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Chapter 8 Flow in Conduits 
 
Entrance and developed flows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Le = f(D, V, ρ, µ) 
 
Πi theorem ⇒  Le/D = f(Re) 
 
Laminar flow: Recrit ∼ 2000, i.e., for Re < Recrit laminar 
          Re > Recrit turbulent 
 
  Le/D = .06Re  from experiments 
  
  Lemax = .06RecritD ∼ 138D 
    
    maximum Le for laminar flow 
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Turbulent flow: 
 

 
D
Le  ∼ 6/1Re4.4  

 from experiment 
 
 
 
Laminar vs. Turbulent Flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
laminar   turbulent   spark photo 
 

Reynolds 1883 showed difference depends on Re = 
ν

VD  

  Re    Le/D 
4000      18 
 104      20 
 105      30 
 106      44 
 107      65 
 108      95 

i.e., 
relatively 
shorter 
than for 
laminar 
flow 
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Shear-Stress Distribution Across a Pipe Section 
Continuity: Q1 = Q2 = constant 

   i.e.,  V1 = V2  since A1 = A2 
 
Momentum: ( )∑ ∑ ⋅ρ= AVuFs  
    = ( ) ( )222111 AVVAVV ρ−−ρ  
    = ( ) 0VVQ 12 =−ρ  
 

( ) 0dsr2sinWAds
ds
dpppA =πτ−α∆−⎟

⎠
⎞

⎜
⎝
⎛ +−  

AdsW γ=∆   
ds
dzsin =α  

 

   ( ) 0dsr2
ds
dzAdsdsA

ds
dp

=πτ−γ−−  

 

÷ Ads  ( )⎥⎦
⎤

⎢⎣
⎡ γ+−=τ zp

ds
d

2
r  

 
τ varies linearly from 0.0 at r = 0 (centerline) to τmax (= τw) 
at r = R (wall).  Valid for laminar and turbulent flow. 
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no slip condition 

Laminar Flow in Pipes 

( )⎥⎦
⎤

⎢⎣
⎡ γ+−=µ−=µ=τ zp

ds
d

2
r

dr
dV

dy
dV  

 

y = wall coordinate = ro − r ⇒ 
dy
dV

dr
dy

dy
dV

dr
dV

−==  

( )⎥⎦
⎤

⎢⎣
⎡ γ+−

µ
−= zp

ds
d

2
r

dr
dV  

 

( ) Czp
ds
d

4
rV

2
+⎥⎦

⎤
⎢⎣
⎡ γ+−

µ
−=  

 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ γ+−

µ
=⇒= zp

ds
d

4
rC0rV

2
o

o  

 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ γ+−

µ
−

= zp
ds
d

4
rrrV

22
o  

 
∫ ⋅= AdVQ  

   = ( )∫ π
or

0
rdr2rV  

 
( )π=θ= 2rdrrdrddA  

( )⎥⎦
⎤

⎢⎣
⎡ γ+−

µ
π

= zp
ds
d

8
rQ

4
o   ( )⎥⎦

⎤
⎢⎣
⎡ γ+−

µ
== zp

ds
d

8
r

A
QV

2
o  

      
2

VV max=  

Exact solution to 
Navier-Stokes 
equations for laminar 
flow in circular pipe 

( )⎥⎦
⎤

⎢⎣
⎡ γ+−

µ
= zp

ds
d

4
rV

2
o

max  
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energy equation: 
 

L2

2
22

1

2
11 hz

g2
Vpz

g2
Vp

+++
γ

=++
γ

   

 

⎟
⎠

⎞
⎜
⎝

⎛
+

γ
−⎟

⎠

⎞
⎜
⎝

⎛
+

γ
=∆ 1

1
2

2 zpzph  

 

 ( ) hzzpph 21
21

L ∆−=−+
γ
−

=  

 

  hL  = ( )⎥⎦
⎤

⎢⎣
⎡ γ+−

γ
zp

ds
dL   L = length of pipe = ds 

 

       = Vh
r

V8L
2
o

α∆−=⎥
⎦

⎤
⎢
⎣

⎡ µ
γ

 

 

or 2Lf D
VL32hh

γ
µ

==    hf = head loss due to friction 

     exact solution 

⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+

γ
−=

ds
dhL

zp
ds
dLh L
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friction coefficient for pipe flow boundary layer flow 

friction factor 2
w

V

8f
ρ

τ
=     

2

w
f

V
2
1C
ρ

τ
=  

 
  
