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Chapter 8 Flow in Conduits
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IT; theorem = Le/D = f(Re)

Laminar flow: Re.; ~ 2000, 1.e., for Re < Re.;; laminar
Re > Re,, turbulent

Le/D = .06Re from experiments

Le. = .06Re.{D ~ 138D

v\maximum Le for laminar flow
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Shear-Stress Distribution Across a Pipe Section
Continuity:  Q; = Q, = constant

FIGURE 10.1
Variation of shear stress
in a pipe.

Momentum: YF, =Y pu(V-A)
=pVi(=ViA,)-pV,(V,A,)
=pQ(V, - V;)=0

pPA — (p + d—pdsjA —~AWsino —t(2nr)ds = 0

ds
: dz
AW =yAds sinQ, = —
ds
— d—pdsA — yAds% —t(2nr)ds =0
ds ds
r| d
+ Ads T=—|——(p+yz
- )]

1 varies linearly from 0.0 at r = 0 (centerline) to Ty (= Tw)
at r = R (wall). Valid for laminar and turbulent flow.
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Laminar Flow in Pipes

S A d_V_E{_i( N Z)}
Moy ™ Mar 2 as !

y = wall coordinate =r, — r = dv _dVdy —_ dv

dt dy dr dy
d_V__L[_i( N Z)}
dr 2ul ds P

2

r d
Vet |9 C
4u{ dS(p+v2)}+

2
V(ro): 0=C :i{—i(pﬂz)}
— 4u| ds

no slip condition

2 .2 :
=1 d Exact solution to
V(r)=-= [_ —(p+ YZ)} Navier-Stokes
equations for laminar
flow in circular pipe

Q=|V-dA
I, 1'02 d
= g V(r)chrdr Vi = E{_ &(p + yz)}

\ dA =rdrd0 = rdr(2n)
2

Q=nf {—E(IHYZ)} \7=Q=r—{—%(p+v2)}

ds
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FIGURE 10.2
Distribution of shear
stress and velocity for

[Z (vertical) e ool

. : : 2
laminar flow in a pipe. 3 - 4 pryN s
Ve—" s —

ap

energy equation:

2 2

&+V—1+zl =p—2+v—2+z2 +h,

Y 2¢g Y 2g

Ahz(p—2+zzj—(&+zlj
Y Y

Y
hy = E{—i(p + yz)} L = length of pipe = ds
yL ds _
_ sy

_L 8M2V =—-AhaV P

7L T - L _@)
ds
or hy=h, 32; I;V hy = head loss due to friction
Y
\

exact solution
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. 81 T
friction factor f =—7 C, = 1 w
pV 1 sz
— —~— — « 2 y
boundary layer flow

friction coefficient for pipe flow

T, =22 {—i(pﬂZ)}

Yol ds
_ T |8uV
2 r02
= 4uV
I.0
f = 32& = 6i“ = 64 exact solution
pr,V. pVD Re
Re = vb v="
v p



57:020 Mechanics of Fluids and Transport Processes Chapter 8
Professor Fred Stern Fall 2006 7

Criterion for Laminar or Turbulent Flow in a
Pipe

Reit ~ 2000 flow becomes unstable
Retrans_fv 3000 flow becomes turbulent
Re= VD/v

Turbulent Flow in Pipes

Continuity and momentum:

r=r)=5, =% |- L p+72)

2| ds

d®+wﬂ

Energy: h; :E[

yL ds
. 2 -
Combining: h, _L 2% define f = 0 Yo = friction factor
r _
0 —pV
89
h, ZL.E.lpVZf
Pg T, 8
LV’
hy =1 D 7% Darcy — Weisbach Equation
g
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Description of Turbulent Flow

Most flows in engineering are turbulent: flows over
vehicles (airplane, ship, train, car), internal flows
(heating and ventilation, turbo-machinery), and
geophysical flows (atmosphere, ocean).

v (x, t) and p(x, t) are random functions of space and
time, but statistically stationary flaws such as steady
and forced or dominant frequency unsteady flows
display coherent features and are amendable to
statistical analysis, 1.e. time and place (conditional)
averaging. RMS and other low-order statistical
quantification can be modeled and used in
conjunction with averaged equations for solving
practical engineering problems.

