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Chapter 5 Mass, Momentum, and Energy Equations
Flow Rate and Conservation of Mass

1. cross-sectional area oriented normal to velocity vector

(simple case where V ( A)
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U = constant:  Q = volume flux = UA [m/s ( m2 = m3/s]

U ( constant:  Q = 
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Similarly the mass flux = 
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2. general case
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average velocity:  
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Example:

At low velocities the flow through a long circular tube, i.e. pipe, has a parabolic velocity distribution (actually paraboloid of revolution).
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i.e., centerline velocity
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a) find Q and 
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u = u(r) and not ( ( 
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Q = 
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Continuity Equation
RTT can be used to obtain an integral relationship expressing conservation of mass by defining the extensive property B = M such that ( = 1.



B = M = mass



( = dB/dM = 1

General Form of Continuity Equation
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Simplifications:

1. Steady flow:  
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2. V = constant over discrete dA (flow sections):
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3. Incompressible fluid (( = constant)


[image: image20.wmf]CSCV

d

VdAdV

dt

×=-

òò




conservation of volume

4. Steady One-Dimensional Flow in a Conduit:
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((1V1A1 + (2V2A2 = 0

for ( = constant
Q1 = Q2
Some useful definitions:

Mass flux
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Volume flux
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Average Velocity
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Average Density
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Note:  
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i.e.,  -(1V1A1 - (2V2A2 + (3V3A3 + (
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( = const. = 1.94 lb-s2 /ft4 = 1.94 slug/ft3
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 = 1.45 slugs/s
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Q4 = 
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velocity profile
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Vmax = 
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Momentum Equation

RTT with B = MV and ( = V
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V = velocity referenced to an inertial frame (non-accelerating)
VR = velocity referenced to control volume

FS = surface forces + reaction forces (due to pressure and 

viscous normal and shear stresses)

FB = body force (due to gravity)

Applications of the Momentum Equation
Initial Setup and Signs

1. Jet deflected by a plate or a vane

2. Flow through a nozzle

3. Forces on bends

4. Problems involving non-uniform velocity distribution

5. Motion of a rocket

6. Force on rectangular sluice gate

7. Water hammer
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Derivation of the Basic Equation[image: image172.wmf]2
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Recall RTT:
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VR=velocity relative to CS=V – VS=absolute – velocity CS
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i.e., referenced to CV
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Let, 

B = MV = linear momentum



( = V
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Newton’s 2nd law

where
(F = vector sum of all forces acting on the 

 control volume including both surface and 

 body forces



     = (FS + (FB


(FS = sum of all external surface forces acting at 

  the CS, i.e., pressure forces, forces 

  transmitted through solids, shear forces, etc.
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(FB = sum of all external 

   body forces, i.e., 

   gravity force







(Fx = p1A1 – p2A2 + Rx
(Fy = -W + Ry
R = resultant force on fluid 
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       in CV due to pw and (w
Important Features (to be remembered)

1) Vector equation to get component in any direction must use dot product
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x equation
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y equation
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z equation
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2) Carefully define control volume and be sure to include all external body and surface faces acting on it.
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For example,
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3) [image: image185.jpg]


Velocity V must be referenced to a non-accelerating inertial reference frame.  Sometimes it is advantageous to use a moving (at constant velocity) reference frame.  Note VR = V – Vs is always relative to CS.
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4) Steady vs. Unsteady Flow

Steady flow ( 
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5) Uniform vs. Nonuniform Flow
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6) Fpres = (
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f = constant, (f = 0


= 0  for p = constant and for a closed surface


i.e., always use gage pressure

7)  Pressure condition at a jet exit
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at an exit into the atmosphere jet pressure must be pa
Application of the Momentum Equation
1.  Jet deflected by a plate or vane

Consider a jet of water turned through a horizontal angle
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x-equation:
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steady flow
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continuity equation:
(A1V1 = (A2V2 = (Q

Fx = (Q(V2x – V1x)

y-equation:
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Fy = (V1y(– A1V1) + (V2y(– A2V2)




     = (Q(V2y – V1y)
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for above geometry only
where: 
V1x = V1    V2x = -V2cos(   V2y = -V2sin(  V1y = 0

note:

Fx and Fy are force on fluid



- Fx and -Fy are force on vane due to fluid

If the vane is moving with velocity Vv, then it is convenient to choose CV moving with the vane

i.e.,
 VR = V -  Vv  and V used for B also moving with vane

x-equation:
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Fx = (V1x[-(V – Vv)1A1] + (V2x[-(V – Vv)2A2]

Continuity:
0 = 
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i.e.,
((V-Vv)1A1 = ((V-Vv)2A2 = ((V-Vv)A










Qrel
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Fx = ((V-Vv)A[V2x – V1x]
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Qrel 
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on fluid

V2x = (V – Vv)2x



V1x = (V – Vv)1x 

Power = -FxVv


i.e., = 0 for Vv = 0

Fy = (Qrel(V2y – V1y)

2.  Flow through a nozzle
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Consider a nozzle at the end of a pipe (or hose).  What force is required to hold the nozzle in place?

