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Chapter 6 Differential Analysis of Fluid Flow

Fluid Element Kinematics

Fluid element motion consists of translation, linear
deformation, rotation, and angular deformation.

Elemeént at | Element at 1, + &t
L : .
1
1 Jd-
L
1 l i f
| | =¥ !
Conera Transiation Linear Rotalion Angular
motion dafarmation deformation
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Linear deformation of a fluid element
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Change in oV :
ou
OV =| —oOoX |(6yoz)ot
X ox|(syor)

the rate at which the volume OV is changing per unit
volume due to the gradient ou/ox is

1 d(ov) s (ou/ox)st | ou
= 11m =
ov dt 5t=0 ot OX
If velocity gradients 0v/0y and ow/0z are also present, then
using a similar analysis it follows that, in the general case,

1 d(é‘v)_éu+av+aw
ov dt OX oy oz

This rate of change of the volume per unit volume is called
the volumetric dilatation rate.

=V.-V

Angular Motion and Deformation

For simplicity we will consider motion in the x—y plane,
but the results can be readily extended to the more general
case.
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Angular motion and deformation of a fluid element

The angular velocity of line OA, woa, 1S
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For small angles
(ov/ox)oxst  ov

tanoa =~ oo = 5 p ot
X X
so that
.| (ov/ox)dt | ov
W, = lim =—
ot—0 5t ax

Note that 1f 0v/0x is positive, moa Will be counterclockwise.

Similarly, the angular velocity of the line OB is
3B _au

%0 = M5 =y

In this instance if Ou/0Y is positive, wog Will be clockwise.

The rotation, ®,, of the element about the z axis 1s defined
as the average of the angular velocities mpoa and g of the
two mutually perpendicular lines OA and OB. Thus, if
counterclockwise rotation is considered to be positive, it

follows that
1{ov ou
w,=—| ———
2\ 0x oy

Rotation of the field element about the other two coordinate
axes can be obtained 1n a similar manner:

1{ow ov
W, =—| ———
2\ 0y o0z
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1(8u awj
0, == ———
Y 2l0z  ox

The three components, wy,wy, and ®, can be combined to
give the rotation vector, ®, in the form:

1 1
co:a)xi+a)yj+a)zkzzcuer:5V><V

since
i j k
LIS R
2 2|10x oy oz
u Vv W

1(ow ov), 1(8u awj 1({ov ou
=—| ——— li+—| ——— |j+—| ——— |k
2\ oy oz 2\ 0z OX 2\ ox oy

The vorticity, {, is defined as a vector that is twice the
rotation vector; that is,

c=20=VxV
The use of the wvorticity to describe the rotational
characteristics of the fluid simply eliminates the (1/2) factor
associated with the rotation vector. If VxV =0 the flow
is called irrotational.

In addition to the rotation associated with the derivatives
ou/0y and 0Ov/0x, these derivatives can cause the fluid
element to undergo an angular deformation, which results
in a change in shape of the element. The change in the
original right angle formed by the lines OA and OB is
termed the shearing strain, oy,
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oy =oa +of
The rate of change of 0y 1s called the rate of shearing strain
or the rate of angular deformation:

.| (ev/ox)st+(ou/oy)st | ov éu
—— = lim =—+
>0 St 6t—0 ot ox oy

The rate of angular deformation 1s related to a
corresponding shearing stress which causes the fluid
element to change in shape.

The Continuity Equation in Differential Form

The governing equations can be expressed in both integral
and differential form. Integral form is useful for large-scale
control volume analysis, whereas the differential form is
useful for relatively small-scale point analysis.

Application of RTT to a fixed elemental control volume
yields the differential form of the governing equations. For
example for conservation of mass

SpV-A=—| P gy
CS CVat

net outflow of mass = rate of decrease
across CS of mass within CV
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Consider a cubical element oriented so that its sides are | | to
" N the (x,y,z) axes

{pu + % (pu)dx}dydz

sk W Mo’ - f¢a +««—%;(K“\ A} 4y42 — outlet mass flux
eulyde \ & ¥ (0.\.\&.-& Yreaa. éAwf 3

Ay
inlet mass flux / M

pudydz Ax

" Taylor series expansion
- retaining only first order term

We assume that the element is infinitesimally small such
that we can assume that the flow is approximately one
dimensional through each face.