 

( )⎥⎦
⎤

⎢⎣
⎡ γ+−=τ zp

ds
d

2
ro

w  

 

      = ⎥
⎦

⎤
⎢
⎣

⎡ µ
2
o

o

r
V8

2
r  

 

     τw = 
or
V4µ  

 
 

 

Re
64

DV
64

Vr
32f

o
=

ρ
µ

=
ρ

µ
=   exact solution 

 
  
 

ν
=

DVRe    
ρ
µ

=ν  
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Criterion for Laminar or Turbulent Flow in a 
Pipe 
 
Recrit ∼ 2000  flow becomes unstable 
Retrans ∼ 3000  flow becomes turbulent 
Re = VD/ν 
 
Turbulent Flow in Pipes 
 
Continuity and momentum: 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ γ+−=τ==τ zp

ds
d

2
rrr o

oo  

Energy:   ( )⎥⎦
⎤

⎢⎣
⎡ γ+−

γ
= zp

ds
dLhf  

Combining: 
o

o
f r

2Lh τ
⋅

γ
=  define 

2
o

V
8
1f
ρ

τ
=  = friction factor 

      fV
8
1

r
2

g
Lh 2

o
f ρ⋅⋅

ρ
=  

 

      
g2

V
D
Lfh

2

f ⋅⋅=  Darcy – Weisbach Equation 

 
    f = f(Re, k/D) = still must be determined! 
 

ν
=

DVRe    k = roughness 
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Description of Turbulent Flow 
 
Most flows in engineering are turbulent:  flows over 
vehicles (airplane, ship, train, car), internal flows 
(heating and ventilation, turbo-machinery), and 
geophysical flows (atmosphere, ocean). 
 
v (x, t) and p(x, t) are random functions of space and 
time, but statistically stationary flaws such as steady 
and forced or dominant frequency unsteady flows 
display coherent features and are amendable to 
statistical analysis, i.e. time and place (conditional) 
averaging.  RMS and other low-order statistical 
quantification can be modeled and used in 
conjunction with averaged equations for solving 
practical engineering problems. 
 
Turbulent motions range in size from the width in the 
flow δ to much smaller scales, which come 
progressively smaller as the Re = Uδ/υ increases. 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 8 
Professor Fred Stern   Fall 2006 9

 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 8 
Professor Fred Stern   Fall 2006 10

Physical description: 
 
(1)  Randomness and fluctuations: 
 Turbulence is irregular, chaotic, and 
unpredictable.  However, structurally stationary 
flows, such as steady flows, can be analyzed using 
Reynolds decomposition. 
 

'uuu +=   ∫=
+Tt

t

dTu
T

u
0

0

1  0'=u  dTu
T

u
Tt

t
∫=
+0

0

22 '1'  

 etc. 
 
u  = mean motion 

'u = superimposed random fluctuation 
2'u = Reynolds stresses; RMS = 2'u  

 
Triple decomposition is used for forced or dominant 
frequency flows 
 

''' uuuu ++=  
 
Where ''u  = organized component 
 
(2)  Nonlinearity  
 Reynolds stresses and 3D vortex stretching are 
direct results of nonlinear nature of turbulence.  In 
fact, Reynolds stresses arise from nonlinear 
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convection term after substitution of Reynolds 
decomposition into NS equations and time averaging. 
 
(3)  Diffusion 
 Large scale mixing of fluid particles greatly 
enhances diffusion of momentum (and heat), i.e., 
 

Reynolds Stresses:    
stressviscous

ijijji uu µετρ =>>− ''  

Isotropic eddy viscosity: kuu ijijtji δευ
3
2'' −>>−  

 
(4)  Vorticity/eddies/energy cascade 
 Turbulence is characterized by flow visualization 
as eddies, which vary in size from the largest Lδ 
(width of flow) to the smallest. The largest eddies 
have velocity scale U and time scale Lδ/U. The orders 
of magnitude of the smallest eddies (Kolmogorov 
scale or inner scale) are: 

LK = Kolmogorov micro-scale = 
4
1

3

3

⎥
⎦

⎤
⎢
⎣

⎡

U
δυ  

LK =  O(mm) >> Lmean free path = 6 x 10-8 m 
Velocity scale = (νε)1/4=  O(10-2m/s) 
Time scale = (ν/ε)1/2=  O(10-2s) 
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Largest eddies contain most of energy, which break 
up into successively smaller eddies with energy 
transfer to yet smaller eddies until LK is reached and 
energy is dissipated by molecular viscosity (i.e. 
viscous diffusion). 
 
