.
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Flow in the wake of a body immersed in a stream. Figure 20.16 Plane laminar jet into an infinite medium.

Basic Considerations

Drag is decomposed into form and skin-friction
contributions:
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t <<l C¢>>Cpyp streamlined body
C
Y1 cop>>C bluff body
C

Streamlining: One way to reduce the drag

—> reduce the flow separation—>reduce the pressure drag
—> increase the surface area - increase the friction drag

—> Trade-off relationship between pressure drag and friction drag
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Pressure drag
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DIL
Trade-off relationship between pressure drag and friction drag

Benefit of streamlining: reducing vibration and noise
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Qualitative Description of the Boundary Layer

Flow-field regions for high Re flow about slender bodies:
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Tw = Shear stress
Ty oc rate of strain (velocity gradient)

o
a>/ y=0

\ large near the surface where

fluid undergoes large changes to
satisfy the no-slip condition

Boundary layer theory and equations are a simplified form
of the complete NS equations and provides t,, as well as a
means of estimating Cim.  Formally, boundary-layer
theory represents the asymptotic form of the Navier-Stokes
equations for high Re flow about slender bodies. The NS
equations are 2" order nonlinear PDE and their solutions
represent a formidable challenge. Thus, simplified forms
have proven to be very useful.

Near the turn of the last century (1904), Prandtl put forth
boundary-layer theory, which resolved D’Alembert’s
paradox: for inviscid flow drag is zero. The theory is
restricted to unseparated flow. The boundary-layer
equations are singular at separation, and thus, provide no
information at or beyond separation. However, the
requirements of the theory are met in many practical
situations and the theory has many times over proven to be
invaluable to modern engineering.
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The assumptions of the theory are as follows:

Variable order of magnitude

u U O(1)

v o<<L O(e) e =0d/L
9 1/L 0(1)
OX

9, 1
— 1/6 O(e™)
oy

\% 5?2 &

The theory assumes that viscous effects are confined to a
thin layer close to the surface within which there is a
dominant flow direction (x) such that u ~ U and v << u.
However, gradients across & are very large in order to

satisfy the no slip condition; thus, g»i.

oy oX

Next, we apply the above order of magnitude estimates to
the NS equations.
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Retaining terms of O(1) only results in the celebrated
boundary-layer equations
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Some important aspects of the boundary-layer equations:
1) the y-momentum equation reduces to

»_,

oy
I.e., P = pe = constant across the boundary layer
from the Bernoulli equation: edge value, i.e.,

1 inviscid flow value!
P, +EpU§ —constant

OPe U oU,

= —PYe
OX OX
Thus, the boundary-layer equations are solved subject to
a specified inviscid pressure distribution

l.e.,

2) continuity equation is unaffected

3) Although NS equations are fully elliptic, the
boundary-layer equations are parabolic and can be
solved using marching techniques

4) Boundary conditions

u=v=20 y=0

+ appropriate initial conditions @ X;
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There are quite a few analytic solutions to the boundary-
layer equations. Also numerical techniques are available
for arbitrary geometries, including both two- and three-
dimensional flows. Here, as an example, we consider the
simple, but extremely important case of the boundary layer
development over a flat plate.

Quantitative Relations for the Laminar Boundary
Layer

Laminar boundary-layer over a flat plate: Blasius solution

(1908) student of Prandtl
3 ¢
v, ______,_%L &
ox oy v "
Note: @ =0 5u ou o%u
8X +V— = V—

for a flat plate GX oy 8y

u=v=0@y=0 u=U, @y=95

We now introduce a dimensionless transverse coordinate
and a stream function, i.e.,

Y, Y
nyvx 0

y =4vxU,.f(n)
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u=W NNy i) f'=u/U,
oy onoy

oy 1 |vU
- == 2(nf'-f
ox 2V X (ﬂ )

Substitution into the boundary-layer equations yields

ff"+2f"=0 Blasius Equation
f=f"=0 @n=0 f'=1 @n—>wx

The Blasius equation is a 3™ order ODE which can be
solved by standard methods (Runge-Kutta). Also, series
solutions are possible. Interestingly, although simple in
appearance no analytic solution has yet been found.
Finally, it should be recognized that the Blasius solution is
a similarity solution, i.e., the non-dimensional velocity
profile f' vs. nj is independent of x. That is, by suitably
scaling all the velocity profiles have neatly collapsed onto a
single curve.