The mass flux terms occur on all six faces, three inlets, and
three outlets. Consider the mass flux on the x faces

—pudydz

outflux influx

X = [pu + a%{(pu) dx} dydz

_9 (pu)dxdydz
ox
AV

Similarly for the y and z faces

0
Yaux = g (p V)dXdde

2 = (pw)ixdydz
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The total net mass outflux must balance the rate of decrease
of mass within the CV which is

_Op
—dxdydz
o

Combining the above expressions yields the desired result

{(’;‘E + a—(pu) + %(pv) + (pw)}dxc(;};lz 0

Do oW eV (pw)=0  perunitV

ot 0x differential form of
continuity equations

op

+V-(pV)=0
ot ———2

pV-V+V-Vp
PP pv.v =0 D_%vy
Dt Dt ot

Nonlinear 1* order PDE; (unless p = constant, then linear)
Relates V to satisfy kinematic condition of mass
conservation

Simplifications:
1. Steady flow: V-(pV)=0

2. p=constant: V-V =0
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1e., ou aV W _ =0 3D
OX Gy 0z
ou 8\1 =0 2D
ax 5y

The continuity equatjon in Cvylindrical Polar Coordinates

The velocity at some arbitrary point P can be expressed as
V=ve +Ve,+V,e,
The continuity equation:
10(rpv,) 10(pv,) O(pv
dp  10(rpv,) 10(pY,) 9(pY.)

=0
oo r or r o060 0z
For steady, compressible flow
10(rpv,) +18(pvg) ) o(pv,) 0

r or r o6 0z
For incompressible fluids (for steady or unsteady flow)
o(rv
10( r)+16V9+aVZ:O
r or r of oz
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The Stream Function

Steady, incompressible, plane, two-dimensional flow
represents one of the simplest types of flow of practical
importance. By plane, two-dimensional flow we mean that
there are only two velocity components, such as u and v,
when the flow is considered to be in the x—y plane. For this

flow the continuity equation reduces to
ou ov
—+—=0
ox 0Oy

We still have two variables, u and v, to deal with, but they
must be related in a special way as indicated. This equation
suggests that if we define a function y(x, y), called the
stream function, which relates the velocities as

_oy ,__%v
oy OX
then the continuity equation is identically satisfied:
0 [aw]+ 0 (_awj: Py By _
ox\ oy oy\ oX oXoy  OXoy

u

Streamline

Velocity and velocity components along a streamline
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Another particular advantage of using the stream function
is related to the fact that lines along which vy is constant are
streamlines.The change in the value of y as we move from
one point (X, y) to a nearby point (x + dx, y + dy) along a
line of constant vy is given by the relationship:

dw:a—"”dx+a—wdy:—vdx+udy:0

OX oy
and, therefore, along a line of constant y
dy v
dx u

(B}

The flow between two streamlines
The actual numerical value associated with a particular
streamline 1s not of particular significance, but the change
in the value of y is related to the volume rate of flow. Let
dq represent the volume rate of flow (per unit width
perpendicular to the x—y plane) passing between the two
streamlines.

dq = udy —vdx :a—l/jdx+a—"”dy =dy
OX oy
Thus, the volume rate of flow, q, between two streamlines
such as yl and y2, can be determined by integrating to
yield:

10
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¥
q=["dy =y, -y,
v

In cylindrical coordinates the continuity equation for
incompressible, plane, two-dimensional flow reduces to

1o() 1y,
r or roo

_ ldy

¥ r ot
<§
.
oy
ty -
o'F

-

0

F %
-~ y
L L5

and the velocity components, v, and vy, can be related to the
stream function, y(r, 0), through the equations

gy Ltow o _ oy

“ro0’ ?  or

Navier-Stokes Equations

Differential form of momentum equation can be derived by
applying control volume form to elemental control volume

The differential equation of linear momentum: elemental
fluid volume approach

11
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s
X""’:';;/:_\_—o ey x 3, () d‘*_x gt

WW%

VLT sevesrTosnn.
#u.'_
:E
2 E=— _[ pVAY + I VoV -dA 1.D flow approximation
N Y &S ~ J

8 = 2 (m V), =2 (m V),

where h = pAV = pdydzuy, x-face
'
mass flux

o= %(p\_f)dxdydz

© = | e S v L ow) e

x-face y-face  z-face
combining and making use of the continuity equation yields
DV DV 8V
= +V.VV
>E=p - dxdydz Dt ot

