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Chapter 6 Differential Analysis of Fluid Flow  
 

Fluid Element Kinematics 
 

Fluid element motion consists of translation, linear defor-

mation, rotation, and angular deformation. 

 
Types of motion and deformation for a fluid element. 

 

Linear Motion and Deformation:  

 
Translation of a fluid element 

 
Linear deformation of a fluid element 
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Change in : 

 
u

x y z t
x

    
 

   
 

 

 

the rate at which the volume   is changing per unit vol-

ume due to the gradient ∂u/∂x is 

 

   
0

1
lim
t

d u x t u

dt t x

 

 

    
  

  
 

 

If velocity gradients ∂v/∂y and ∂w/∂z are also present, then 

using a similar analysis it follows that, in the general case, 

 

 1 d u v w

dt x y z





   
     

   
V  

 

This rate of change of the volume per unit volume is called 

the volumetric dilatation rate. 

 

Angular Motion and Deformation 

For simplicity we will consider motion in the x–y plane, 

but the results can be readily extended to the more general 

case. 
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Angular motion and deformation of a fluid element 

 

The angular velocity of line OA, ωOA, is 

0
limOA
t t





  

For small angles 

 
tan

v x x t v
t

x x

 
  



  
  

  

so that 

 
0

limOA
t

v x t v

t x






   
  

 
 

 

Note that if ∂v/∂x is positive, ωOA will be counterclockwise. 

 

Similarly, the angular velocity of the line OB is 

 

0
limOB
t

u

t y







 

  

 

In this instance if ∂u/∂y is positive, ωOB will be clockwise. 

 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 6 

Professor Fred Stern   Fall 2012  

 

4 

4 

The rotation, ωz, of the element about the z axis is defined 

as the average of the angular velocities ωOA and ωOB of the 

two mutually perpendicular lines OA and OB. Thus, if 

counterclockwise rotation is considered to be positive, it 

follows that 

1

2
z

v u

x y


  
  

  
 

 

Rotation of the field element about the other two coordinate 

axes can be obtained in a similar manner: 

1

2
x

w v

y z


  
  

  
 

1

2
y

u w

z x


  
  

  
 

 

The three components, ωx,ωy, and ωz can be combined to 

give the rotation vector, ω, in the form: 

1 1

2 2
x y z curl       ω i j k V V  

since 

1 1

2 2 x y z

u v w

  
 

  

i j k

V

 

1 1 1

2 2 2

w v u w v u

y z z x x y

         
         

         
i j k
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The vorticity, ζ, is defined as a vector that is twice the rota-

tion vector; that is,  

2  ω V  

 

The use of the vorticity to describe the rotational character-

istics of the fluid simply eliminates the (1/2) factor associ-

ated with the rotation vector. If 0 V , the flow is 

called irrotational. 

 

In addition to the rotation associated with the derivatives 

∂u/∂y and ∂v/∂x, these derivatives can cause the fluid ele-

ment to undergo an angular deformation, which results in a 

change in shape of the element. The change in the original 

right angle formed by the lines OA and OB is termed the 

shearing strain, δγ, 

     
The rate of change of δγ is called the rate of shearing strain 

or the rate of angular deformation: 

 

 ̇      
    

  

  
    
    

  

  
 [
(    ⁄ )   (    ⁄ )  

  
]  

  

  
 
  

  
 

 

Similarly, 

 ̇   
  

  
 
  

  
 

 

 ̇   
  

  
 
  

  
 

 

The rate of angular deformation is related to a correspond-

ing shearing stress which causes the fluid element to 

change in shape. 
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The Continuity Equation in Differential Form 
 

The governing equations can be expressed in both integral 

and differential form.  Integral form is useful for large-scale 

control volume analysis, whereas the differential form is 

useful for relatively small-scale point analysis. 

 

Application of RTT to a fixed elemental control volume 

yields the differential form of the governing equations.  For 

example for conservation of mass 

 

    





CS CV

Vd
t

AV  

 

net outflow of mass        = rate of decrease 

across CS     of mass within CV 
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  dydzdxu
x

u 












  

outlet mass flux 

Consider a cubical element oriented so that its sides are to  

the (x,y,z) axes 

 

 

 

 

 

Taylor series expansion 

retaining only first order term 

 

We assume that the element is infinitesimally small such 

that we can assume that the flow is approximately one di-

mensional through each face. 