Turbulent motions range 1n size from the width in the
flow 0 to much smaller scales, which come
progressively smaller as the Re = Uo/v increases.
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Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5,000 and
{b) Re = 20,000. From Dahm and Dimotakis {1990) .

1(s)

Fig. 1.3. The time history of the axial component of velocity (7,{t) on the centerline
of a turbulent jet. From the experiment of Tong and Warhaft (1995).

()
Wi /

0.0 * ' '
<02 0.0 0.2

/x5

Fig. 1.4 The mean axial velocity profile in & turbulent jet. The mean velocity (U;)
is normalized by its value on the centerline, {U/\)q; and the cross-stream (radial)
coordinate x; is normalized by the distance from the nozzle x,. The Reynolds number
is 95,500. Adapted from Hussein, Capp, and George (1994),
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Physical description:

(1) Randomness and fluctuations:

Turbulence is irregular, chaotic, and
unpredictable. However, structurally stationary
flows, such as steady flows, can be analyzed using
Reynolds decomposition.

U=u+u' u=— [udT u'=0 G'zzltofu'sz

u = mean motion
u' = superimposed random fluctuation

u”= Reynolds stresses; RMS = J/u”

Triple decomposition 1s used for forced or dominant
frequency flows

U=u-+u"+u'
Where u'" = organized component
(2) Nonlinearity
Reynolds stresses and 3D vortex stretching are

direct results of nonlinear nature of turbulence. In
fact, Reynolds stresses arise from nonlinear
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convection term after substitution of Reynolds
decomposition into NS equations and time averaging.

(3) Diffusion
Large scale mixing of fluid particles greatly
enhances diffusion of momentum (and heat), 1.e.,

viscous stress
f_/%

Reynolds Stresses: —pu'u' >> 1, = us,

: : : 2
Isotropic eddy viscosity: —U';U'; >> v &j; —55-- K

1)

(4) Vorticity/eddies/energy cascade

Turbulence 1s characterized by flow visualization
as eddies, which vary 1n size from the largest L;
(width of flow) to the smallest. The largest eddies
have velocity scale U and time scale Ls/U. The orders
of magnitude of the smallest eddies (Kolmogorov

scale or inner scale) are:
1

U 3
LK - O(mm) >=> Lmean free path — 6 X 10 m

Velocity scale = (ve)'*= O(lO ‘m/s)
Time scale = (v/e)"*= O(107%s)

T3
Lk = Kolmogorov micro-scale = | ——
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Largest eddies contain most of energy, which break
up into successively smaller eddies with energy
transfer to yet smaller eddies until Lk 1s reached and
energy 1s dissipated by molecular viscosity (i.e.
viscous diffusion).

Richardson (1922):
Ls Big whorls have little whorls
Which feed on their velocity;
And little whorls have lesser whorls,
Lk And so on to viscosity (in the molecular sense).

(5) Dissipation
Energy comes from
Up = vk K=u"+v? +w? . largest scales and

=0U) fed by mean motion

Reé‘:uOfo/U:big —

¢ = rate of dissipation = energy/time —

U 2 / Dissipation
=0 T 0 =0 occurs at
To l‘IO — smallest
scales




57:020 Mechanics of Fluids and Transport Processes Chapter 8
Professor Fred Stern Fall 2006 13

The mathematical complexity of turbulence entirely
precludes any exact analysis. A statistical theory is well
developed; however, it is both beyond the scope of this
course and not generally useful as a predictive tool. Since
the time of Reynolds (1883) turbulent flows have been
analyzed by considering the mean (time averaged) motion
and the influence of turbulence on it; that is, we separate
the velocity and pressure fields into mean and fluctuating
components.