Where ZE = ZEbody + ZEsurface

Body forces are due to external fields such as gravity or
magnetics. Here we only consider a gravitational field; that
18,

zEbody = dE grav — pngdde
and g:—glA( for g4 zT

12
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i°e'9 £b0dy - _pgl2

Surface forces are due to the stresses that act on the sides of
the control surfaces

symmetric (Gjj - Gji)

oj; = - pd;; + Tj; 2" order tensor
™S oj=1 1=}
normal pressure viscous stress | §;=0  i#]j
%“:5 - 'p+Txx Txy Txz
e - Tyx P Tyy Tyz

! g * Tzx sz 'p+TZZ

As shown before for p alone it is not the stresses
themselves that cause a net force but their gradients.

de,surf - a% (Gxx ) + % (G Xy )"‘ % (G X7 ):|dXdeZ

[ o 0 5
__ 8_x + a_X(TXX )+ g(rxy )+ &(sz ):|dXdde

This can be put in a more compact form by defining

Ty = Tl T Ty J T K vector stress on x-face

and noting that
de,surf = |:_ @ +V- Ty :|dXdeZ

OX

13
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op

fX,surf - +V- Tx

similarly for y and z

per unit volume

fysur = ———+V- 1, Ty Z’CyX1+Tny+’Cyzk

fz,surf = __Z‘l'v'Iz T, = szi_*_rzyj—l_rzzk
finally if we deﬁne

’CJ—’C1+’C _]+’Ck then

four =—Vp+V-1;=V-0j G; =—Ppo; +7

Putting together the above results

DV
Z£ — £b0dy + £surf pﬁ
fbody ng
ﬁsurface =-Vp+V: Tij
DV 8\/
a= =—+V.-VV
Dt ot
pa= _Pglz_Vp+v'Tij
inertia body \ \
force force  surface surface force

due to force due
gravity top

due to viscous
shear and normal
stresses

14
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For Newtonian fluid the shear stress is proportional to the
rate of strain, which for incompressible flow can be written

Ty = UE;; u = coefficient of viscosity
gj = rate of strain tensor
ou ov Ou Oow Ou
oxX ox 0oy ox 0z
auov) v (aw ov
oy OX oy oy 0z
du @) ov , ow ow
0z 0Ox 0z 0oy 0z
T= d_u 1-D flow
d

y
\ rate of strain

pa=—pgk - Vp+V-(ug;)
H_/

u%(‘gij): uv>v

pa=—pgk—-Vp+pv’V

15
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pa=—-V(p+yz)+uv’V
V.V =0

Navier-Stokes Equation
Continuity Equation

Four equations in four unknowns: V and p
Difficult to solve since 2" order nonlinear PDE

(ou Oou du  du| op |d*u d*u d%u
p u—+v—+ =——+tW ——S+——+—
ot ox oy oz| x| oxP oyt oz
(ov ov ov  ov| op |o*v d*v v
pl —tu—+V_—+W—|=—7"+U + +
ot ox o8y  oz| oy | oxE oyd o7
(ow  ow  ow  ow| op |0*w d*w O*w
p +Uu—+V—+W— |[=——+1 + +
ot ox Oy 0z oz | ox* oyt oz’

ou v ow

+—+—=
ox 0y 0z

Navier-Stokes equations can also be written in other
coordinate systems such as cylindrical, spherical, etc.

There are about 80 exact solutions for simple geometries.
For practical geometries, the equations are reduced to
algebraic form using finite differences and solved using
computers.

Exact solution for laminar flow in a pipe
(neglect g for now)

16
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use cylindrical coordinates: vy =u
Vi=V
u=u(r) only vo=w=0

L 0
Continuity: a(rv) =0= rv=constant =c

vV =c/r
vr=0)=0=c¢=0
e, v=>0

Momentum:

Du__ap 52 1@/ 1ou o%u
P /892 ror or’

Dt
5)4( @éf 59/_;39 _% l@ﬁi}
r@r or’

12( @j—l@—x
ror\ or) uox
r@—&rz—kA

or 2

u(r):%r2 +Alnr+B

17
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ur=0)zw0w=A=0

ur=r,)=0= u(r):%(r2 —roz)

ie. u(r)= ——(r —T ) parabolic velocity profile

Differential Analysis of Fluid Flow

We now discuss a couple of exact solutions to the Navier-
Stokes equations. Although all known exact solutions
(about 80) are for highly simplified geometries and flow
conditions, they are very valuable as an aid to our
understanding of the character of the NS equations and
their solutions. Actually the examples to be discussed are
for internal flow (Chapter 8) and open channel flow
(Chapter 10), but they serve to underscore and display
viscous flow. Finally, the derivations to follow utilize
differential analysis. See the text for derivations using CV
analysis.