Assume either the pipe velocity or pressure is known.  Then, the unknown (velocity or pressure) and the exit velocity V2 can be obtained from combined use of the continuity and Bernoulli equations.

Bernoulli:
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Continuity:
A1V1 = A2V2 = Q
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Say p1 known:
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To obtain the reaction force Rx apply momentum equation in x-direction
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  Rx + p1A1 – p2A2  
= (V1(-V1A1) + (V2(V2A2)





= (Q(V2 - V1)




  Rx
= (Q(V2 - V1) - p1A1
To obtain the reaction force Ry apply momentum equation in y-direction
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since no flow in y-direction


Ry – Wf ( WN = 0
i.e., Ry = Wf + WN

Numerical Example:  Oil with S = .85 flows in pipe under pressure of 100 psi.  Pipe diameter is 3” and nozzle tip diameter is 1”

V1 = 14.59 ft/s



V2 = 131.3 ft/s



Rx = 141.48 – 706.86 = (569 lbf



Rz = 10 lbf

This is force on nozzle 

3.  Forces on Bends

Consider the flow through a bend in a pipe.  The flow is considered steady and uniform across the inlet and outlet sections.  Of primary concern is the force required to hold the bend in place, i.e., the reaction forces Rx and Ry which can be determined by application of the momentum equation.



Continuity:
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i.e., Q = constant = 
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x-momentum:
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y-momentum:  
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4. Problems involving Nonuniform Velocity Distribution

See text pp. 215( 216
5. Force on a rectangular sluice gate

The force on the fluid due to the gate is calculated from the x-momentum equation:
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Moment of Momentum Equation

See text pp. 221 ( 229
Energy Equations
Derivation of the Energy Equation

The First Law of Thermodynamics
The difference between the heat added to a system and the work done by a system depends only on the initial and final states of the system; that is, depends only on the change in energy E: principle of conservation of energy



(E = Q – W

(E = change in energy

Q = heat added to the system

W = work done by the system

E = Eu + Ek + Ep = total energy of the system





potential energy




kinetic energy


The differential form of the first law of thermodynamics expresses the rate of change of E with respect to time
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rate of heat transfer to system

Energy Equation for Fluid Flow

The energy equation for fluid flow is derived from Reynolds transport theorem with

Bsystem = E = total energy of the system (extensive property)

( = E/mass = e = energy per unit mass (intensive property)

   = 
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This can be put in a more useable form by noting the following:
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(for Ep due to gravity only)
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rate of change
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(ie, across CS)

rate of heat

transfer to sysem
Rate of Work Components:  
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For convenience of analysis, work is divided into shaft work Ws and flow work Wf
Wf = net work done on the surroundings as a result of 

 normal and tangential stresses acting at the control 

 surfaces

     = Wf pressure + Wf shear
Ws = any other work transferred to the surroundings 

 usually in the form of a shaft which either takes 

 energy out of the system (turbine) or puts energy into 

 the system (pump)

Flow work due to pressure forces  Wf p  (for system)













Work = force ( distance






at 2
W2 = p2A2 ( V2(t

rate of work( 
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at 1
W1 = (p1A1 ( V1(t 
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In general,
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for more than one control surface and V not necessarily uniform over A:
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Basic form of energy equation
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h=enthalpy

Simplified Forms of the Energy Equation

Energy Equation for Steady One-Dimensional Pipe Flow
Consider flow through the pipe system as shown


Energy Equation (steady flow)
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*Although the velocity varies across the flow sections the streamlines are assumed to be straight and parallel; consequently, there is no acceleration normal to the streamlines and the pressure is hydrostatically distributed, i.e., p/( +gz = constant.

