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Chapter 8 Flow in Conduits
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maximum Le for laminar flow
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Turbulent flow:
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[image: image231.png]TABLE 10.1 EXPONENTS FOR POWER-LAW EQUATION AND
RATIO OF MEAN TO MAXIMUM VELOCITY
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SOURCE: Schllchtmg (36). Used with permission of the McGraw-Hill Compames.
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from experiment

Laminar vs. Turbulent Flow
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Reynolds 1883 showed difference depends on Re = 
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FIGURE 10.1

Variation of shear stress
in a pipe.



Shear-Stress Distribution Across a Pipe Section

Continuity: Q1 = Q2 = constant, i.e., V1 = V2 since A1 = A2
Momentum:
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( varies linearly from 0.0 at r = 0 (centerline) to (max (= (w) at r = r0 (wall), which is valid for laminar and turbulent flow.

Laminar Flow in Pipes
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y = wall coordinate = ro ( r ( 
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[image: image201.png]FIGURE 10.7

Resistance coefficient
f versus Re for sand-
roughened pipe. [After
Nikuradse (30)]
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[image: image204.png]FIGURE 10.9

Relative roughness for
various kinds of pipe.
[After Moody (29).
Reprinted with
permission from the
ASME]
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For a horizontal pipe,  
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where  L = length of pipe = ds
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[image: image207.png]FIGURE 10. 10

Flow characteristics at a
pipe inlet (not to scale).
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Energy equation:
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[image: image210.png]FIGURE 10,13

Flow pattern in an
elbow.
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[image: image211.png]TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Additional
Description Sketch Data K Source
NG r/d K. @*
Pipe entrance a7 0.0 0.50
0.1 0.12
h,= K. V*/2g [ :.-’ >0.2 0.03
Kc K¢
Contraction D,/D, 6 =60° 6=180° 2)
D, 0.0 0.08 0.50
——r—w\i# 020  0.08 0.49
Dy 0 0.40 0.07 0.42
—+ F 060 0.06 0.27
0.80 0.06 0.20
h, = KcVi/2g 0.90 0.06 0.10
Ke K
Expansion b D\/D, 6=20° 6 =180 )
v, 0.0 1.00
AVL/ ‘9 D, 0.20 0.30 0.87
—T-\z v 0.40 0.25 0.70
0.60 0.15 0.41
h, = K V3i/2g 0.80 0.10 0.15
Vanes Without
N vanes K,=11 37)
90° miter bend
With
vanes K, =02 37
r/d &)
and
90° smooth ! K, =035 (19)
bend 2 0.19
4 0.16
6 0.21
8 0.28
10 0.32
Globe valve—wide open K,= 100 37
Angle valve—wide open K,= 50
Gate valve—wide open K,= 02
Gate valve—half open K,= 56
Thre}aded Return bend K,= 22
pipe Tee
fittings straight-through flow K,= 04
side-outlet flow K= 18
90° elbow K,= 09
45° elbow K,= 04

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditioni
Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.



Define friction factor 
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Darcy – Weisbach Equation, which is valid for both laminar and turbulent flow.  
Friction factor definition based on turbulent flow analysis where 
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, k/D; or f=f(Re, k/D) where k=roughness height.   For turbulent flow f determined from turbulence modeling since exact solutions not known, as will be discussed next.

For laminar flow f not affected k and f(Re) determined from exact analytic solution to Navier-Stokes equations.

Exact solution:
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For laminar flow
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thus n=4, m=3 and r=1 such that 
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=constant.  The constant depends on duct shape (circular, rectangular, etc.) and is referred to as Poiseuille number=Po.  Po=4 for circular duct.
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 hf = head loss due to friction

for z=0: 
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as per Hagen!

Stability and Transition
Stability:  can a physical state withstand a disturbance and still return to its original state.
In fluid mechanics, there are two problems of particular interest: change in flow conditions resulting in (1) transition from one to another laminar flow; and (2) transition from laminar to turbulent flow.