Couette Flow

s w3 ‘éfflu'r'd

%I b\(?’\ Iﬁ
7 VA S S S a4 Qo meo

X

boundary conditions

18
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First, consider flow due to the relative motion of two
parallel plates

\
> V=0
d*u % = % =0
Momentum O=p—7 ox Oy
dy” |
or by CV continuity and momentum equations:
pu,Ay = pu, Ay > otxyd_a Ao
up = oot
| ‘ ? o+ A x
YF, =SupV-dA =pQ(u, —u,)=0 - >
= pAy—(p +@AX)AY— TAX + (’C +$dyij= 0
dx dy
T _y
dy
1.e. i(ud—uj =0
dy\" dy
2
vy
dy

19
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u=9y+D
)
u(0)=0=D=0
ut)=U=C= u%
LU
¢ y
du nU
T=U— =—=constant
dy t

Generalization for inclined flow with a constant pressure
gradient

M) = o
\
Continutity ou =0 u=u(y)
OX V=0
r o Op
o d*u =0
Momentum 0=——(p+yz)+pn—7 oy
OX dy
J
1.e d’u _,dn h = p/y +z = constant
*Vey YU dy2 Y dx

20
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plates horizontal -0

dx
plates vertical %
dx
which can be integrated twice to yield
du dh
—=7y—Yy+A
K dy Y dx y
dh y*

u=y——+Ay+B
K dez y

now apply boundary conditions to determine A and B
uy=0)=0 = B=0
uy=t)=U

udx 2 pl| t dx 2
Y dh 2 U
= — +_
Zudx(y Y ) ty

This equation can be put in non-dimensional form:

2
3__L%(1_zjz+z

U  2uUdx\ t)t t

define: P =non-dimensional pressure gradient

21



57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2006

Chapter 6
22

2

2uU dx Y
- i
Y 2uU| ydx dx

= S =P-Y(I-Y)+Y
U

parabolic velocity profile

u
LSS S 10 S AL S S > LSS S S S S S S S
: A
Y /
back-Flow / / ) }
P=-3, 4" -2 ~1 0 2| 3
? / / f
04 » pd
g
L 0.2 A el
| ,
Y A V22 I 22
-04 -02 0 02 04 g6 08 10 12 14
| u
U
Fig. 5.2. Couette flow between two parallel flat walls
P > 0, pressure decrease in direction of wall motion; P < 0, pressure increase; P = 0, zero pressure gradient

22
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u_Py Py’ y
U t t* t
t
q=[udy
0
Ul ay
u:_:0
t t
tu tfP P, y}
T ty-2y*+2d
0 OLY 2y Ly
_Pt_ Pt t
2 3 2
u P 1 - tz( dhj U
—=—+—=Du=— -y— [+—
Uu 6 2 12 dx/ 2

—Reic~ 1000

For laminar flow — <1000
\Y

The maximum velocity occurs at the value of y for which:

du d(u P 2P 1
—=0 —| = |=0=———Fy+-
dy dy\ U

23
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Sy=—(P+)=1+— @u forU=0,y=1t/2
i — T max oru==u,vy=
Y7 op 2 2P Y
. u =ll(y ):E+E+E
: max max 4 2 4P
note: 1fU=0: L:P/Pzz
u 6/ 4 3

max

The shape of the velocity profile u(y) depends on P:

1.If P> 0, i.e.,j—h < 0 the pressure decreases in the
X

direction of flow (favorable pressure gradient) and the
velocity is positive over the entire width

dx dx\y dx

a) d_p<0
dx

b) d—p<ysin6
dx

. dh . .
. If P < O, 1e., d—>0 the pressure increases in the
X

direction of flow (adverse pressure gradient) and the
velocity over a portion of the width can become
negative (backflow) near the stationary wall. In this

24
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case the dragging action of the faster layers exerted on
the fluid particles near the stationary wall 1s insufficient
to over come the influence of the adverse pressure
gradient

dp _ Ysin@ >0
dx
d—p>ysin9 or ysin9<d—p
dx dx
. dh : .
2. fP=0,1.e., ix =0 the velocity profile 1s linear
X
u= E
" y
dp Note: we derived
a) i 0and0=0 this special case
X
b) dp =7vsin0
dx

