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The Need for Dimensional Analysis

Dimensional analysis is a process of formulating fluid mechanics problems in terms of nondimensional variables and parameters.

1. Reduction in Variables:
F = functional form
If F(A1, A2, …, An) = 0,			Ai = dimensional 
variables
Then f(1, 2, … r < n)	= 0		j = nondimensional
								parameters
Thereby reduces number of 			= j (Ai)
experiments and/or simulations 		i.e., j consists of
required to determine f vs. F			nondimensional
								groupings of Ai’s

2. Helps in understanding physics

3. Useful in data analysis and modeling

4.  Fundamental to concept of similarity and model testing

Enables scaling for different physical dimensions and fluid properties




Dimensions and Equations

Basic dimensions: F, L, and t or M, L, and t
F and M related by F = Ma = MLT-2

Buckingham  Theorem



In a physical problem including n dimensional variables in which there are m dimensions, the variables can be arranged into r = n –  independent nondimensional parameters r (where usually  = m).

F(A1, A2, …, An) = 0

f(1, 2, … r) = 0

Ai’s = dimensional variables required to formulate problem 
   (i = 1, n)

j’s = nondimensional parameters consisting of groupings 
   of Ai’s (j = 1, r)

F, f represents functional relationships between An’s and 
r’s, respectively


 = rank of dimensional matrix
 = m (i.e., number of dimensions) usually



Dimensional Analysis

Methods for determining i’s

1. Functional Relationship Method

Identify functional relationships F(Ai) and f(j)by first determining Ai’s and then evaluating j’s 

a.  Inspection						intuition
b.  Step-by-step Method				text
c.  Exponent Method				class

2. Nondimensionalize governing differential equations and initial and boundary conditions

Select appropriate quantities for nondimensionalizing the GDE, IC, and BC	e.g. for M, L, and t

Put GDE, IC, and BC in nondimensional form

Identify j’s

Exponent Method for Determining j’s

1) determine the n essential quantities
2) 

select  of the A quantities, with different dimensions, that contain among them the  dimensions, and use them as repeating variables together with one of the other A quantities to determine each .
For example let A1, A2, and A3 contain M, L, and t (not necessarily in each one, but collectively); then the j parameters are formed as follows:
Determine exponents such that i’s are dimensionless

3 equations and 3 unknowns for each i


	

In these equations the exponents are determined so that each   is dimensionless.  This is accomplished by substituting the dimensions for each of the Ai in the equations and equating the sum of the exponents of M, L, and t each to zero.  This produces three equations in three unknowns (x, y, t) for each  parameter.



In using the above method, the designation of  = m as the number of basic dimensions needed to express the n variables dimensionally is not always correct.  The correct value for  is the rank of the dimensional matrix,  i.e., the next smaller square subgroup with a nonzero determinant.








Dimensional matrix = 		A1	………	An
					M	a11	………	a1n
					Laij = exponent of M, L, or t in Ai

					t	a31	………	a3n
						o	………	o
						:			 :
						:			 :
						:			 :
						o	………	o


									n x n matrix

Rank of dimensional matrix equals size of next smaller sub-group with nonzero determinant

Example:  Hydraulic jump (see section 15.2)

[image: ]
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[image: Fig15-18]
Say we assume that

	V1 = V1(, g, , y1, y2)
						or V2 = V1y1/y2

Dimensional analysis is a procedure whereby the functional relationship can be expressed in terms of r nondimensional parameters in which r < n = number of variables.  Such a reduction is significant since in an experimental or numerical investigation a reduced number of experiments or calculations is extremely beneficial



[image: Page8-7]
1) , g fixed; vary Represents many, many experiments

2) ,  fixed; vary g
3) , g fixed; vary 

In general:	F(A1, A2, …, An) = 0	dimensional form

f(1, 2, … r) = 0	nondimensional form with reduced 
or		1 = 1 (2, …, r)	# of variables

It can be shown that


			

neglect   ( drops out as will be shown)
thus only need one experiment to determine the functional relationship

[image: Page8-8]						x    Fr
0      0
½   .61
1      1
2     1.7
5     3.9




For this particular application we can determine the functional relationship through the use of a control volume analysis:  (neglecting  and bottom friction)

x-momentum equation:  

Note: each term in equation must have some units: principle of dimensional homogeneity, i.e., in this case, force per unit width N/m




continuity equation:	V1y1 = V2y2


		





pressure forces    =   inertial forces
due to gravity

now divide equation by 

			dimensionless equation

ratio of inertia forces/gravity forces = (Froude number)2

note:		Fr = Fr(y2/y1)		do not need to know both y2 
and y1, only ratio to get Fr
Also, shows in an experiment it is not necessary to vary 
, y1, y2, V1, and V2, but only Fr and y2/y1

Next, can get an estimate of hL from the energy equation (along free surface from 12)





	

 f() due to assumptions made in deriving 1-D steady flow energy equations

Exponent method to determine j’s for Hydraulic jump
F(g,V1,y1,y2,,) = 0		n = 6

   

m = 3      r = n – m = 3

use V1, y1,  as
repeating variables
Assume  = m to avoid evaluating rank of 6 x 6 dimensional matrix


1 = V1x1 y1y1 z1 
     = (LT-1)x1 (L)y1 (ML-3)z1 ML-1T-1
L	x1 + y1  3z1  1 = 0	y1 = 3z1 + 1  x1 = -1  
T	-x1		        1 = 0	x1 = -1
M	z1		     + 1 = 0	z1 = -1


	or	 = Reynolds number = Re


	