Richardson (1922): 
Lδ Big whorls have little whorls 
 Which feed on their velocity; 
 And little whorls have lesser whorls, 
LK And so on to viscosity (in the molecular sense). 
 
(5)  Dissipation 

bigu
U

wvukku

L

==
=

++==

=

υδ

δ

/Re
)(0

'''

00

222
0

0

 

 
ε = rate of dissipation = energy/time 

 

 
o

u
τ

2
0=   

0
0
uo =τ  

 

 =
0

3
0

l
u  independent υ 

4
1

3

⎥
⎦

⎤
⎢
⎣

⎡
=

ε
υ

KL  

Energy comes from 
largest scales and 
fed by mean motion 

Dissipation 
occurs at 
smallest 
scales 
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The mathematical complexity of turbulence entirely 
precludes any exact analysis.  A statistical theory is well 
developed; however, it is both beyond the scope of this 
course and not generally useful as a predictive tool.  Since 
the time of Reynolds (1883) turbulent flows have been 
analyzed by considering the mean (time averaged) motion 
and the influence of turbulence on it; that is, we separate 
the velocity and pressure fields into mean and fluctuating 
components.  
 
It is generally assumed (following Reynolds) that the 
motion can be separated into a mean (u , v , w, p ) and 
superimposed  turbulent fluctuating (u΄, v΄, w΄, p΄) 
components, where the mean values of the latter are 0. 
 
 uuu ′+=     ppp ′+=  
 vvv ′+=     and for compressible flow 
 www ′+=    TTTand ′+=ρ′+ρ=ρ  
 
where (for example) 

 ∫=
+ 10

0

tt

t1
udt

t
1u    

 
Thus by definition 0u =′ , etc.  Also, note the following 
rules which apply to two dependent variables f and g 
 

 ff =  gfgf +=+  
 
 gfgf ⋅=⋅  

and t1sufficiently large 
that the average is 
independent of time 
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s
f

s
f

∂
∂

=
∂
∂   ∫=∫ dsffds  

 
The most important influence of turbulence on the mean 
motion is an increase in the fluid stress due to what are 
called the apparent stresses.  Also known as Reynolds 
stresses: 

jiij uu ′′ρ−=τ′  
 
  2u′ρ−      vu ′′ρ−   wu ′′ρ−  
 = vu ′′ρ−      2v′ρ−   wv ′′ρ−  
  wu ′′ρ−      wv ′′ρ−  2w′ρ−  
The mean-flow equations for turbulent flow are derived by 
substituting VVV ′+=  into the Navier-Stokes equations 
and averaging.  The resulting equations, which are called 
the Reynolds-averaged Navier-Stokes (RANS) equations 
are: 
 
Continuity 0Vand0V.e.i0V =′⋅∇=⋅∇=⋅∇  

Momentum ( ) Vpk̂guu
xDt

VD 2
ji

j
∇µ+∇−ρ−=′′

∂
∂

ρ+ρ  

 or  ijpk̂g
Dt

VD
τ⋅∇+∇−ρ−=ρ  

   ji
i

j

j

i
ij uu

x
u

x
u ′′ρ−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂
∂

µ=τ  

           ijτ′  
 

f = (u, v, w, p) 
s = (x, y, z, t) 

Symmetric 
2nd order 

tensor

u1 = u x1 = x 
u2 = v x2 = y 
u3 = w x3 = z 
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Comments:     
1) equations are for the mean flow 
2) differ from laminar equations by Reynolds stress 

terms = jiuu ′′  
3) influence of turbulence is to transport momentum 

from one point to another in a similar manner as 
viscosity 

4) since jiuu ′′  are unknown, the problem is 
indeterminate: the central problem of turbulent flow 
analysis is closure! 

 
4 equations and 4 + 6 = 10 unknowns 
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Turbulence Modeling 
Closure of the turbulent RANS equations require the 
determination of vu ′′ρ− , etc.  Historically, two approaches 
were developed: (a) eddy viscosity theories in which the 
Reynolds stresses are modeled directly as a function of 
local geometry and flow conditions; and (b) mean-flow 
velocity profile correlations which model the mean-flow 
profile itself.  The modern approaches, which are beyond 
the scope of this class, involve the solution for transport 
PDE’s for the Reynolds stresses which are solved in 
conjunction with the momentum equations. 
 