Now, lets consider the characteristics of the Blasius
solution:
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5X

0= Re value of y where u/U,, = .99

U_Xx
Re —_— 00"
X 1%

Velocity distribution in
laminar boundary layer.
[After Blasius (3)].

TABLE 9.1 RESULTS—& AND 7, FOR DIFFERENT VALUES OF x

x=01ft x=10ft x=2ft x=4ft x=6f

x"? 0.316 1.00 1.414 2.00 2.45
7o, psf 0.552 0.174 0.123 0.087 0.071
8, ft 0.005 0.016 0.022 0.031 0.039
8, in. 0.060 0.189 0.270 0.380 0.466
: \a—a L - ‘im%&,m_. N ‘““‘-“""‘"“*-H&. /
25 J i
! é .'I E . |
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1Y)

[2vx /U
o0
see below

—
i.e., Cs 2w _ 0.664 _9 - Local friction coeff.

“oU2 JRe, X

b L
C, =—L_([cfdx=20f(L)

b . Friction drag coeff.
Note: _1.328 U_L
b = plate width ﬁ/ v

L = plate length
| pu
Wall shear stress: 7, =0332U7% == or 7, =0.3324(U, /x)|Re,

Other:

« O u

0 =[|1-— |[dy=1.7208
0 U

o0

X

+JRe,

measure of displacement of inviscid flow due to
boundary layer

displacement thickness

momentum thickness

)
o ;@Ajidy:o.w X
0 U

U, JRe,

measure of loss of momentum due to boundary layer

*

H = shape parameter = %:2.5916

o0
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TABLE 4-1

Numerical solution of the Blasius flat-plate
relation, Eq. (4-45)

n fin) Iin) fin)
0.0 0.0 0.0 0.46960
0.1 0.00235 0.04696 0.46956
0.2 0.00939 0.09391 0.46931
0.3 0.02113 0.14081 0.46861
0.4 003755 0,18761 0.46725
05 0.05864 0.23423 0.46503
0.6 0.08439 0.28058 0.46173
0.7 0.11474 0.32653 0.45718
0.8 0.14967 037196 0.45119
0.9 0.18911 0.41672 0.44363 .
1.0 0.23299 0.46063 0.43438
1.1 0.28121 0.50354 0.42337
12 0.33366 0.54525 0.41057
1.3 0.39021 0.58559 0.39598
14 0.45072 0.62439 0.37969
15 0.51503 0.66147 0.36180
1.6 0.58296 0.69670 0.34249
1.7 0.65430 0.72993 0.32195
18 0.72887 076106 0.30045
19 0.80644 0.79000 0.27825
20 0.88680 0.81669 0.25567
22 1.05495 0.86330 0.21058
24 1.23153 0.90107 0.16756
26 1.41482 0.93060 0.12861
28 1.60328 0.95288 0.09511
30 1.79357 0.96%05 0.06771
32 1.99058 0.98037 0.04637
34 2.18747 0.98797 0.03054
36 2.38559 0.99289 0.01933
I8 2._5845(] 0.99594 0.01176
4.0 2.75388 0.99777 0.00687
32 2.98355 0.99882 0.00386
44 3.18338 0.99940 0.00208
4.6 3.38329 0.99970 0.00108
4.8 3.58325 0.99986 0.00054
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FIGURE 46

The Blasius solution for the flat-plate boundary layer: (a) numerical solution of Eq 14-45% (b)
comparison of f* = u/U with esperiments by Liepmann (1043)
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Quantitative Relations for the Turbulent
Boundary Layer

2-D Boundary-layer Form of RANS equations
au av

=0
ox ay
Jou, ou_ a(p o°U 0 ([
VCCI | NG I )
OX oy oX\ p ayz oy

S~ -
requires modeling

Momentum Integral Analysis

Historically similarity and AFD methods used for idealized
flows and momentum integral methods for practical
applications, including pressure gradients. Modern
approach: CFD.