For U = 0 the form % =PY(1-Y)+Y is not appropriate

u=UPY(1-Y)+UY

2
= —Vt—ﬁY(l—Y)+UY
2u dx
2
Now let U = 0: u:—yt—%Y(l—Y)

2p dx

25
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3. Shear stress distribution

Non-dimensional velocity distribution
« U
=—=P-Y(1-Y)+Y
=3 (1-Y)+
u
U

t* dh. - - :
- 27/,1 T the non-dimensional pressure gradient

where u” =— is the non-dimensional velocity,

y. ) . )
Y = 118 the non-dimensional coordinate.

Shear stress
_du
T= ,ud—y
In order to see the effect of pressure gradient on shear
stress using the non-dimensional velocity distribution, we

define the non-dimensional shear stress:

T* _ T
1
~ oU?
5 P
Then
o 1 Ud(uU) 24 du’
1pU2 # td(y/t) puUtdy
2
2u
=—"—(-2PY +P+1)
pUt
:2—“(—2PY +P+1)
PUt
= A(-2PY +P+1)
2u . .
where A=——>0 is a positive constant.

Ut

So the shear stress always varies linearly with Y across any

section.

26
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At the lower wall (Y =0).

7w = A(1+P)
At the upper wall (Y =1):
7o = A(1-P)

For favorable pressure gradient, the lower wall shear stress
is always positive:
1. For small favorable pressure gradient (0<P <1):
‘L':N >0 and Z':W >0
2. For large favorable pressure gradient (P >1):

7, >0 and 7, <0

(0<P<1) (P>1)

For adverse pressure gradient, the upper wall shear stress is
always positive:
1. For small adverse pressure gradient (-1<P <0):

Z':N >0 and T:W > ()
2. For large adverse pressure gradient (P <-1):

T <0 and 7, >0

27



57:020 Mechanics of Fluids and Transport Processes Chapter 6
Professor Fred Stern Fall 2006 28

(-1<P<0) (P<-1)

For U =0, 1.e., channel flow, the above non-dimensional
form of velocity profile is not appropriate. Let’s use
dimensional form:
yt* dh y dh
U=—2"—="Y(1-Y)=—Z—y(t-
aa U7V = g V()
Thus the fluid always flows in the direction of decreasing

piezometric pressure or piezometric head because

y .. dh . :
—>0 0 -V > —
2 >0, y>0 and t—y >0, Soif o 18 negative, U is

... ..dh . . :
positive; if ax 8 positive, U is negative.

Shear stress:

: 1 : :
Since (t Y YJ >0, the sign of shear stress 7 is always

) : : . i dh
opposite to the sign of piezometric pressure gradient ol
and the magnitude of - is always maximum at both walls

and zero at centerline of the channel.

28
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. dh
For favorable pressure gradient, w0 7> 0

: dh
For adverse pressure gradient, i 0,7<0

e N T
S
ﬁ<O @>O
dx dx

Flow down an inclined plane

uniform flow = velocity and depth do not
change in x-direction

Continuity —=0

29
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d*u
x-momentum (0 =-—— (p + yz) +th—
OX dy
0 . -
y-momentum 0=-— (p +YZ ) — hydrostatic pressure variation
= dp =0
dx
d’ .
—1; =—ysin0
dy
d :
M Tin Oy +c¢
dy

2
u:—lsin6y—+Cy+D
) 2

du :O:—xsin9d+c:>c:+xsin9d

dy|,_, b b
u(0)=0 =>D=0

2
u=—"sin®02 + sinody

H 2

=" sin® y(2d-y)
2p

30
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sin 0
u(y) =52 y(2d-y)
d 374 _
q=[udy = lsin 0 dy2 Yy dlscharge per
0 21 3 0 unit width
= l1d3 sin©
3
B 2
Vave = 4_ lldz sin @ = £s1n0
d 3pu 3v

in terms of the slope S, =tan 6 ~ sin 0

2
\_/: gd So
3v

Exp. show Re.; ~ 500, 1.e., for Re > 500 the flow will
become turbulent

A%

p=—ycosOy+C

p(d)=p, =—ycosBd+C

31
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ie. p=ycosO(d—y)+p,
* p(d)>po

*if0=0  p=y(d-y)+po
entire weight of fluid imposed

if0=n/2 p=p,
no pressure change through the fluid

32