 

The mass flux terms occur on all six faces, three inlets, and 

three outlets.  Consider the mass flux on the x faces 

 

 flux outflux influx
x ρu ρu dx dydz ρudydz

x

 
    

 

 = dxdydz)u(
x





 

      V 

 

Similarly for the y and z faces 

dxdydz)w(
z

z

dxdydz)v(
y

y

flux

flux













 

 

inlet mass flux 

udydz 
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The total net mass outflux must balance the rate of decrease 

of mass within the CV which is 

    dxdydz
t


  

 

Combining the above expressions yields the desired result 

0)V(
t

0)w(
z

)v(
y

)u(
xt

0dxdydz)w(
z

)v(
y

)u(
xt


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
















  

 VV  

 

0V
Dt

D



   




 V

tDt

D
 

 

Nonlinear 1st order PDE; ( unless  = constant, then linear) 

Relates V to satisfy kinematic condition of mass conserva-

tion 

 

Simplifications: 

1. Steady flow:  0)V(   

 

2.  = constant:  0V   

 

dV 

per unit V 

differential form of con-

tinuity equations 
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i.e.,   0
z

w

y

v

x

u















 3D 

 

  0
y

v

x

u










  2D 

 

The continuity equation in Cylindrical Polar Coordinates 

 
The velocity at some arbitrary point P can be expressed as 

r r z zv v v   V e e e  

The continuity equation: 

     1 1
0

r zr v v v

t r r r z

  



  
   

     

 

For steady, compressible flow 

     1 1
0

r zr v v v

r r r z

  



  
  

    

 

For incompressible fluids (for steady or unsteady flow) 

 1 1
0

r z
rv v v

r r r z





  
  

    
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The Stream Function 

Steady, incompressible, plane, two-dimensional flow repre-

sents one of the simplest types of flow of practical im-

portance. By plane, two-dimensional flow we mean that 

there are only two velocity components, such as u and v, 

when the flow is considered to be in the x–y plane. For this 

flow the continuity equation reduces to 

0
y

v

x

u










 

 
We still have two variables, u and v, to deal with, but they 

must be related in a special way as indicated. This equation 

suggests that if we define a function ψ(x, y), called the 

stream function, which relates the velocities as 

,u v
y x

  
  
   

then the continuity equation is identically satisfied: 
2 2

0
x y y x x y x y

          
       

           

 

 

 
Velocity and velocity components along a streamline 
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Another particular advantage of using the stream function 

is related to the fact that lines along which ψ is constant are 

streamlines.The change in the value of ψ as we move from 

one point (x, y) to a nearby point (x + dx, y + dy) along a 

line of constant ψ is given by the relationship: 

0d dx dy vdx udy
x y

 


 
     
   

and, therefore, along a line of constant ψ 

dy v

dx u
  

 
The flow between two streamlines 

The actual numerical value associated with a particular 

streamline is not of particular significance, but the change 

in the value of ψ is related to the volume rate of flow. Let 

dq represent the volume rate of flow (per unit width per-

pendicular to the x–y plane) passing between the two 

streamlines. 

dq udy vdx dx dy d
x y

 


 
    

   

Thus, the volume rate of flow, q, between two streamlines 

such as ψ1 and ψ2, can be determined by integrating to 

yield: 
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2

1
2 1q d




      

 

In cylindrical coordinates the continuity equation for in-

compressible, plane, two-dimensional flow reduces to 

 1 1
0

rrv v

r r r





 
 

   

 
and the velocity components, vr and vθ, can be related to the 

stream function, ψ(r, θ), through the equations 

1
,rv v

r r


 



 
  

   

 

Navier-Stokes Equations 
 

Differential form of momentum equation can be derived by 

applying control volume form to elemental control volume 

 

The differential equation of linear momentum:  elemental 

fluid volume approach 
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Body forces are due to external fields such as gravity or 

magnetics.  Here we only consider a gravitational field; that 

is, 

   
   dxdydzgFdF gravbody  

 and k̂gg   for  g  z 

 i.e., k̂gf body   

 

Surface forces are due to the stresses that act on the sides of 

the control surfaces 

        symmetric (ij = ji) 

  ij = - pij + ij    2nd order tensor 

 

normal pressure  viscous stress 

 

    = -p+xx     xy     xz 

        yx  -p+yy    yz 

        zx     zy  -p+zz 

 

 

 

As shown before for p alone it is not the stresses them-

selves that cause a net force but their gradients. 