It is generally assumed (following Reynolds) that the

motion can be separated into a mean (U, v, W, p) and

superimposed turbulent fluctuating (U, V', W', p")
components, where the mean values of the latter are 0.

u=u+u' p=p+p'

v=v+V and for compressible flow

W=w+w p=p+p and T=T+T
where (for example)

]ttt and t;sufficiently large

u=— [udt that the average is

t ) .
L b independent of time

Thus by definition u’ =0, etc. Also, note the following
rules which apply to two dependent variables fand g

|
oQ
Il
|
0Q |
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—_— = Ide:Ide S:(xyzt)
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The most important influence of turbulence on the mean
motion 1s an increase in the fluid stress due to what are
called the apparent stresses. Also known as Reynolds
stresses:

!

_ 1
12 1t 1t .
—pu —puv —puw Symmetric
— _purvl _er2 _pVIWI 2nd order
11 e ! P r2 tensor
—puw —pPVW —PW

The mean-flow equations for turbulent flow are derived by
substituting V :§+X' into the Navier-Stokes equations
and averaging. The resulting equations, which are called
the Reynolds-averaged Navier-Stokes (RANS) equations
are:

Continuity V-V=0 ie.V-V=0and V-V' =0
DV 0 - o
Momentum —+p—orI\uiv’ )J=—pgk - Vp+uv-Vv
P, péxj(lj) pgk—Vp+pvV
DV "
or —=—pgk—-Vp+V-1,
P = PEk-Vp i
611 au U =1u X1 X
j—H L —pu;u] L=V  X=Yy
OX; OX;| " W=W X3=2
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Comments:
1) equations are for the mean flow
2) differ from laminar equations by Reynolds stress
terms = uju’

3) influence of turbulence is to transport momentum
from one point to another in a similar manner as
viscosity

: r__/
4) since u;u;

indeterminate: the central problem of turbulent flow
analysis is closure!

are unknown, the problem is

4 equations and 4 + 6 = 10 unknowns

— 1.0

\
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FIGURE 5-35

Hot-wire measurements showing turbulent veiocity fluctuations: (a) typir:al

trace of a single velocity component in a turbulent flow; (b) trace showing FIGURE 5.36

fntermitient turbulence st the e of 3 Flat-plate measurements of the fluctuating velocities u’ (strenmvtise)—,_
(normal), and @’ (lateral) and the turbulent shear u'v’. [After Klebanoff (1953).]
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FIGURE 537

The phenomenon of intermittency in a turbulent boundary 1sver: {a) measured
intermittency factors [afler Klebanoff (1955}]; (b) the superlayer interface be-
tween turbulent and nonturbulent fluid. .
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Fig. 18.3. Measurement of fluctuating tur-
bulent components in a wind tunnel,
at maximum velocity U = 100 cm/sec
after Reichardt [41]
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Fig. 18.4. Measurement of fluctuating com-
ponents in a channel, after Reichardt [41]}

The product ¥ v, the shearing stress 7/g, and the cor-
relation coefficient
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Turbulence Modeling
Closure of the turbulent RANS equations require the

determination of —pu'v’, etc. Historically, two approaches

were developed: (a) eddy viscosity theories in which the
Reynolds stresses are modeled directly as a function of
local geometry and flow conditions; and (b) mean-flow
velocity profile correlations which model the mean-flow
profile itself. The modern approaches, which are beyond
the scope of this class, involve the solution for transport
PDE’s for the Reynolds stresses which are solved in
conjunction with the momentum equations.