(a) eddy-viscosity: theories  
(mainly used with differential methods) 

  
y
uvu t ∂

∂
µ=′′ρ−   

The problem is reduced to modeling µt, i.e., 
  µt = µt(x, flow at hand)  

 
Various levels of sophistication presently exist in 
modeling µt 

ttt LVρ=µ  
 
  
 
The total stress is 

  ( )
y
u

ttotal ∂
∂

µ+µ=τ  

 

In analogy with the laminar viscous 
stress, i.e., τt ∝ mean-flow rate of strain 

turbulent 
velocity scale 

turbulent 
length scale 

molecular 
viscosity 

eddy viscosity  
(for high Re flow µt >> µ) 

where Vt and Lt are 
based an large scale 
turbulent motion 
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Mixing-length theory (Prandtl, 1920) 
 

  22 vucvu ′′ρ=′′ρ−  
 

  
y
uu 1

2

∂
∂

=′  

 

  
y
uv 2

2

∂
∂

=′  

 

 ⇒ 
y
u

y
uvu 2

∂
∂

∂
∂

ρ=′′ρ−  

 
 
    ( )y=  
 

   = f(boundary layer, jet, wake, etc.) 
Although mixing-length theory has provided a very useful 
tool for engineering analysis, it lacks generality.  Therefore, 
more general methods have been developed. 
 
One and two equation models 
 

   t
C kρµ
ε

=  
 
 C = constant 
 

based on kinetic 
theory of gases 

21 and are mixing lengths 
which are analogous to 
molecular mean free path, 
but much larger 

Known as a zero 
equation model since 
no additional PDE’s 
are solved, only an 
algebraic relation 

distance across shear layer 
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 k = turbulent kinetic energy 
     = 2 2 2u v w′ ′ ′+ +  
 
 ε = turbulent dissipation rate 
 
Governing PDE’s are derived for k and ε which contain 
terms that require additional modeling.  Although more 
general then the zero-equation models, the k-ε model also 
has definite limitation; therefore, recent work involves the 
solution of PDE’s for the Reynolds stresses themselves.  
Difficulty is that these contain triple correlations that are 
very difficult to model. 
 
 

(b) mean-flow velocity profile correlations 
(mainly used with integral methods) 

As an alternative to modeling the Reynolds stresses one can 
model mean flow profile directly.  For simple 2-D flows 
this approach is quite food and will be used in this course.  
For complex and 3-D flows generally not successful.  
Consider the shape of turbulent velocity profiles.   
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Note that very near the wall τlaminar must dominate since  
jiuuρ− = 0 at the wall (y = 0) and in the outer part 

turbulent stress will dominate.  This leads to the three layer 
concept: 
 
 
Inner layer:  viscous stress dominates 
 
Outer layer: turbulent stress dominates 
 
Overlap layer: both types of stress important 
 

 
1. laminar sub-layer (viscous shear dominates) 

u = f(µ, τw, ρ, y)  note: not f(δ) 
 
   ( )++ = yfu    law-of-the-wall 
 

    u+ = y+ 
 

where:  *u
uu =+  

 
   u* = friction velocity = ρτ /w  
 

   
ν

=+
*yuy  

From dimensional 
analysis 
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very near the wall: 

τ ∼ τw ∼ constant = 
dy
du

µ        ⇒    cyu =       or      u+ = y+ 

i.e., 
++ = yu   0 < y+ < 5  

γ
=+

*yuy   y = ro − r 

      
ρ
τ

= o*u  

2. outer layer (turbulent shear dominates) 
 

( ) ( )y,,,guU woutere ρτδ=−  

  note: independent of µ and actually also depends on 
dx
dp  

    

   ⎟
⎠
⎞

⎜
⎝
⎛
δ

=
− yf

u
uU

*
e  velocity defect law 

 
3. overlap layer (viscous and turbulent shear important) 

 
In order for the inner and outer layers to merge smooth 

Byln1u +
κ

= ++  20 < y+ < 105  log-law 

 
κ  = .41  B = 5.5 
 

 
 
 

From dimensional 
analysis 
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Note that the y+ scale is logarithmic and thus the inner 
law only extends over a very small portion of δ 

 
  Inner law region < .2δ 
 
And the log law encompasses most of the boundary-layer.  
Thus as an approximation one can simply assume 
 

  Byln1
u
u

* +
κ

=  

 
is valid all across the shear layer.  This is the approach used 
in this course for turbulent flow analysis.  The approach is a 
good approximation for simple and 2-D flows (pipe and flat 
plate), but does not work for complex and 3-D flows. 
 