 

   dFx,surf  =        dxdydz
zyx

xzxyxx 






















 

 

  =        dxdydz
zyxx

p
xzxyxx 



























  

ij = 1 i = j 

ij = 0 i  j 
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This can be put in a more compact form by defining vector 

stress on x-face 

 

 k̂ĵî xzxyxxx     

 

and noting that 

 

 dFx,surf = dxdydz
x

p
x 










  

 fx,surf  =  x
x

p





  per unit volume 

 

similarly for y and z 

 fy,surf  =  y
y

p





  k̂ĵî yzyyyxy    

 

 fz,surf  =  z
z

p





  k̂ĵî zzzyzxz   

 

finally if we define 

k̂ĵî zyxij    then 

 

ijijsurf pf    ijijij p   
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Putting together the above results 

 

 
Dt

VD
fff surfbody    

 

 k̂gf body   

 ijsurface pf   

 
DV V

a V V
Dt t


   

  

 

 

 ˆ
ija gk p       

inertia   body   

force   force surface  surface force 

    due to force due  due to viscous 

    gravity to p   shear and normal  

stresses 

 

 

  



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 6 

Professor Fred Stern   Fall 2012  

 

17 

17 

For Newtonian fluid the shear stress is proportional to the 

rate of strain, which for incompressible flow can be written 

 

            (
   

   
 
   

   
)          

 

where,  

   = coefficient of viscosity 

    =  rate of strain tensor 

      = 
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(
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(
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(
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where, 

   (   )   
 

   
(
   

   
 
   

   
)   

(

  
   

   
 

⏟
   

 
 

   

   

   ⏟
  )

   

 

       ̂           

 

 

     (    )        Navier-Stokes Equation 

           Continuity Equation 

 

   
  

  
 

Ex) 1-D flow 
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Four equations in four unknowns:  V and p 

Difficult to solve since 2nd order nonlinear PDE 

 

x:  [
  

  
  

  

  
  

  

  
  

  

  
]   

  

  
  [
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]   

  

  
  [

   

   
 
   

   
 
   

   
] 

 

z:  [
  

  
  

  

  
  

  

  
  

  

  
]   

  

  
     [

   

   
 
   

   
 
   

   
] 

 

0
z

w

y

v

x

u















 

 

Navier-Stokes equations can also be written in other coor-

dinate systems such as cylindrical, spherical, etc. 

 

There are about 80 exact solutions for simple geometries.  

For practical geometries, the equations are reduced to alge-

braic form using finite differences and solved using com-

puters. 
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Ex) Exact solution for laminar incompressible steady flow 

in a circular pipe  

 
 

Use cylindrical coordinates with assumptions 

 

 
 

  
   : Fully-developed flow 

  

      : Flow is parallel to the wall 

 

 

Continuity equation: 
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  B.C.    (   )           

 

 i.e.,      
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Momentum equation: 
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or 

 

          
  

  
    (1) 

          
 

 

  

  
    (2) 

   
  

  
  [

 

 

 

  
( 

   

  
)]   (3) 

 

where, 

           

           
 

Equations (1) and (2) can be integrated to give 

     (     )    ( )         ( ) 
 

 pressure   is hydrostatic and     ⁄  is not a func-

tion of   or   
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Equation (3) can be written in the from 

 
 

 

 

  
( 
   
  
)  

 

 

  

  
 

 

and integrated (using the fact that     ⁄  = constant) to 

give 
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)       

 

 Integrating again we obtain 
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)             

 

B.C. 

   (   )            
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) (     ) 

 

 at any cross section the velocity distribution is parabolic 
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1) Flow rate  : 

 

  ∫     
 

 

   ∫      
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where,    (   )   
 

If the pressure drops    over a length  : 
  

 
  

  

  
 

 

  
     

   
 

 

2) Mean velocity  : 
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3) Maximum velocity     : 
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4) Wall shear stress (   )    : 
 

     (
   
  

 
   
  
)   

   
  

 

 

where 

 
   
  

     ⏟
   

( 
  

  
)   

   

  
 

 

Thus, at the wall (i.e.,    ), 

 

(   )      
   

 
 

 

and with       , 

 

|(   )    |  
   

   
 

 

 

Note: Only valid for laminar flows. In general, the flow 

remains laminar for Reynolds numbers, Re =   (  )  ⁄ , 

below 2100. Turbulent flow in tubes is considered in Chap-

ter 8. 
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Differential Analysis of Fluid Flow 
 

We now discuss a couple of exact solutions to the Navier-

Stokes equations.  Although all known exact solutions 

(about 80) are for highly simplified geometries and flow 

conditions, they are very valuable as an aid to our under-

standing of the character of the NS equations and their so-

lutions.  Actually the examples to be discussed are for in-

ternal flow (Chapter 8) and open channel flow (Chapter 

10), but they serve to underscore and display viscous flow.  