(a) eddy-viscosity: theories
(mainly used with differential methods)

—_ . ou In analogy with the laminar viscous
—puv =pe_— : -
oy stress, i.€., T, o« mean-flow rate of strain
The problem is reduced to modeling ., 1.e.,

L = w(x, flow at hand)

Various levels of sophistication presently exist in

modeling L1
ut - p VtLt
~—_ turbulent where Vi and L, are
lenoth scale based an large scale
turbulent eng

: turbulent motion
velocity scale

The total stress is

du
Tiotal = (H + 1y )_

molecular \ eddy viscosity
viscosity (for high Re flow p; >> )
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Mixing-length theory (Prandtl, 1920)
—5 [—5 based on kinetic
—pu’v' =cpvu" VV' theory of gases
—2 _ 86
u =/ 1~ ¢ and / , are mixing lengths

which are analogous to
molecular mean free path,

—2 ou but much larger
v =0, —
ay
= —puv =p/’ ou)ou
ay| Oy

Known as a zero

equation model since
no additional PDE’s /= K(
are solved, only an =y

algebraic relation

distance across shear layer

= f(boundary layer, jet, wake, etc.)
Although mixing-length theory has provided a very useful
tool for engineering analysis, it lacks generality. Therefore,
more general methods have been developed.

One and two equation models

_ Cpk
g

H;

C = constant
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k = turbulent kinetic energy

_ urz +V12 + Wr2
¢ = turbulent dissipation rate

Governing PDE’s are derived for k and & which contain
terms that require additional modeling. Although more
general then the zero-equation models, the k-¢ model also
has definite limitation; therefore, recent work involves the
solution of PDE’s for the Reynolds stresses themselves.
Difficulty 1s that these contain triple correlations that are
very difficult to model.

(b) mean-flow velocity profile correlations
(mainly used with integral methods)
As an alternative to modeling the Reynolds stresses one can
model mean flow profile directly. For simple 2-D flows
this approach is quite food and will be used in this course.
For complex and 3-D flows generally not successful.
Consider the shape of turbulent velocity profiles.

Outer
turbulent

layer

Overlap layer
¥ Viscous

— wall layer

7.

(a) b)

Fig. 6.8 Typical velocity and shear distributions in turbulent flow near a wall: (a) shear;
(b) velocity. ( w
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Note that very near the wall T}, must dominate since
—pu,u;= 0 at the wall (y = 0) and in the outer part

turbulent stress will dominate. This leads to the three layer
concept:

Inner layer:  viscous stress dominates
Outer layer: turbulent stress dominates

Overlap layer: both types of stress important

1. laminar sub-layer (viscous shear dominates)

u=1f(u, Ty, p,y) note: not f(9)
From dimer.lsional ut = f(y+ ) law-of-the-wall
analysis
0= y+
where: u' = i*
u
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very near the wall:

du o+
T ~ Ty ~ constant = pL— = u=cy or u' =y
dy
1.e.,
u =y" 0<y <5 yt =2 y=T,—T
Y
RN
p

2. outer layer (turbulent shear dominates)

(Ue _u)outer - g(gﬂtw > P Y)

note: independent of p and actually also depends on dp

dx

. U .
From dimensional e—* u =f (%) Veloclty defect law

analysis u

3. overlap layer (viscous and turbulent shear important)

In order for the inner and outer layers to merge smooth

1
+ + +
ut==Iny"+B 20<y <10’ log-law
K
K = .41 B=355
FIGURE 10.4 1.0 5
Apparent shear stress in r(’“\\\o
a pipe. [After Laufer i B o g, ) 50(})2 %OO
(23] : B * 50,000
— 06H o
- pu'y i c:
pu? 0.4k 2
4 \Q\\ .
0.2 h
'Q\\NQ\‘
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FIGURE 10.5

Velocity distribution for
mooth pipes. [After
Schiichting (36)]

FIGURE 9.9

Velocity distribution in a
turbulent boundary
layer.