To obtain general momentum integral relation which is
valid for both laminar and turbulent flow

oo For flat plate or 5 for general case

| (momentum equation+(u—v) continuity)dy
y=0

T, 1 do 0 dU d dU
S o= eH) S P pU
pUs 2 dx U dx " dx dx
——— du
flat plate equation — =0
dx
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8 -
=[— (1——jdy momentum thickness
0
8*
H= o shape parameter
6 - -
=] (1— —jd displacement thickness
0

Can also be derived by CV analysis as shown next for flat
plate boundary layer.

Momentum Equation Applied to the Boundary Layer

Consider flow of a viscous fluid at high Re past a flat plate, i.e.,
flat plate fixed in a uniform stream of velocity U .

plate

y=Y
Constant RS
pressure - 4e gred’ -~
s
il
U L H..-Sf.t.r.e-a-"""’«Contro{ |: -
-|r—— volume | I o
! i '
! i|—_p. uly)
‘Iﬁf Drag force D I
——— ——  —— No-sli
v il m—m——— - o Flat

Boundary-layer thickness arbitrarily defined by y = 04, (Where,
Og9% 1S the value of y at u = 0.99U). Streamlines outside Jgg, Will

deflect an amount ™ (the displacement thickness). Thus the
streamlines move outward fromy=H at x=0 to

y=Y=8=H+6 at x=X



57:020 Mechanics of Fluids and Transport Processes Chapter 9
Professor Fred Stern Fall 2014 16

Conservation of mass:

H H+o"
j oV endA=0= —jo pUdy + I pudy

0
CS

Assume incompressible flow (constant density):
UH =["udy=[ (U+u-U)dy=UY +[ (u-U)dy
0 0 0

Substituting Y = H + 0 defines displacement thickness:
* Y u

5 is an important measure of effect of BL on external flow.
Consider alternate derivation based on equivalent flow rate:

A

o

0* Lam=6/3

0* Turb=0/8

J o
jUdy = _[ udy
* 0
Hé‘(_J
Inviscid flow about 6* body

*
Flowrate between O and O of inviscid flow=actual flowrate, i.e., inviscid flow rate
about displacement body = viscous flow rate about actual body

5 5 5 5 U
Udy — |Udy = |udy = 6 = (1——jdy

foor-Juy ===

w/o BL - displacement effect=actual discharge

For 3D flow, in addition it must also be explicitly required that 5
IS a stream surface of the inviscid flow continued from outside of
the BL.



57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2014

Chapter 9
17
Conservation of x-momentum:
> F,=-D= j pu\iogdA:—joH pU (Udy)+j0Y pu(udy)
CS
Drag = D = pU’H —jgpuzd
= Fluid force on plate = - Plate force on CV (fluid)
Again assuming constant density and using continuity
Y U
H == J;) Udy
Y
. 2 (Y 2 41, X
D=pU J'O u/Udy—p.[u dy—j0 70X
D
LI
pU U
where, 8 is the momentum thickness (a function of x only), an
important measure of the drag
2D 26? 17
Cp = C;dX  Per unit span
D U 2X v '[ P
d déo
C =7 v ¢, —(xCp)=2—
= pU? dx dx Special case 2D
2 momentum integral
do C; , dé equation for dp/dx =0
VY TW = pU T
dx 2 dx
T s T

|||||||||||||||||||||

Coordinate normal to the wall
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Simple velocity profile approximations:

u=U(Qy/s-y?15%)

u(0 =0 no slip
u() =U matching with outer flow
Uy(8)=0

Use velocity profile to get C¢(5) and 6(5) and then integrate
momentum integral equation to get 5(Rey)

0* =6/3
0 =26/15
H=6%/0=5/2

r,=21J 195

C, :Z”U—/i: 2d—9: 21(25/15)
1/2pU dx  dx

- 5d6 = LOHIKX

~ 30udx

pU
5/x=55/Re!?
Re, =Ux/v;
5" 1x=1.83/Re!? S~ 10% error, cf. Blasius
0/x=0.73/Re’’
C,=1.46/Re/*=2C, (L)

52




57:020 Mechanics of Fluids and Transport Processes Chapter 9
Professor Fred Stern Fall 2014 19