 

 

ν
=

ρτ=

+

+

*
w

yuy

/u
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constants 
adjusted 
using data 

Power law 

friction 
velocity 

Velocity Distribution and Resistance in Smooth Pipes 
 
Assume log-law is valid across entire pipe 
 

  ( ) ( ) Burrln1
u

ru *
o

* +
ν
−

κ
=  

 

( )

⎭
⎬
⎫

⎩
⎨
⎧

κ
−+

νκ
=

π

∫ π
==

3B2urln2u
2
1

r

rdr2ru

A
QV

*
o*

2
o

r

0

o

 

 
 

 
2/12/1

o

2*
o

* f
8V34.1urln44.2

u
V

⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
τ
ρ

=+
ν

=  

   
2/1

8
fRe

2
1

⎟
⎠
⎞

⎜
⎝
⎛  

 
 

( ) 02.1fRelog99.1
f

1 2/1 −=  

 

⇒ ( ) 8.fRelog2
f

1 2/1 −=   Re > 3000 

 
 

⇒ f ∼ .316Re−1/4  4000 < Re < 105 
 
 

drop over bar: 

5.5B
41.

u w

=
=κ

=
ρ
τ

=+
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g2
V

D
Lfzphh

2

f =⎟
⎠

⎞
⎜
⎝

⎛
∆+

γ
∆

−=∆−=  

    
g2

V
D
L

VD
316.h

24/1

f ⎟
⎠

⎞
⎜
⎝

⎛
ρ
µ

=  

 
    75.1

f Vh ∝  
(recall hf ∝ V for laminar flow) 
 
 
Other useful relationships 
Power law fit to velocity profile: 

  
max

1
m

o

u r
u r

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

  

 
  m = m(Re) 
 

 B
r
urln1

u
u *

o
*

max +
κ

=  

 

 ( ) 12/1

max
f33.11

u
V −

+=  
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Viscous Distribution and Resistance – Rough Pipes 
 
For laminar flow, effect of roughness is small; however, for 
turbulent flow the effect is large.  Both laminar sublayer 
and overlap layer are affected. 
 
Inner layer: 
 u = u(y, k, ρ, τw) 
 
 u+ = u+(y/k) 
 
Outer layer: unaffected 
 
Overlap layer: 

 +
κ

=+

k
yln1uR constant    rough 

 

 Byln1uS +
κ

= ++      smooth 

 

+
κ

=− +++ kln1uu RS constant    
ν

=+
*kuk  

    ∆B(k+) 
 
i.e., rough-wall velocity profile shifts downward by ∆B(k+), 
which increases with k+. 
 
three regions of flow depending on k+ 
 
 

not function of µ as was case 
for smooth pipe (or wall) 
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1.  k+ < 5       hydraulically smooth (no effect of roughness) 
2.  5 < k+ < 70  transitional roughness (Re dependence) 
3.  k+ > 70  fully rough (independent Re) 
 

For 3,  5.3kln1B −
κ

=∆ +   from data 

 

 ( )Ref5.8
k
yln1u ≠+

κ
=+  

 

 2.3
k
Dln44.2

u
V

* +=  

 

 
7.3
D/klog2

f
1

2/1 −=  

 
Composite Log-Law 
       Smooth wall log law 

( )+++ ∆−+
κ

= kBByln1u  

          B* 

 ( )++
κ

−= k3.1ln15B*  from data 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
+−= 2/12/1 fRe

51.2
7.3
D/klog2

f
1   Moody Diagram 

 

 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− 2/1

s

fRe
35.9

D
klog214.1  

fully 
rough 
flow 
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There are basically three types of problems involved with 
uniform flow in a single pipe: 
 

1. Determine the head loss, given the kind and size of 
pipe along with the flow rate, Q = A*V 

2.  Determine the flow rate, given the head, kind, and 
size of pipe 

3. Determine the pipe diameter, given the type of pipe, 
head, and flow rate 

 
1. Determine the head loss 

The first problem of head loss is solved readily by 
obtaining f from the Moody diagram, using values of Re 
and ks/D computed from the given data.  The head loss 
hf is then computed from the Darcy-Weisbach equation. 
 
