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Chapter 6 Differential Analysis of Fluid Flow

Inviscid flow: Euler’s equations of motion

Flow fields in which the shearing stresses are zero are said
to be inviscid, nonviscous, or frictionless. for fluids in
which there are no shearing stresses the normal stress at a
point 1s independent of direction:
—P =0y =0y =04

For an inviscid flow in which all the shearing stresses are
zero, and the normal stresses are replaced by —p, the
Navier-Stokes Equations reduce to Euler’s equations
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The Bernoulli equation derived from Euler’s equations
The Bernoulli equation can also be derived, starting from
Euler’s equations. For inviscid, incompressible fluids, we
end up with the same equation
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It is often convenient to write the Bernoulli equation
between two points (1) and (2) along a streamline and to
express the equation in the “head” form by dividing each
term by g so that

B + —L+7 = P Y +—2+2,
y 29 y 29
The Bernoulli equation is restricted to the following:
¢ inviscid flow
e steady flow
e incompressible flow
(]

flow along a streamline

The Irrotational Flow and corresponding Bernoulli equation
If we make one additional assumption—that the flow is

irrotational YXV =0 __the analysis of inviscid flow
problems is further simplified. The Bernoulli equation has
exactly the same form at that for inviscid flows:
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but it can now be applied between any two points in the
flow field, not limited to applications along a streamline.
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Various regions of ﬂng (a) around bodies;
(b) through channels

The Velocity Potential
For an irrotational flow:
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So we have
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It follows that in this case the velocity components can be

expressed in terms of a scalar function ¢ (x, y, z, t), called
velocity potential, as
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In vector form:
V=Vg
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The velocity potential 1s a consequence of the
irrotationality of the flow field, whereas the stream function
is a consequence of conservation of mass. It is to be noted,
however, that the velocity potential can be defined for a
general three-dimensional flow, whereas the stream
function is restricted to two-dimensional flows.
For an incompressible flow we know from the conservation
of mass:
V-V=0
and therefore for incompressible, irrotational flow, it
follows that
V=0
The velocity potential satisfies the Laplace equation.
In Cartesian coordinates:
o’¢p 0°¢ 0°¢
+ + =0
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In cylindrical coordinates:
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Some Basic, Plane Potential Flows

For potential flow, basic solutions can be simply added to
obtain more complicated solutions because of the major
advantage of Laplace equation that it is a linear PDE. For
simplicity, only plane (two-dimensional) flows will be
considered. Since we can define a stream function for plane
flow,
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If we now impose the condition of irrotationality, i1t follows
u_ov
oy OX

and in terms of the stream function

d(oy) 0O ( 8(//)
oy \ oy oX\ OX
2 2
o'y N oy 0
ox> oy’
Thus, for a plane irrotational flow we can use either the
velocity potential or the stream function—both must satisfy
Laplace's equation in two dimensions. It is apparent from
these results that the velocity potential and the stream
function are somehow related. It can be shown that lines of
constant ¢ (called equipotential lines) are orthogonal to
lines of constant y (streamlines) at all points where they

intersect. Recall that two lines are orthogonal if the product
of their slopes is —1, as illustrated by this figure

Along streamlines y=const:

ﬂ v

dX along w=const
Along equipotential lines ¢ = const
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dX along ¢=const v
Uniform flow at angle a with the x axis
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Velocity potential: ¢ =U (Xxcosa +ysina)
Stream function: ¥ =U (ycosa —xsina)
Velocity components: U=U cosa, Vv=Usina

Source or sink (m > 0 source; m < 0 sink)

w = constant J & = constant

- 1 = Inr
Velocity potential: .

. m
Stream function: ¥ = > 0
T
: V. = m vV, =0
Velocity components: Vr or’ P
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Free vortex (I' > 0 counterclockwise; I' <0 clockwise)

_/ v = constant
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Velocity potential: ¢ oy
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Stream function: ¥ = _z_hl r
T
: v. =0, Vv, = I
Velocity components: Vr =Y Vo s
Doublet (with strength k=ma/n)
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Velocity potential: ¢= "
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Stream function: ¥ = ;
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Velocity components: Vr =~ 5> Vp =773
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Superposition of Basic, Plane Potential Flows

Source in a Uniform Stream—Half-Body

Flow around a half-body is obtained by the addition of a
source to a uniform flow.
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The flow aroﬁ;ld a half-body: (a) superposiﬁon of a source
and a uniform flow; (b) replacement of streamline y = ntbU
with solid boundary to form half-body.
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Velocity potential: #=Urcosé+——Inr
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: - m
Stream function: ¥ =Ursinf+ gy 0
: m ,
Velocity components: Vr = ot V, =-Usiné

Rankine Ovals
Rankine ovals are formed by combining a source and sink
with a uniform flow.
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The flow around a Rankine oval: (a) superposition of
source—sink pair and a uniform flow; (b) replacement of
streamline y = 0 with solid boundary to form Rankine oval.

m
Velocity potential: ¢ =Urcosd— E(ln h—lnr,)

. . w=Ursind M an [ 227 sin 0
Stream function: o 2 _g2
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Body half length: Y

h*—a*> 2zUh

‘1 h= t
Body half width: 0m T

Flow around a Circular Cylinder
A doublet combined with a uniform flow can be used to
represent flow around a circular cylinder.

The flow arouna a circular cylinder
Kcosé
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Velocity potential: ¢ =Urcos 0 +
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: : Ksiné
Stream function: ¥ =Ursinéd— ——
Velocity components:
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