10,000
1,000 -
Range of
experimental data for
smooth pipes
Ythx
- 100~
u uxy
ws 5.75 logo - +55
[Eq. (10-19))
116 . .
101
\ U Usy
Ue = v
[Eq. (10-18))
1 | 1 |
0 10 20 30
u
Velacity
defect
1000 \aw
Range of experimental data applies
= “l‘ =5.75 log 1:-' +5.56
2 Logarithmic
£ velocity
£ 100 - distribution
@
2 kR
g
2 g/
e 4 Law of
§T> 3 .»‘ Bl the wall
v urrer
11'?6 C ’ T zone
5K Yue
- =1184
~ e Viscous
ui. === sublayer
1 1 | 1
0 10 20 30

u Ny )
i (relative velocity)
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FIGURE 9.11 700

Velocity distribution in a
turbulent boundary

. 600
layer-linear scales.

500

400
Vity

300

200

100

FIGURE 9.12 1.0
Velocity-defect law for

boundary layers. [After

Rouse (10)]. 0.8

0.6

S|t

0.4

0.2

Buffer zone §
Buffer zone §

Logarithmic
velocity
distribution

Viscous
sublayer

10

u
U

20

20

30
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Note that the y* scale is logarithmic and thus the inner
law only extends over a very small portion of o

Inner law region < .20

And the log law encompasses most of the boundary-layer.
Thus as an approximation one can simply assume

1:lh'ly+]3 *

*

u K + _Yyu

1s valid all across the shear layer. This is the approach used
in this course for turbulent flow analysis. The approach is a
good approximation for simple and 2-D flows (pipe and flat
plate), but does not work for complex and 3-D flows.

1.0

0.8
0.6 Pressure gradients:
a_ Strong favorable: .
U, Herring (1967)
Flate plate:
0.4 Wieghardt (1944)
Mild adverse:

Bradshaw (1966)
Strong adverse:
0.2 Ludwieg {1949)
Very strong adverse:
Schubauer {1960}

9? v, =_2ay Separating flow:
v =—24) Moses (1964)
0 1 ] L 1
[ 0.2 04 0.6 0.8 1.0

c»|~<

FIGURE 6-4

Expgrimental turbulent-boundary-layer velocity profiles for various pressure
gradients.
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tou” =221 aty* = 156

60
,' -Separating flow
I {no discernible overlap iayer)
50 !
t
| Very strong adverse:
# ry ng \AA
40 - ! Strong adverse: AA
," IR
13l I Mild adverse: 4 oo
1730 ] TR e e
+ , A
3 ° -
20
. e Strong favorable
1 v Flat plate
10 5o Infy*) +55 {zero gradient)
1 . — | nnEr law
Fyri In{y*) +5.0
0 ! ; L i
10 100 1,000 10,000
.y
4 14

FIGURE 6-5
Replot of the velocity profiles of Fig. 6-4 using inner-law variables y* and u™*

25
Slight “wake’’ b
1,0
Linear / >
20k s;iblayfr: /
ut =y /
/
/
//
15 ~ /
STRN Logarithmic overlap: // — .
g Eq. (6-52a) )
3 Spalding’s law of the wall:
10 Eq.(6-62) (x=0.4,8=55)
Data of Lindgren (1965):
5 ¥ Upe 4= 6,100

v = 10,000

Y)\' o =27,000

a =49,000

0 ,.{ ! !
1 o 10 100 1,000
7 O T
. v

FIGURE 6-6
Comparison of Spalding’s inner-law expression with the pipe-flow data of

Lindgren (1965).
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Velocity Distribution and Resistance in Smooth Pipes

Assume log-law 1s valid across entire pipe -
+ _ Tw __ friction
u = — velocity

S =—In—>—"— K =.41
u K \
B=5.5
fu(r)andr .
v=__0 . L A P L
A T, 2 |k vV K

Vv ru V2 V2 o2
drop overbar: — =2.44In"—+1.34 = {p j — (f)
T

(o)

1 1.991og(Re £'>)-1.02

NG

constants

. 1 1/2
adjusted = ——=2log|Ref " )-.8 Re > 3000
using data \/f ( )