*Furthermore, the internal energy u can be considered as constant across the flow sections, i.e. T = constant.  These quantities can then be taken outside the integral sign to yield
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Recall that
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So that
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mass flow rate

Define:
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K.E. flux              K.E. flux for V=
[image: image95.wmf]V
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Nnote that:

( = 1 if V is constant across the flow section

( > 1 if V is nonuniform

 laminar flow ( = 2
       turbulent flow ( = 1.05  ( 1 may be used
Shaft Work
Shaft work is usually the result of a turbine or a pump in the flow system.  When a fluid passes through a turbine, the fluid is doing shaft work on the surroundings; on the other hand, a pump does work on the fluid
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where 
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magnitudes of power
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Using this result in the energy equation and deviding by g results in 
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mechanical part


    thermal part

Note: each term has dimensions of length

Define the following:
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Head Loss

In a general fluid system a certain amount of mechanical energy is converted to thermal energy due to viscous action.  This effect results in an increase in the fluid internal energy.  Also, some heat will be generated through energy dissipation and be lost (i.e. -
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from 2nd law
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Note that adding 
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 to system will not make hL = 0 since this also increases (u.  It can be shown from 2nd law of thermodynamics that hL > 0.

Drop ( over 
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 and understand that V in energy equation refers to average velocity.

Using the above definitions in the energy equation results in (steady 1-D incompressible flow)
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form of energy equation used for this course!
Comparison of Energy Equation and Bernoulli Equation
Apply energy equation to a stream tube without any shaft work


Energy eq :
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(If hL = 0 (i.e., ( = 0) we get Bernoulli equation and conservation of mechanical energy along a streamline

(Therefore, energy equation for steady 1-D pipe flow can be interpreted as a modified Bernoulli equation to include viscous effects (hL) and shaft work (hp or ht)

Summary of the Energy Equation
The energy equation is derived from RTT with 

B = E = total energy of the system

( = e = E/M  = energy per unit mass


 = 
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For steady 1-D pipe flow (one inlet and one outlet):

1) Streamlines are straight and parallel 


( p/( +gz = constant across CS

2) T = constant ( u = constant across CS

3)
define
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 head loss

   > 0  represents loss in mechanical energy due to viscosity

[image: image127.png]108 4 Energy Considerations in Steady Flow
415 METHOD OF SOLUTION OF FLOW PROBLEMS

For the solutions of problems of liquid flow there are two lundamental equa-
tions, the equation of continuity (3.10} and the energy equation in one of the
forms from Eqs. (4.5) to 4.10), The following procedure may be employed:

1. Choose a datum plane through any convenient point.

2. Note at what sections the velocity is known or is to be assumed. If at any
point the section area is great compared with its value elsewhere, the velocity
head is so small that it may be disregarded.

3. Note at what paints the pressure is known or is to be assumed. In a body of
liquid at rest with a free surface the pressure is known at every point within
the body. The pressure in 2 jet is the same as that of the medium surrounding
the jet.

4. Note whether or not there is any point where all three terms, pressure, ele-
vation, and velocity, are known.

5. Note whether or not there is any point where there is only one unknown
quantity.

It is generally possible Lo write an energy equation that wil fulfill conditions
4 and 5. If there are two unknowns in the equation, then the continuity equation
must be used aiso. The application of these principles is shown in the following
illustrative examples.

lustrative Example 4.7 A pipeline with & pump leads to & noczle as shown in the accompany-
ing Agure. £ low rate when the pusmp develops 3 head of 80 1. Assume that the head loss in
the 6-in-diameter pipe may be exprossed by hy = V4729, while the head loss in the d-in-diametet pipe
is i, = 12V4729. Sketch the energy line and hydrastic grade line, and find the pressure head at the
suction side of the pump.

Sglecy the datum as the lovation of the water surfae fn the reservoir. Note from continuity that

Vo= (7% = 025%,  and o= 3PV, = 0563V,

sehere V5 s the jet velocity. Writing an engrg equation from the sarface of the veservois to the jor,

v: vi vi
04040 -5:5480 122104042
2 2 23

Express ail velocities in terms of ¥,

v 56312 3

L N . 7
2 2 2%
¥ = 2971ps

(3

Q= dy¥y = 297 = 145 s






Application of the Energy, Momentum, and Continuity Equations in Combination

In general, when solving fluid mechanics problems, one should use all available equations in order to derive as much information as possible about the flow.  For example, consistent with the approximation of the energy equation we can also apply the momentum and continuity equations

Energy:
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Momentum:
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Continuity:


A1V1 = A2V2 = Q = constant

Abrupt Expansion
Consider the flow from a small pipe to a larger pipe.  Would like to know hL = hL(V1,V2).  Analytic solution to exact problem is extremely difficult due to the occurrence of flow separations and turbulence.  However, if the assumption is made that the pressure in the separation region remains approximately constant and at the value at the point of separation, i.e, p1, an approximate solution for hL is possible:

Apply Energy Eq from 1-2 ((1 = (2 = 1)
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Momentum eq. For CV shown (shear stress neglected)
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   W  sin (
next divide momentum equation by (A2
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from energy equation

   using continuity

    (
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Forces on Transitions
Example 7-6

Q = .707 m3/s

head loss = 
[image: image139.wmf]g
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(empirical equation)


Fluid = water

p1 = 250 kPa

D1 = 30 cm

D2 = 20 cm

Fx = ?