Finally, the derivations to follow utilize differential analy-

sis.  See the text for derivations using CV analysis. 

 

Couette Flow  

boundary conditions 

 

First, consider flow due to the relative motion of two paral-

lel plates 

 

Continuity  0
x

u





 

 

Momentum  
2

2

dy

ud
0   

 

or by CV continuity and momentum equations: 

u = u(y) 

v = o 

0
y

p

x

p










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yuyu 21   

u1 = u2 

 

    0uuQAdVuF 12x  

xdy
dy

d
xyx

dx

dp
pyp 







 









 = 0 

 

0
dy

d



     

i.e. 0
dy

du

dy

d









     

 0
dy

ud
2

2

      

 

from momentum equation 

C
dy

du
       

Dy
C

u 


      

u(0) = 0  D = 0        

u(t) = U  C = 
t

U
    

y
t

U
u         





t

U

dy

du
constant 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 6 

Professor Fred Stern   Fall 2012  

 

26 

26 

Generalization for inclined flow with a constant pressure 

gradient 

 

 

 

 

 

 

 

 

Continutity  0
x

u





 

 

Momentum   
2

2

dy

ud
zp

x
0 




  

 

i.e.,  
dx

dh

dy

ud
2

2

   h = p/ +z = constant 

      plates horizontal 0
dx

dz
  

      plates vertical 
dx

dz
=-1 

which can be integrated twice to yield 

 

  Ay
dx

dh

dy

du
  

  BAy
2

y

dx

dh
u

2

  

u = u(y) 

v = o 

0
y

p





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now apply boundary conditions to determine A and B 

  u(y = 0) = 0      B = 0 

  u(y = t) = U 

 

  
2

t

dx

dh

t

U
AAt

2

t

dx

dh
U

2




  

 



















2

t

dx

dh

t

U1

2

y

dx

dh
)y(u

2

 

=   y
t

U
yty

dx

dh

2

2 



  

 

This equation can be put in non-dimensional form: 

t

y

t

y

t

y
1

dx

dh

U2

t

U

u 2














  

 

define:  P = non-dimensional pressure gradient 

  = 
dx

dh

U2

t 2




     z

p
h 


  

  Y = y/t    














dx

dz

dx

dp1

U2

z2

 

  Y)Y1(YP
U

u
  

parabolic velocity profile 
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t

y

t

Py

t

Py

U

u
2

2

  

 

 

t

dyU

t

q
u

udyq

t

0

t

0







 

 

 







t

0

2

2
dy

t

y
y

t

P
y

t

P

U

ut
 =

2

t

3

Pt

2

Pt
  

 

2

U

dx

dh

12

t
u

2

1

6

P

U

u 2












  

For laminar flow 1000
tu



  Recrit  1000 
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The maximum velocity occurs at the value of y for which: 

 0
dy

du
   

t

1
y

t

P2

t

P
0

U

u

dy

d
2









 

 

   
P2

t

2

t
1P

P2

t
y   @ umax 

 

   
P4

U

2

U

4

UP
yuu maxmax   

 

note:   if U = 0: 
3

2

4

P

6

P

u

u

max

  

 

The shape of the velocity profile u(y) depends on P: 

1. If P > 0, i.e., 0
dx

dh
  the pressure decreases in the  

direction of flow (favorable pressure gradient) and the 

velocity is positive over the entire width 

  












 sin

dx

dp
z

p

dx

d

dx

dh
 

 

a) 0
dx

dp
  

 

b)  sin
dx

dp
 

 

for U = 0, y = t/2 
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1. If P < 0, i.e., 0dxdh  the pressure increases in the di-

rection of flow (adverse pressure gradient) and the ve-

locity over a portion of the width can become negative 

(backflow) near the stationary wall.  In this case the 

dragging action of the faster layers exerted on the fluid 

particles near the stationary wall is insufficient to over-

come the influence of the adverse pressure gradient. 