(1)  Example of transition from one to another laminar flow: Centrifugal instability for Couette flow between two rotating cylinders when centrifugal force > viscous force 
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, which is predicted by small-disturbance/linear stability theory.
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(2)
Transition from laminar to turbulent flow

Not all laminar flows have different equilibrium states, but all laminar flows for sufficiently large Re become unstable and undergo transition to turbulence.

Transition:  change over space and time and Re range of laminar flow into a turbulent flow.
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 ~ 1000, δ = transverse viscous thickness
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with 
xtrans ~ 10-20 xcr
Small-disturbance/linear stability theory also predicts Recr with some success for parallel viscous flow such as plane Couette flow, plane or pipe Poiseuille flow, boundary layers without or with pressure gradient, and free shear flows (jets, wakes, and mixing layers).

No theory for transition, but recent Direct Numerical Simualtions is helpful.

In general: Retrans=Retrans(geometry, Re, pressure gradient/velocity profile shape, free stream turbulence, roughness, etc.)
Criterion for Laminar or Turbulent Flow in a Pipe

Recrit ( 2000

flow becomes unstable

Retrans ( 3000

flow becomes turbulent

Re = 
[image: image45.wmf]V

D/(
Turbulent Flow in Pipes

Continuity and momentum:
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Energy:  
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Combining: 
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Darcy – Weisbach Equation

    f = f(Re, k/D) = still must be determined!
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k = roughness

Description of Turbulent Flow
Most flows in engineering are turbulent:  flows over vehicles (airplane, ship, train, car), internal flows (heating and ventilation, turbo-machinery), and geophysical flows (atmosphere, ocean).

V (x, t) and p(x, t) are random functions of space and time, but statistically stationary flaws such as steady and forced or dominant frequency unsteady flows display coherent features and are amendable to statistical analysis, i.e. time and space (conditional) averaging.  RMS and other low-order statistical quantities can be modeled and used in conjunction with averaged equations for solving practical engineering problems.

Turbulent motions range in size from the width in the flow δ to much smaller scales, which come progressively smaller as the Re = Uδ/υ increases.
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Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5000 and

(b) Re = 20,000. From Dahm and Dimotakis (1990) .

6
5

Ui

msh*
3
2
'
‘o0 or oz o

s

Fig. 1.3. The time history of the axial component of velocity Uj(1) on the centerline
of a turbulent jet. From the experiment of Tong and Warhaft (1995).

00

0.2 0.0 02
xn/x

Fig 14. The mean axial velocity profile in a turbulent jet. The mean velocity (Uy)
is normalized by its value on the centerline, {Uy}o; and the cross-stream (radial)
coordinate x; is normalized by the distance from the nozzle x. The Reynolds number
is 95,500. Adapted from Hussein, Capp, and George (1994),

EX S
i3
5t |
SE2
s
1%
5%
253
53
BEE
§58
Ezg
Eex
EE%
55
2E
a%§
gz 8
Zis
523
=3
iaé
Bég
20t
t
<£3
:ga
pE
233

z
2
£
H
=
H
i
=
5
£
2
=
H
a
g
5
H
H
)
£
]
T




Physical description:

(1)  Randomness and fluctuations:


Turbulence is irregular, chaotic, and unpredictable.  However, for statistically stationary flows, such as steady flows, can be analyzed using Reynolds decomposition.
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Triple decomposition is used for forced or dominant frequency flows
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Where 
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(2)  Nonlinearity 


Reynolds stresses and 3D vortex stretching are direct result of nonlinear nature of turbulence.  In fact, Reynolds stresses arise from nonlinear convection term after substitution of Reynolds decomposition into NS equations and time averaging.

(3)  Diffusion


Large scale mixing of fluid particles greatly enhances diffusion of momentum (and heat), i.e.,

Reynolds Stresses:  
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Isotropic eddy viscosity:
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(4)  Vorticity/eddies/energy cascade


Turbulence is characterized by flow visualization as eddies, which vary in size from the largest Lδ (width of flow) to the smallest. The largest eddies have velocity scale U and time scale Lδ/U. The orders of magnitude of the smallest eddies (Kolmogorov scale or inner scale) are:

LK = Kolmogorov micro-scale = 
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LK =  O(mm) >> Lmean free path = 6 x 10-8 m

Velocity scale = (νε)1/4=  O(10-2m/s)

Time scale = (ν/ε)1/2=  O(10-2s)

Largest eddies contain most of energy, which break up into successively smaller eddies with energy transfer to yet smaller eddies until LK is reached and energy is dissipated at rate  by molecular viscosity.