Power law => £~ .316Re™"* 4000 <Re < 10°



57:020 Mechanics of Fluids and Transport Processes

Chapter 8

Professor Fred Stern Fall 2006 27
2
A LV
hy=—Ah=- P4 Az|=f—
Y D 2¢g
1/4 2
LV
he =316 | =
pVD D 2g
1.75
hy; cV
(recall hy oc V for laminar flow)
Other useful relationships
Power law fit to velocity profile:
m
u r
_ 1 _——
umax rO
m = m(Re)
1 *
u r.u
max (6]
— % =—In +B
u K T
Vv 1
Y (1+1.33¢'72)
umax
TABLE 10.1 EXPONENTS FOR POWER-LAW EQUATION AND
RATIO OF MEAN TO MAXIMUM VELOCITY
Re— 4x100  23x10°  L1x10° L1x10° 3.2 x 10°
1 1 1 1
m— — — — — —
_ 6.0 6.6 7.0 8.8 10.0
VW — 0791 0.807 0.817 0.850 0.865

SOURCE: Schlichting (36). Used with permission of the McGraw-Hill Companies.
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Viscous Distribution and Resistance — Rough Pipes

For laminar flow, effect of roughness is small; however, for
turbulent flow the effect is large. Both laminar sublayer
and overlap layer are affected.

Inner layer:

u=u(y, k, p, tv) not function of p as was case

o' = ' (y/K) for smooth pipe (or wall)

Outer layer: unaffected

Overlap layer:
Ug = ! In~ + constant rough
K k
+ 1 +
ug=—Iny" +B smooth
K
ug —ug =llnk+ +constant k" _ku
X - _ \%
AB(k")

i.e., rough-wall velocity profile shifts downward by AB(k"),
which increases with k.

three regions of flow depending on k™
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1. k"<5  hydraulically smooth (no effect of roughness)

2. 5<k <170 transitional roughness (Re dependence)
3. k' >70 fully rough (independent Re)
For3, AB= llnk+ -3.5 from data
K
ey
u = Kh’l K +8.5# f(RC) flllly
rough
flow
X* = 2.44ln2+3.2
u k
1 k/D
) J

Composite Log-Law
Smooth wall log law
' 1 N

u =—Iny" + —AB(kJrZ

K N ~-
B
" 1 N
B :5——ln(1+.3k ) from data

K

1, [kD 251
f2 T O T R 2

} Moody Diagram

k 9.35
=1.14-2log| =+



57:020 Mechanics of Fluids and Transport Process
Professor Fred Stern Fall 2006

Chapter 8
30

€S

20 T

Fig.
law downshift; (b) correlation with

Y 5751092 2L +55
v* v

) 70
30
AG 1,000
=S e 10,000
:I 20_ 0
3
14.5
10 7 20
< . ‘.
0 | A I 1 J
1 10 100 108 10* 10% 108
vy
+ =
4 14

FIGURE 6-11

Experimental rough-pipe velocity profiles by Scholz (1955), showing” the

nward shift AB of the logarithmic overlap layer.

6.12 Effect of wall roughness on turbulent

Sand
grains
\y’ Commercial
/,/ pipes
0 L4 I |
1 10 102 103 104
et = €ur
v
(b)

pipe-flow velocity profiles: (a) logarithm-

roughness
Colebrook-White ! ‘
20 |- © 48% smooth, 47% fine grains, 5% large grains —+——
Q© 95% uniform sand, 5% large grains e
B 97.5% uniform sand, 2.5% large grains
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& Uniform sand
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>
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® W. L. Moore »/A#t7 & Rand (flume)
O F.R. Halma M_'Cl Sarpkaya {flume)
0 |
1 10 10? 108 104
k= vk
v

FIGURE 6-12

Compos%te plot of the profile-shift parameter AB (k*) for various roughness
geometries, as compiled by Clauser (1956).
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Fig. 6.13 The Moody chart for pipe friction with smooth and rough walls. (From Ref. 8, by permission of the ASME.)
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FIGURE 10.7 &/D
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Resistance coefficient £
versus Re. Reprinted
with minor variations.
[After Moody (29).
Reprinted with
permission from the
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FIGURE 10.9