 

0sin
dx

dp
  

 sin
dx

dp
  or  

dx

dp
sin   

 

2. If P = 0, i.e., 0
dx

dh
  the velocity profile is linear 

y
t

U
u   

a) 0
dx

dp
  and  = 0 

b)  sin
dx

dp
 

For U = 0 the form   YY1PY
U

u
  is not appropriate 

u = UPY(1-Y)+UY 

    =   UYY1Y
dx

dh

2

t2





  

Now let U = 0:  Y1Y
dx

dh

2

t
u

2





   

 

Note:  we derived 

this special case 
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3. Shear stress distribution 
 

Non-dimensional velocity distribution 

 * 1
u

u P Y Y Y
U

      

where 
* u

u
U

  is the non-dimensional velocity, 

 
2

2

t dh
P

U dx




  is the non-dimensional pressure gradient 

 
y

Y
t

 is the non-dimensional coordinate. 

Shear stress  
du

dy
   

In order to see the effect of pressure gradient on shear 

stress using the non-dimensional velocity distribution, we 

define the non-dimensional shear stress: 

*

21

2
U







 

Then  

    

 

 

*
*

2

1 2

1

2

Ud u U du

td y t Ut dY
U


 



   

     
2

2 1PY P
Ut




     

     
2

2 1PY P
Ut




     

     2 1A PY P     

where 
2

0A
Ut




   is a positive constant.  

So the shear stress always varies linearly with Y across any 

section. 
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At the lower wall  0Y  : 

     * 1lw A P    

At the upper wall  1Y  : 

     * 1uw A P    

 

For favorable pressure gradient, the lower wall shear stress 

is always positive: 

 1. For small favorable pressure gradient  0 1P  : 

    
* 0lw   and 

* 0uw   

 2. For large favorable pressure gradient  1P  : 

    
* 0lw   and 

* 0uw   
 

 

 

 

 

 

 

 

 

 

       0 1P           1P   

 

 

For adverse pressure gradient, the upper wall shear stress is 

always positive: 

 1. For small adverse pressure gradient  1 0P   : 

    
* 0lw   and 

* 0uw   

 2. For large adverse pressure gradient  1P   : 

    
* 0lw   and 

* 0uw   
  

 
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       1 0P            1P    

 

For 0U  , i.e., channel flow, the above non-dimensional 

form of velocity profile is not appropriate. Let’s use dimen-

sional form: 

       
2

1
2 2

t dh dh
u Y Y y t y

dx dx

 

 
       

Thus the fluid always flows in the direction of decreasing 

piezometric pressure or piezometric head because 

0, 0
2

y



   and 0t y  . So if 

dh

dx
 is negative, u is posi-

tive; if 
dh

dx
 is positive, u is negative. 

 

Shear stress: 

    
1

2 2

du dh
t y

dy dx


 

 
    

 
 

 

Since 
1

0
2

t y
 
  

 
, the sign of shear stress   is always oppo-

site to the sign of piezometric pressure gradient 
dh

dx
, and the 

magnitude of   is always maximum at both walls and zero 

at centerline of the channel. 

 
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 For favorable pressure gradient, 0
dh

dx
 , 0   

 For adverse pressure gradient, 0
dh

dx
 , 0   

 

 

 

 

 

 

 

 

 

 

 

 

   0
dh

dx
       0

dh

dx
  

 

Flow down an inclined plane 

 

uniform flow  velocity and depth do not 

       change in x-direction 

 

Continuity 0
dx

du
  


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x-momentum  
2

2

dy

ud
zp

x
0 




  

y-momentum  



 zp

y
0 hydrostatic pressure variation 

         0
dx

dp
  

 

    sin
dy

ud
2

2

 

 

   cysin
dy

du





  

 

   DCy
2

y
sinu

2





  

 

dsinccdsin0
dy

du

dy














 

 

u(0) = 0   D = 0 

 

   dysin
2

y
sinu

2










  

 

      =  yd2ysin
2





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     u(y) =  yd2y
2

sing





 

 

 

d

0

3
2

d

0 3

y
dysin

2
udyq 













    

 

    = 



sind

3

1 3  

 








 sin

3

gd
sind

3

1

d

q
V

2
2

avg  

 

 

in terms of the slope So = tan   sin  

 

  



3

Sgd
V o

2

 

 

Exp. show Recrit  500, i.e., for Re > 500 the flow will be-

come turbulent 

 

  



cos

y

p
      




dV
Recrit   500 

 
  Cycosp   

 

    Cdcospdp o   

 

discharge per 

unit width 
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i.e.,    opydcosp   

 

*  p(d) > po 

 

*  if  = 0  p = (d  y) + po      

entire weight of fluid imposed 

 

    if  = /2 p = po 

   no pressure change through the fluid  

 