Richardson (1922):

Lδ
Big whorls have little whorls


Which feed on their velocity;


And little whorls have lesser whorls,

LK
And so on to viscosity (in the molecular sense).

(5)  Dissipation
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[image: image68.wmf]ε = rate of dissipation = energy/time
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The mathematical complexity of turbulence entirely precludes any exact analysis.  A statistical theory is well developed; however, it is both beyond the scope of this course and not generally useful as a predictive tool.  Since the time of Reynolds (1883) turbulent flows have been analyzed by considering the mean (time averaged) motion and the influence of turbulence on it; that is, we separate the velocity and pressure fields into mean and fluctuating components. 

It is generally assumed (following Reynolds) that the motion can be separated into a mean (
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,
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) and superimposed  turbulent fluctuating (u΄, v΄, w΄, p΄) components, where the mean values of the latter are 0.
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and for compressible flow
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where (for example)
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Thus by definition 
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, etc.  Also, note the following rules which apply to two dependent variables f and g
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The most important influence of turbulence on the mean motion is an increase in the fluid stress due to what are called the apparent stresses.  Also known as Reynolds stresses:
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[image: image219.png]FIGURE 5-36
Flat-plate measurements of the fluctuating velocities u’ (streamwise),
(normal), and @’ (lateral) and the turbulent shear uv’. [After Klebanoff (1953).]
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The mean-flow equations for turbulent flow are derived by substituting 
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 into the Navier-Stokes equations and averaging.  The resulting equations, which are called the Reynolds-averaged Navier-Stokes (RANS) equations are:

Continuity
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or
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Comments:
1) equations are for the mean flow

2) differ from laminar equations by Reynolds stress terms = 
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3) influence of turbulence is to transport momentum from one point to another in a similar manner as viscosity

4) since 
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 are unknown, the problem is indeterminate: the central problem of turbulent flow analysis is closure!

4 equations and 4 + 6 = 10 unknowns
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Turbulence Modeling

Closure of the turbulent RANS equations require the determination of 
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, etc.  Historically, two approaches were developed: (a) eddy viscosity theories in which the Reynolds stresses are modeled directly as a function of local geometry and flow conditions; and (b) mean-flow velocity profile correlations, which model the mean-flow profile itself.  The modern approaches, which are beyond the scope of this class, involve the solution for transport PDE’s for the Reynolds stresses, which are solved in conjunction with the momentum equations.

(a) eddy-viscosity: theories 

[image: image228.png]é ,L{;' [ wds 05 -
Q ' ;‘
v :
S 900
Q j
(77
800
0 0.01 0.02 0.03 0.04 0.05 0.06
Time, s
(a)
10
§3 s
5T o
TR 4
aQ
©e S
-10 ' .
0 0.1 0.2 0.3 0.4 0.5 0.6
Time, s
(H)
FIGURE 3535

Hot-wire measurements showing turbulent velocity fluctuations: (a) typical
trace of a single velocity component in a turbulent flow; (b) trace showing
intermittent turbulence at the edge of a jet. :






[image: image108.wmf]y

u

v

u

t

¶

¶

m

=

¢

¢

r

-




The problem is reduced to modeling (t, i.e.,



(t = (t(x, flow at hand)


Various levels of sophistication presently exist in modeling (t
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The total stress is
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Mixing-length theory (Prandtl, 1920)
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Although mixing-length theory has provided a very useful tool for engineering analysis, it lacks generality.  Therefore, more general methods have been developed.