Approximate solution Turbulent Boundary-Layer

Re, = 5x10°~ 3x10°for a flat plate boundary layer

Recnt ~ 100,000
c; do

2 dx

as was done for the approximate laminar flat plate
boundary-layer analysis, solve by expressing ¢ = ¢¢(d) and
0 = 6(0) and integrate, i.e. assume log-law valid across
entire turbulent boundary-layer

u_ yu neglect laminar sub layer and
— —In—+ B _ .
u K Vv velocity defect region
aty=0,u=U

1 *
E* = Insi +B
u K Vv

\ c 1/2
~f
Res( 5 j \

2 ¢ V2
or (aj = 244|n|:R95(2} :|+ o > Ct (8)

¢, =.02Re, '® power-law fit
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Next, evaluate

o
0 _d g(l_g)dy
dx dxqU U

can use log-law or more simply a power law fit

1/7
u — (X) Note: cannot be used to
U \o > obtain ¢ (8) since 1, — o
7
0=—0=0(5
Rl ON
1 ,d0 7 | ,dd
= T, =C—pU  =pU°—=—pU*°—
w =t 5P P2 ax 7270 dx
Re, /° =9.72%
dx
or 9 _ 0.16Re}"" l.e., much faster
X growth rate than
5oc x®7 almost linear  laminar
boundary layer
0.027
0.031 7
i :W:gcf (L)

L

These formulas are for a fully turbulent flow over a smooth
flat plate from the leading edge; in general, give better
results for sufficiently large Reynolds number Re, > 10°.
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1.0

Turbulent

0.8 — Seventh
root profile,

Eq. (7.39)

0.6

A Exact Blasius profile

for all laminar Re,
(Table 7.1)

(See Table 4-1 on
page 13 of this
lecture note)

u 2

U

|
0.6

Yy

é

Y

6

Parabolic
approximation,
Eq. (7.6)

|
0.4

zZ(

|
0.8

)=

0.2 1.0

Comparison of dimensionless laminar and turbulent flat-plate velocity profiles (Ref:
White, F. M., Fluid Mechanics, 7" Ed., McGraw-Hill)

Alternate forms by using the same velocity profile u/U =
(y/0)Y" assumption but using an experimentally determined
shear stress formula z, = 0.0225pU*(vUo)"* are:

o s 0.058 0.074
— = 0.37 Rex f = T ¢ — —1/5
X Re, Re;
0.029pU 2
shear stress: 7, = A

Rel/5

These formulas are valid only in the range of the
experimental data, which covers Re. = 5 x 10° ~ 107 for
smooth flat plates.

Other empirical formulas are by using the logarithmic
velocity-profile instead of the 1/7-power law:
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% = ¢r(0.98logRe, — 0.732)

¢r = (2logRe, — 0.65)7%3

0455
I ™ (logyo Rey)258

These formulas are also called as the Prandtl-Schlichting skin-
friction formula and valid in the whole range of Re, < 10°.

For these experimental/empirical formulas, the boundary layer
is usually “tripped” by some roughness or leading edge
disturbance, to make the boundary layer turbulent from the
leading edge.

No definitive values for turbulent conditions since depend on
empirical data and turbulence modeling.

Finally, composite formulas that take into account both the
initial laminar boundary layer and subsequent turbulent

boundary layer, i.e. in the transition region (5 x 10° < Re, < 8
x 10") where the laminar drag at the leading edge is an
appreciable fraction of the total drag:

c 0.031 1440
f= T Re
Re] L

_ 0.074 1700
F= 1 Re

5
ReL
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c = 0.455 1700
r- (log1o Re;)?58 Re;,

with transitions at Re, = 5 x 10° for all cases.