2 = V1x2 y1y2 z2 g
     = (LT-1)x2 (L)y2 (ML-3)z2 LT-2
L	x2 + y2  3z2 + 1 = 0	y2 =   1  x2 = 1  
T	-x2		        2 = 0	x2 = -2
M	z2 = 0


	     = Froude number = Fr

3 = V1x3 y1y3 z3 y2
     = (LT-1)x3 (L)y3 (ML-3)z3 L
L	x3 + y3  3z3 + 1 = 0	y3 =   1  
T	-x3 = 0	
M	-3z3 = 0


			 = depth ratio
f(1, 2, 3) = 0
or,	2 =  2(1, 3)
i.e.,	Fr = Fr(Re, y2/y1)

if we neglect  then Re drops out


	

Note that dimensional analysis does not provide the actual functional relationship.  Recall that previously we used control volume analysis to derive


	

the actual relationship between F vs. y2/y1

	F = F(Re, Fr, y1/y2)
or	Fr = Fr(Re, y1/y2)

dimensional matrix:
	 g	V1	y1	y2		
M	 0	 0	 0	 0	1	 1
L	 1	 1	 1	 1	3	-1Size of next smaller subgroup with nonzero determinant = 3 = rank of matrix

t	-2	-1	 0	 0	0	-1
	 0	 0	 0	 0	0	 0	
	 0	 0	 0	 0	0	 0	
	 0	 0	 0	 0	0	 0	

Common Dimensionless Parameters for Fluid Flow Problems
Most common physical quantities of importance in fluid flow problems are: (without heat transfer)
      1	        2	            3	    4	         5	               6		      7	        8	
   V,	     ,	g,       ,	     ,	 K,		  p,	     L
velocity density gravity viscosity surface compressibility pressure length
					   tension		          change
	n = 8	m = 3		5 dimensionless parameters



1) 

Reynolds number = 	

Re

Rcrit distinguishes among flow regions: laminar or turbulent
value varies depending upon flow situation

2) 

Froude number = 		

Fr

important parameter in free-surface flows

3) 

Weber number = 

We

important parameter at gas-liquid or liquid-liquid interfaces and when these surfaces are in contact with a boundary

4) 
Mach number = 

Ma

speed of sound in liquid
Paramount importance in high speed flow (V > c)

5) 

Pressure Coefficient = 	

Cp

  (Euler Number)

Nondimensionalization of the Basic Equation

It is very useful and instructive to nondimensionalize the basic equations and boundary conditions.  Consider the situation for  and  constant and for flow with a free surface


Continuity:	


Momentum:	
							g = specific weight
Boundary Conditions:
1) 
fixed solid surface:	
2) inlet or outlet:	V = Vo	p = po
3) 

free surface:		
(z = )				surface tension

All variables are now nondimensionalized in terms of  and
	
			U = reference velocity

			L = reference length



						


					
All equations can be put in nondimensional form by making the substitution










and	 etc.


Result:	

		

1)						Re-1


2)			


3)		 
pressure coefficientV = U
We-1
Fr-2


Similarity and Model Testing

Flow conditions for a model test are completely similar if all relevant dimensionless parameters have the same corresponding values for model and prototype


		i model = i prototype		i = 1, r = n -  (m)

Enables extrapolation from model to full scale

However, complete similarity usually not possible

Therefore, often it is necessary to use Re, or Fr, or Ma scaling, i.e., select most important  and accommodate others as best possible

Types of Similarity:

1) Geometric Similarity (similar length scales):
A model and prototype are geometrically similar if and only if all body dimensions in all three coordinates have the same linear-scale ratios

			 = Lm/Lp	( < 1)

								1/10 or 1/50
2) Kinematic Similarity (similar length and time scales):
The motions of two systems are kinematically similar if homologous (same relative position) particles lie at homologous points at homologous times

3) Dynamic Similarity (similar length, time and force (or 
mass) scales):
in addition to the requirements for kinematic similarity 
the model and prototype forces must be in a constant 
ratio

Model Testing in Water (with a free surface)

	F(D, L, V, g, , ) = 0

 n = 6 and m = 3 thus r = n – m = 3 pi terms

In a dimensionless form,

f(CD, Fr, Re) = 0

or     CD = f(Fr, Re)

where
	
 
 



If		 or	


					Froude scaling


and	Rem = Rep  or	

			
Then,
 or	 

However, impossible to achieve, since 


      if , 

      For mercury 

Alternatively one could maintain Re similarity and obtain

					Vm = Vp/



      But, if , , 
    
  High speed testing is difficult and expensive.


				


				


				


				

				


      But if , 
      Impossible to achieve

Model Testing in Air

		F(D, L, V, , , a) = 0

 n = 6 and m = 3 thus r = n – m = 3 pi terms

In a dimensionless form,

		f(CD, Re, Ma) = 0
or
		CD = f(Re, Ma)
where
		
		
		

If      	


and   				

Then,
 or	 
1



However,	
					again not possible

Therefore, in wind tunnel testing Re scaling is also violated



Model Studies w/o free surface

See text

High Re
Model Studies with free surface

In hydraulics model studies, Fr scaling used, but lack of We similarity can cause problems.  Therefore, often models are distorted, i.e. vertical scale is increased by 10 or more compared to horizontal scale

Ship model testing:

CT = f(Re, Fr) = Cw(Fr) + Cv(Re)

			Cwm = CTm  CvBased on flat plate of same surface area
Vm determined for Fr scaling


			CTs = Cwm + Cv
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FIGURE 15.17

Definition sketch for the
hydraulic jump.
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FIGURE 15. 18

Control-volume analysis
for the hydraulic jump.
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