Relative roughness for
various kinds of pipe.
[After Moody (29).
Reprinted with
permission from the
ASME]
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There are basically three types of problems involved with
uniform flow in a single pipe:

1. Determine the head loss, given the kind and size of
pipe along with the flow rate, Q = A*V

2. Determine the flow rate, given the head, kind, and
size of pipe

3. Determine the pipe diameter, given the type of pipe,
head, and flow rate

1. Determine the head loss
The first problem of head loss is solved readily by
obtaining f from the Moody diagram, using values of Re
and ky/D computed from the given data. The head loss
h¢ is then computed from the Darcy-Weisbach equation.

f = f(Reg, ky/D)

2
h, =f =Y —_Ah Ah:(p—2+zzj—(&+zlj
D 2g Y Y

:_A[gﬂj

Red = Red(V, D)

2. Determine the flow rate
The second problem of flow rate is solved by trial, using
a successive approximation procedure. This is because
both Re and f(Re) depend on the unknown velocity, V.
The solution is as follows:
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1) solve for V using an assumed value for f and the
Darcy-Weisbach equation

1/2
V = |:2ghf } 12
L/D
%—J
known from note sign
given data

2) using V compute Re
3) obtain a new value for f = f(Re, k¢/D) and reapeat as
above until convergence

3/2 2 h 1/2
Or can use Ref”Z:D ( : fj

1% L
scale on Moody Diagram

1) compute Ref"? and kyD

2)read f
2
3)solve V from h; = fEV—
D 2g
4)Q=VA

3. Determine the size of the pipe
The third problem of pipe size is solved by trial, using a
successive approximation procedure. This is because hg,
f, and Q all depend on the unknown diameter D. The
solution procedure 1s as follows:
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1) solve for D using an assumed value for f and the
Darcy-Weisbach equation along with the definition

of Q
3L b 1/5
D:|: Q :| °f1/5

Wzghf
H—/

known from
given data

2) using D compute Re and k/D

3) obtain a new value of f = f(Re, k¢/D) and reapeat as
above until convergence

Flows at Pipe Inlets and Losses From Fittings

For real pipe systems in addition to friction head loss these
are additional so called minor losses due to

1. entrance and exit effects
. : can be
2. expansions and contractions L larce
3. bends, elbows, tees, and other fittings &
] effect
4. valves (open or partially closed) )

For such complex geometries we must rely on experimental
data to obtain a loss coefficient
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hm \ .
K = — head loss due to minor losses
VvV
2g

In general,

K = K(geometry, Re, &/D)
H_J

dependence usually
not known

Loss coefficient data is supplied by manufacturers and also
listed in handbooks. The data are for turbulent flow
conditions but seldom given in terms of Re.

Modified Energy Equation to Include Minor Losses:

&"‘Zl +LOLIV12 +h, :p—2+z2 +Loc2V22 +h,+h;+>h
Y 2g Y 2g ////
V2

h =K-—

2g

Note: 2h,, does not include pipe friction and e.g. in elbows
and tees, this must be added to hy.



57:020 Mechanics of Fluids and Transport Processes Chapter 8
Professor Fred Stern Fall 2006 37

1. Flow 1in a bend:

i N
\ 12l
w\\ \\ & A _rve_ p Or
{ ’s,w@ \\ \\ / \ centrifugal

et /o o >
. < o v
8=z0 /
1.e. % > (0 which is an adverse pressure gradient in r
r

direction. The slower moving fluid near wall responds first
and a swirling flow pattern results.

' @ This swirling flow represents an
¢ @ o energy loss which must be added

to the hy.

Also, flow separation can result due to adverse longitudinal
pressure gradients which will result in additional losses.