0.0o8
0.006 [~ ¢ = (2logRe, — 0.65)°23
-
pd Turbulent smooth plate
N \\
o _ \
0.004 -
Laminar
0.002 0.66
| ol |

10 10 10° 10 10
Re
0.008
; 0.455
/ f (logyp Rey )22
0.006 = < Turbulent smooth plate
\‘\
‘\\ . 0074 . .
[ | ~._ ¢ — (5% 10° = Re; = 107)
O A
\\_‘_:\\
0.004 =
c 0.031
" P 1
Tran51t|0nal'.‘__._’_.:___._:__. “:ﬁ_?ﬁ\x\x Re)
. T EEee
e 0.455 1700 TS EEma
0.002 - b = (log.o Re )25 Rep \
Laminar = . 0074 1700 . ,
e S (5% 10° < Re; < 107)
¢ = 1328 L 0031 1440
W Reg ! Re‘; R )
0 L M -||l8 L [ ||I_ L — ||||I_ L L |||-||g
10° 10 10° 107 10
Re,

Local friction coefficient ¢¢ (top) and friction drag coefficient
Cr(bottom) for a flat plate parallel to the upstream flow.
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Bluff Body Drag

Drag of 2-D Bodies

First consider a flat plate U
both parallel and normal to -
the flow
1 2
CDp:1 I(p_pw)ﬂ'lzo
“pVAAS
2
1 o
Cf = 1 , iTWIIdA
~pV°A
ZP
_ 133 .
= —175 laminar flow
074

= RelL’5 turbulent flow

_ 7‘ .

(Tw

flow pattern

2 0
“"‘"‘" CIS

vortex wake

typical of bluff body flow

where C, based on experimental data
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Positive Negative
relative pressure relative pressure
N
Yo
HGURE 11.3
Flow past a flat plate.
FIGURE 11.4 Pressure distribution Pressure distribution
P on front side of plate on rear side of plate
Pressure distribution on P \ P
a plate normal to the \ S
approach flow for i
Re > IV,
B Plate
—_— /
Y,
2 L b
—_— B
1 8 — . i .
+1.0 +0.5 0 -0.5 -1.0 -1.5
]
" pvine

1 .
Cop =7 [(p=p.)n-TdA
2pvaS

1
= ~[C.dA
Aip

=2 using numerical integration of experimental data
Cf =0

For bluff body flow experimental data used for Cp.
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In general, Drag = f(V, L, p, u, C, t, &, T, etc.)

from dimensional analysis
c/L

Cp :fﬂ:f Re, Ar, —
JPVA L

— _J
~

scale factor

DRAG ON IMMERSED BODIES

1
&
;?n

*
to—
oy

37 L l / | ]
r‘ { 0 = 60° 90° 120° Vil 180°
al=ir 30’\ | 4——7/.__,__.--""- Supereritical flow L&M
. N emme LA IR, =6.7X 108 :
-1 o o~ Inviscid tlawT™ ¥
& \\v ! % |
\\_\ } == Suberitical flow [ ¢ |-
-2 | Ry = 19X 1081 \
-l &\“‘é !’? ""'r"ﬁt"'"‘
-3

Figure 10.23 Pressure distributions around a cylinder for subcritical, supercridcal, and inviscid

Hows.

Streamlines converge,
high-velocity region

Singularity
at the origin

Fig. E47
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2
Potential Flow Solution: v = —Uo{r —aTjsin 0

1 10
+=pV%=p_+=pU? ek d
P 29 Pos ZP . =50
2 2
Cp:p poo 1 uI’ +2u9 __a_\v
1 .2 U Ug =
2pUOO ® or

C,(r=a)=1-4sin® 6 +—— surface pressure

Flow Separation

Flow separation:
—> The fluid stream detaches itself from the surface of the body at
sufficiently high velocities. Only appeared in viscous flow!!

Flow separation forms the region called “‘separated region’

Separation point Reattachment point

A
\

Separated flow region
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Inside the separation region:
—>low-pressure, existence of recirculating/backflows
—>viscous and rotational effects are the most significant!

Important physics related to flow separation:

—>’Stall’ for airplane (Recall the movie you saw at CFD-PrelLab2!)
—>Vortex shedding

(Recall your work at CFD-Lab2, AOA=16°! What did you see in
your velocity-vector plot at the trailing edge of the air foil?)
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Fig. 53 The proof of practical dimensional analysis: drag coefficients of a cylinder and
sphere: (a) drag coefficient of a smooth cylinder and sphere {data from many sources);
(b) increased roughness causes earlier transition to a turbuient boundary layer.