One and two equation models
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C = constant


k = turbulent kinetic energy
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( = turbulent dissipation rate

Governing PDE’s are derived for k and ( which contain terms that require additional modeling.  Although more general than the zero-equation models, the k-( model also has definite limitation; therefore, relatively recent work involves the solution of PDE’s for the Reynolds stresses themselves.  Difficulty is that these contain triple correlations that are very difficult to model.  Most recent work involves direct and large eddy simulation of turbulence.
(b) mean-flow velocity profile correlations

As an alternative to modeling the Reynolds stresses one can model mean flow profile directly for wall bounded flows such as pipes/channels and boundary layers.  For simple 2-D flows this approach is quite good and will be used in this course.  For complex and 3-D flows generally not successful.  Consider the shape of a turbulent velocity profile for wall bounded flow.  



Note that very near the wall (laminar must dominate since 
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= 0 at the wall (y = 0) and in the outer part turbulent stress will dominate.  This leads to the three-layer concept:

Inner layer: 
viscous stress dominates

Outer layer:
turbulent stress dominates

Overlap layer:
both types of stress important

1. laminar sub-layer (viscous shear dominates)
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where:
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u* = friction velocity = 
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very near the wall:

( ( (w ( constant = 
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2. outer layer (turbulent shear dominates)
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    velocity defect law

3. overlap layer (viscous and turbulent shear important)

It is not that difficult to show that for both laws to overlap, f and g are logarithmic functions:

Inner region:
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; valid at large y+ and small η. 


Therefore, both sides must equal universal constant, 
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Inner law region < .2(
And the log law encompasses most of the pipe/boundary-layer.  Thus as an approximation one can simply assume
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is valid all across the shear layer.  This is the approach used in this course for turbulent flow analysis.  The approach is a good approximation for simple and 2-D flows (pipe and flat plate), but does not work for complex and 3-D flows.




Velocity Distribution and Resistance in Smooth Pipes

Assume log-law is valid across entire pipe
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Re > 3000

Since f equation is implicit, it is not easy to see dependency on ρ, μ, V, and D
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laminar flow: 
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Combine with

[image: image156.wmf]*

1

*

3

ln

2

Ru

V

B

u

k

uk

-

=+-



[image: image157.wmf](

)

1

max

3

.

1

1

-

+

=

f

u

V

 



[image: image158.wmf]3

1.3

28

k

=



Power law fit to velocity profile:
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m = m(Re)

Viscous Distribution and Resistance – Rough Pipes

For laminar flow, effect of roughness is small; however, for turbulent flow the effect is large.  Both laminar sublayer and overlap layer are affected.

Inner layer:
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u+ = u+(y/k)

Outer layer: unaffected

Overlap layer:
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 (B(k+)

i.e., rough-wall velocity profile shifts downward by (B(k+), which increases with k+.

Three regions of flow depending on k+
1.  k+ < 5
      hydraulically smooth (no effect of roughness)

2.  5 < k+ < 70

transitional roughness (Re dependence)

3.  k+ > 70

fully rough (independent Re)


For 3, 
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       Smooth wall log law
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Moody Diagram
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There are basically three types of problems involved with uniform flow in a single pipe:

1. Determine the head loss, given the kind and size of pipe along with the flow rate, Q = A*V

2.  Determine the flow rate, given the head, kind, and size of pipe

3. Determine the pipe diameter, given the type of pipe, head, and flow rate

1. Determine the head loss

The first problem of head loss is solved readily by obtaining f from the Moody diagram, using values of Re and ks/D computed from the given data.  The head loss hf is then computed from the Darcy-Weisbach equation.


f = f(ReD, ks/D)
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ReD = ReD(V, D)

2. Determine the flow rate

The second problem of flow rate is solved by trial, using a successive approximation procedure.  This is because both Re and f(Re) depend on the unknown velocity, V.  The solution is as follows:

1) solve for V using an assumed value for f and the Darcy-Weisbach equation
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     known from

note sign

      given data

2) using V compute Re

3) obtain a new value for f = f(Re, ks/D) and reapeat as above until convergence

Or can use 
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scale on Moody Diagram

1) compute 
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3) solve V from 
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4) Q = VA

3. Determine the size of the pipe

The third problem of pipe size is solved by trial, using a successive approximation procedure.  This is because hf, f, and Q all depend on the unknown diameter D.  The solution procedure is as follows:

1) solve for D using an assumed value for f and the Darcy-Weisbach equation along with the definition of Q
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     known from

      given data

2) using D compute Re and ks/D

3) obtain a new value of f = f(Re, ks/D) and reapeat as above until convergence

Flows at Pipe Inlets and Losses From Fittings

For real pipe systems in addition to friction head loss these are additional so called minor losses due to

1. entrance and exit effects

2. expansions and contractions

3. bends, elbows, tees, and other fittings

4. valves (open or partially closed)

For such complex geometries we must rely on experimental data to obtain a loss coefficient
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head loss due to minor losses

In general, 



K = K(geometry, Re, (/D)






    dependence usually 






   not known

Loss coefficient data is supplied by manufacturers and also listed in handbooks.  The data are for turbulent flow conditions but seldom given in terms of Re.

Modified Energy Equation to Include Minor Losses (where 
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Note:  (hm does not include pipe friction and e.g. in elbows and tees,  this must be added to hf.

1. Flow in a bend:




i.e. 
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 which is an adverse pressure gradient in r direction.  The slower moving fluid near wall responds first and a swirling flow pattern results.








This swirling flow represents an 

energy loss which must be added 

to the hL.

Also, flow separation can result due to adverse longitudinal pressure gradients which will result in additional losses.



This shows potential flow is not a good approximate in internal flows (except possibly near entrance)

2. Valves: enormous losses

3. Entrances: depends on rounding of entrance

4. Exit (to a large reservoir): K = 1 

    i.e., all velocity head is lost

5. Contractions and Expansions

sudden or gradual


theory for expansion:
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from continuity, momentum, and energy 

(assuming p = p1 in separation pockets)
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no theory for contraction:
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from experiment

If the contraction or expansion is gradual the losses are quite different.  A gradual expansion is called a diffuser.  Diffusers are designed with the intent of raising the static pressure. 
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Energy equation

Actually very complex flow and


Cp = Cp (geometry, inlet flow conditions)


 i.e., 
fully developed (long pipe) reduces Cp
thin boundary layer (short pipe) high Cp
(more uniform inlet profile)







See textbook Table 8.2 for a table of the loss coefficients for pipe components



  Re	   Le/D


4000	     18


 104	     20


 105	     30


 106	     44


 107	     65


 108	     95





i.e., relatively shorter than for laminar flow





no slip condition





Exact solution to Navier-Stokes equations for laminar flow in circular pipe





� EMBED Equation.3  ���





friction coefficient for pipe flow





boundary layer flow





Energy comes from largest scales and fed by mean motion





Dissipation occurs at smallest scales





and t1sufficiently large that the average is independent of time





f = (u, v, w, p)


s = (x, y, z, t)





Symmetric 2nd order tensor





u1 = u	x1 = x


u2 = v	x2 = y


u3 = w	x3 = z





In analogy with the laminar viscous stress, i.e., (t ( mean-flow rate of strain





where Vt and Lt are based on large scale turbulent motion





turbulent length scale





turbulent velocity scale





eddy viscosity 


(for high Re flow (t >> ()





molecular viscosity





based on kinetic theory of gases





� EMBED Equation.3  ���are mixing lengths which are analogous to molecular mean free path, but much larger





Known as a zero equation model since no additional PDE’s are solved, only an algebraic relation





distance across shear layer





From dimensional analysis





From dimensional analysis





f(y+)





g(η)





Values vary somewhat depending on different exp. arrangements





The difference is due to loss of intermittency in duct flow. A = 0 means small outer layer





� EMBED Equation.3  ���





friction


velocity





� EMBED Equation.3  ���





drop over bar:





constants adjusted using data





4000 < ReD < 105


Blasius (1911) power law curve fit to data





Drops weakly with pipe size





Near quadratic (as expected)





Nearly linear





Only slightly with μ





not function of ( as was case for smooth pipe (or wall)





fully rough flow





can be large effect





� EMBED Equation.3  ���





centrifugal acceleration�





D





d





Bernoulli and continuity equation





Turbulent flow





K = .5
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