A A, Flea N\
S \

b.l/c \J—}\
Cvtumﬁ'x__

acceleration
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This shows potential flow is not a good approximate in
internal flows (except possibly near entrance)

2. Valves: enormous losses

3. Entrances: depends on rounding of entrance

4. Exit (to a large reservoir): K =1
i.e., all velocity head is lost

5. Contractions and Expansions

sudden or gradual
H_J

theory for expansion:

(Vl - V2 )2
2g

h, =

. Al

from continuity, momentum, and energy
(assuming p = p; in separation pockets)
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Y n
:KSE:(I— j: uL

D) Vv
2g

no theory for contraction:

Vimol  EaeAveds

from experiment
If the contraction or expansion is gradual the losses are
quite different. A gradual expansion is called a diffuser.
Diffusers are designed with the intent of raising the static
pressure.

Cp — plz pl
S HV2
5 PVy
2 i
1 Ay Bernoulli and
Pidea A, continuity equation

K =

—C, Energy equation

hl’l’l
V2 = Cpideal
Ag
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Actually very complex flow and

C, = C, (geometry, inlet flow conditions)

-

—~—

1.e., fully developed (long pipe) reduces C,
thin boundary layer (short pipe) high C,
(more uniform inlet profile)

FIGURE 10. 10

Flow characteristics at a
pipe inlet (not to scale).

ully developed flow
(uniform flow)

Reglon of developing flowu o
(nonuniform flow)

1.0 -— N
\\‘
08 02k ™ Re = 388.000
..
FIGURE 10. 11 oL owp=4s i .
Distribution of velocity ;r_ : : xx//gz 411855) D= P-Po Turbulent
and pressure in the inlet % pal N 405 pVEr2 0.1
region of a pipe [Barbin ‘ ./ ﬂOW
- A Y -
and Jones (3)]. 0.2 Re = 388.000 L ;
(@) Velocity distribution. o | . | gl o . | . . . |
() Pressure distribution. 06 07 08 09 10 1.1 12 13 0 5 10 15 20 25 30
Vv x/D

(b)

(a)

FIGURE 10. 12
Flow at a sharp-edged
inlet.
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FIGURE 10.13

Flow pattern in an
elbow.

eI

Separation zone

See textbook Table 8.2 for a table of the loss coefficients
for pipe components
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TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Additional
Description Sketch Data K Source
b r/d K. Q2)*
Pipe entrance d 7 0.0 0.50
0.1 0.12
h, = K, V?/2g f :’ | >0.2 0.03
Kc KC
Contraction D,/D; 6 =60° 6=180° )
D, 0.0 0.08 0.50
——r—7\1722 020 0.8 0.49
Dy 0 0.40 0.07 0.42
— T 060 0.06 0.27
0.80 0.06 0.20
h,=KcV3/2g 0.90 0.06 0.10
Ke Ke
Expansion b D\/D, 6=20 6=180° 2
! 0.0 1.00

%
N 020 030 087
——F\é ¥ 0.40 0.25 0.70

0.60 0.15 0.41
h, = KgVi/2g 0.80 0.10 0.15
Vanes Without
=) vanes K, =11 37)
90° miter bend
With
vanes K, =102 (37)
rd ()
and
90° smooth ! Ky =035 (19)
bend 2 0.19
© 4 0.16
6 0.21
8 0.28
10 0.32
Globe valve—wide open K,=10.0 (37
Angle valve—wide open K,= 50
Gate valve—wide open K,= 02
Gate valve—half open K,= 56
Thrf:aded Return bend K,= 2.2
‘pl.pe Tee
fittings straight-through flow K,= 04
side-outlet flow K, = 18
90° elbow K,= 09
45° elbow K,= 04

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditionir
Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.
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FIGURE 10.14 Steeper gradient in the EGL due to
. turbulence produced at the entrance

EGL and HGL qt a
sharp-edged pipe
entrance, ol
Drop in the HGL
due to high
velocity in flow
just downstream
of entrance
h; due to
entrance
p2
2
hy, due to partially
closed valve
IGURE 10,15

ead losses in a pipe.