Fro. 34.—Flow round sphere below critical point. (Wieselsberger.) Fiu. 35.—Owing to a thin wire ring rouad the sphere, the £ow becomes of the
other type with turbulent boundary layer. (Wiesclsberger.)
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426 XV. Non-steady boundary lavers

Fig. 15.5a to . Formation of vortices in How past a circular cylinder after acceleration from rest
(L. Prandtl)

§ = point of separation

Fig. 2.12. Diagrammatic represen-
tation of flow in the boundary
laver near a point of separation
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alternate formation and shedding of vortices also creates a regular change in
pressure with consequent periodicity in side thrust on the cylinder. Vortex shed.
dmg was the primary cause of failure of the Tacoma Narrows suspension bridge
in the state of Washington in 1940. Another, more commonplace, effect of vor-
tex shedding is the “singing” of wires in the wind.

If the frequency of the vortex shedding is in resonance with the natural fre--
quency of the member that produces it, large amplitudes of vibration with con.
sequent large stresses can develop. Experiments show that the frequency of
shedding is given in terms of the Strouhal number S, and this in turn is a func-
tion of the Reynolds number. Here the Strouhal number is defined as

=nd _ (‘1'.1-7']'

where 7 is the frequency of shedding of vortices from one side of cylinder, in
Hz, d is the diameter of cylinder, and ¥, is the free-stream velocity.

The relationship between the Strouhal number and the Reynolds number for.
vortex shedding from a c1rcular cylinder is given in Fig, 11-10. '

0.40
HN ] H
% O.Bﬁ Spread of data[ ! . {f,;;;///f%»,,/
2 i
E - "%
-k i e v
E i “". L .' _/// /,/// //
L7} L./- l L P g ‘/9/ -1
0.10 1.
10? 10} : 104 109 1ot 10?
¥ad
Re - 0

v

FIGURE 11-10 Strouhal number versus Reynolds number for flow past a circular cylin-.
der. [After Jones (14) and Roshko (23))

Other cylindrical and two-diincnsional bodies also shed vortices. Cozlsc-'
quently, the engineer should always be alert to vibration problems when design-
mg structures that are exposed to wind or water flow.

EXAMPLE 11-2 For the ¢ylinder and conditions of Example 11-1, at what fre-
quency will the vortices be shed?
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Fig. 7.16 Drag versus Reynolds number for nearly two-dimensional bodies.

Table 72

DRAG OF TWO-DIMENSIONAL BODIES AT Re = 10°

Shape Cp based on frontal area Shape Cp based on frontal area

Plate: Half-cylinder:

_— 20 - G 1.2
Square cylinder:

—_— 21 —_— D L7

Equilateral triangle:

—_ <> 16 . Q L6
Half tube: '

_— C 12 - D 20

I ) .
Elliptical cylinder: Laminar Turbulent

1l — O 1.2 03

20 O 0.6 02

41 ., ‘CD 0.35 0.15

8l — 2 025 0.1
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®
Fig 7.12 Drag of a streamlined two-dimensional cylinder at Re, = 10%: (a) effect of thick-

ness ratio on percentage [riction drag; (b) total drag versus thickness when based upon
two different areas.
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Flgure 10.24 [;r::lg coefficients for a family of struts. (5. Goldstein, “Modern Developments in
Fluid Dynamics,” Dover Publications. New York, 1965.)
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11GURE .11-11 Coefficient of drag versus Reynolds number for axisymmetric
sodies. [Data sources: Abbott (1), Breevoort (4), Freeman (9). and Rouse (24).]
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Table 73

DRAG OF THREE-DIMENSIONAL BODIES AT Re = 10°

Body Ratio Cp based on frontal area

Cube:

— 1.07

_— O 0.81
60° cone: :

. — Q 0.5

Disk:

— I 1.17
Cup:

) 14
_ C 6
Parachute (low porosity):
Rectangular plate:
: b/h 1 1.18
—_— h 5 - 1.2
b 10 1.3
20 1.5
h «© 20
Flat-faced cylinder:
L/d 0.5 1.15
1 0.90
_— d 2 0.85
4 0.87
L 8 0.99
Ellipsoid: . Laminar Turbulent
~ Lid 075 0.5 0.2
—_— d 1 047 0.2
_ 2 027 0.13
| L | 4 025 0.1
8 0.2 0.08
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Figure 10.25 Time history of the aerodynamic drag of cars in comparison with slIeandin:d
bodies. ( From Huche, W. H., Janssen, L. J., Emmelmann, H. J., 1976, ' The Oplimi.ra‘imn o
Body Details—A Method For Reducing The Aerodynamic Drag of Road Vehicles,”" SAE
760185.)