 f = f(Red, ks/D) 
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 Red = Red(V, D) 
 

2. Determine the flow rate 
The second problem of flow rate is solved by trial, using 
a successive approximation procedure.  This is because 
both Re and f(Re) depend on the unknown velocity, V.  
The solution is as follows: 
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1) solve for V using an assumed value for f and the 
Darcy-Weisbach equation 

2/1
2/1

f f
D/L

gh2V −⋅⎥⎦
⎤

⎢⎣
⎡=  

 
     known from  note sign 
      given data 
 

2) using V compute Re 
3) obtain a new value for f = f(Re, ks/D) and reapeat as 

above until convergence 
 

Or can use 
1/ 23/ 2

1/ 2 2
Re fghDf

Lν
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

scale on Moody Diagram 
 

1) compute 2/1fRe  and ks/D 
2) read f 

3) solve V from 
g2

V
D
Lfh

2

f =  

4) Q = VA 
 
3. Determine the size of the pipe 

The third problem of pipe size is solved by trial, using a 
successive approximation procedure.  This is because hf, 
f, and Q all depend on the unknown diameter D.  The 
solution procedure is as follows: 
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1) solve for D using an assumed value for f and the 
Darcy-Weisbach equation along with the definition 
of Q 

5/1
5/1

f
2

2
f

gh
LQ8D ⋅⎥

⎦

⎤
⎢
⎣

⎡

π
=  

 
     known from 
      given data 
 

2) using D compute Re and ks/D 
 
3) obtain a new value of f = f(Re, ks/D) and reapeat as 

above until convergence 
 
 

Flows at Pipe Inlets and Losses From Fittings 
 
For real pipe systems in addition to friction head loss these 
are additional so called minor losses due to 
 

1. entrance and exit effects 
2. expansions and contractions 
3. bends, elbows, tees, and other fittings 
4. valves (open or partially closed) 

 
For such complex geometries we must rely on experimental 
data to obtain a loss coefficient 
 

can be 
large 
effect 
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g2
V
hK 2

m=     head loss due to minor losses 

 
In general,  
 
  K = K(geometry, Re, ε/D) 
 
        dependence usually  
        not known 
 
 
Loss coefficient data is supplied by manufacturers and also 
listed in handbooks.  The data are for turbulent flow 
conditions but seldom given in terms of Re. 
 
Modified Energy Equation to Include Minor Losses: 
 

∑+++α++
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=+α++
γ mft

2
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m =  

 
Note:  Σhm does not include pipe friction and e.g. in elbows 
and tees,  this must be added to hf. 
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1. Flow in a bend: 
 

 
 
 
 
 
 
 
 

i.e. 0
r
p
>

∂
∂  which is an adverse pressure gradient in r 

direction.  The slower moving fluid near wall responds first 
and a swirling flow pattern results. 
 
      

This swirling flow represents an  
energy loss which must be added  
to the hL. 

 
Also, flow separation can result due to adverse longitudinal 
pressure gradients which will result in additional losses. 
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centrifugal 
acceleration 
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d D 

 
 
 
 
 
 
 
 
 
 

This shows potential flow is not a good approximate in 
internal flows (except possibly near entrance) 

 
2. Valves: enormous losses 
 
3. Entrances: depends on rounding of entrance 
 
4. Exit (to a large reservoir): K = 1  
    i.e., all velocity head is lost 
 
5. Contractions and Expansions 

sudden or gradual 
 
theory for expansion: 
 

 ( )
g2
VVh

2
21

L
−

=  

  
from continuity, momentum, and energy  
(assuming p = p1 in separation pockets)  
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no theory for contraction: 
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  from experiment 
If the contraction or expansion is gradual the losses are 
quite different.  A gradual expansion is called a diffuser.  
Diffusers are designed with the intent of raising the static 
pressure.  
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Bernoulli and 
continuity equation 
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Actually very complex flow and 
 
 Cp = Cp (geometry, inlet flow conditions) 
 

 i.e.,  fully developed (long pipe) reduces Cp 
thin boundary layer (short pipe) high Cp 
(more uniform inlet profile) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Turbulent 
flow 

K = .5 
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See textbook Table 8.2 for a table of the loss coefficients 
for pipe components 
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