N MASs BODY PR (301,

Figure 3. Drag cocfficients of “standard" passengeT cars.
tested either in wind tunnels on geomerrically similar

models or by deceleration of the full-scale vehicle:s-

e g

other; (reference 1,2).

Figure 4.

——— e —
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o Bl o W SRy
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a2y
£ TR
B
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L] WITH SHARP EDGED winDSHIELD, T~ TAPERING
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Figure 1. Interaction between two disks placed one behind the

Drag coefficients of several sinooth wind
tunnel models (tested over fixed ground plate).
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Figure 2-4. Typical naval ship stern appendages (from Kirkman,
et al., 1979)

Crlindar with [evverd

and aft and deog Isterfersase drap saly
’ (at the Latersectiion of
the bull snd shalt Wesning)

) ' Crlisdar wirk aft end drag
Crlisdar with ne end dreg

Crlinder with forvard wad drag

Tell with ne interfrenes dreg -

Figure 2-5. Appendage decomposition (from Kirkman, et al., 1979)

Mein Deck

17

T Model Scale
——— Ful Scale
¥ ] Nominal Boundary Layer Thickness

fiéure 2-6. Nominal boundary layér thickness in way of the DDG 51
appendages. .
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Terminal Velocity

Terminal velocity is the maximum velocity attained by a
falling body when the drag reaches a magnitude such that
the sum of all external forces on the body is zero. Consider
a sphere using Newton’ Second law:

YE=F+F-F,=ma

when terminal velocity is attained

Y E=a=0:

F,+F, =F,
or
1
E/OVOZCDAp = (7/Sphere — 7 fluid )V—Sphere
For the sphere
T T
Ap szz and 3Vl_Sphere :Eds

The terminal velocity is:

Y2
V, = [(75Phere ~ 7 fid )(4/3)d ]

Co Piuig

Magnus effect: Lift generation by spinning

Breaking the symmetry causes the lift!
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Lift
Stagnation Stagnation High velocity,
points points low pressure

\f

v

(a) Potential flow over a stationary cylinder

_.\{-._m,

high pressure

(b) Potential flow over a rotating cylinder

Effect of the rate of rotation on the lift and drag coefficients of a

smooth sphere:

0.8

0.6

0.4

Cp. Cp

0.2

J@DIV

Lift acting on the airfoil

Lift force: the component of the net force (viscous+pressure) that

is perpendicular to the flow direction
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(a) 5° (b) 15° (c) 30°

Variation of the lift-to-drag ratio with angle of attack:
120

NACA 64(1) — 412 airfoil
Re=7x 103

100

80

« degrees

The minimum flight velocity:
—> Total weight W of the aircraft be equal to the lift

W = |:L :%C pvnfinA_)Vmin =

L,max
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Effect of Compressibility on Drag: CD = CD(Re,
Ma)

Mazﬁ

a
\ speed of sound = rate at which infinitesimal
disturbances are propagated from their
source into undisturbed medium

Ma<1 subsonic < 0.3 flow is incompressible,
Ma~ 1 transonic (=1 sonic flow) l.e., p ~ constant
Ma>1 supersonic

Ma>>1 hypersonic

Cp increases for Ma ~ 1 due to shock waves and wave drag

Masitica(Sphere) ~ .6

Maiticar(Slender bodies) ~ 1

For U > a: upstream flow is not warned of approaching
disturbance which results in the formation of

shock waves across which flow properties
and streamlines change discontinuously
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FIGURE 11.12 2.0
Drag characteristics of o
projectile, sphere, and - el R
cylinder with 1.5 7

compressibility effects.

- lind
[After Rouse (26)] Square-ended cylinder
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Mach number, M = -

FIGURE 11.13

Contour plot of the drag
coefficient of the sphere
versus Reynolds and
Mach numbers.
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