First apply momentum theorem
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Fx + p1A1 ( p2A2 = (V1((V1A1) + (V2(V2A2) 

Fx = (Q(V2 ( V1) ( p1A1 + p2A2




force required to hold transition in place

The only unknown in this equation is p2, which can be obtained from the energy equation.
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note: z1 = z2 and ( = 1
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drop in pressure

(
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  p2  

In this equation,






V1 = Q/A1 = 10 m/s








V2 = Q/A2 = 22.5 m/s
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Fx = (8.15 kN

is negative x direction to hold 

transition in place

Concept of Hydraulic and Energy Grade Lines
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Define 
HGL = 
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EGL = 
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HGL corresponds to pressure tap measurement + z

EGL corresponds to stagnation tube measurement + z



pressure tap:  
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stagnation tube:  
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EGL1 + hp = EGL2 + ht + hL
EGL2 = EGL1 + hp ( ht ( hL
Helpful hints for drawing HGL and EGL
1. EGL = HGL + (V2/2g = HGL for V = 0

2.&3. 
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 in pipe means EGL and HGL will slope 

  downward, except for abrupt changes due to ht or hp


4. p = 0 ( HGL = z

5. for 
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6. for change in D ( change in V


 i.e.
V1A1 = V2A2
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7.  If HGL < z then p/( < 0 
i.e., cavitation possible


condition for cavitation:
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� EMBED Equation.3  ���





System at time t + (t





� EMBED Equation.3  ���


	      = � EMBED Equation.3  ���














� EMBED Equation.3  ���





Internal energy due to molecular motion 





V must be referenced to inertial reference frame





Note: here � EMBED Equation.3  ��� uniform over � EMBED Equation.3  ���





one inlet and one outlet


( = constant
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General form for moving but 


non-accelerating reference frame





System at time t





CS





CV





(on surroundings)





neg. sign since pressure force on surrounding fluid acts in a direction opposite to the motion of the system boundary





Usually this term can be eliminated by proper choice of CV, i.e. CS normal to flow lines.  Also, at fixed boundaries the velocity is zero (no slip condition) and no shear stress flow work is done.  Not included or discussed in text!





represents a loss in mechanical energy due to viscous stresses





Infinitesimal stream tube ( (1=(2=1





(





change in distance between HGL & EGL and slope 


change due to change in hL 





i.e., linearly increased for increasing L with slope � EMBED Equation.3  ���





� EMBED Equation.3  ���


HGL2 = EGL1 - hL


� EMBED Equation.3  ���for abrupt expansion





abrupt change due to hp or ht





� EMBED Equation.3  ���





h = height of fluid in


      tap/tube





f = friction factor 


f = f(Re)





EGL = HGL if V = 0





hL = � EMBED Equation.3  ���


i.e., linear variation in L for D,


V, and f constant





EGL1 = EGL2 + hL


for hp = ht = 0





point-by-point application is graphically displayed





from 1st Law of Thermodynamics





work done





heat add� EMBED Equation.3  ���ed





Neglected in text presentation





pressure work done on CS





shaft work done on or by system (pump or turbine)





Viscous stress work on CS





mechanical energy





Thermal energy





Note: each term has 


  units of length





V is average velocity (vector dropped) and 


 corrected by (





Must be relative to a non-accelerating inertial reference frame





i.e., reaction force on fluid





free body diagram





Carefully define coordinate system with forces positive in positive direction of coordinate axes





(Rx,Ry) = reaction force on fluid





(Rx,Ry) = reaction force on nozzle 





( (A2





i.e., in these cases V used for B also referenced to CV (i.e., V = VR)





CV and CS are for jet so that Fx and Fy are vane reactions forces on fluid





� EMBED Equation.3  ���





for A1 = A2


      V1 = V2





For coordinate system moving with vane





CV = nozzle 


         and fluid


( (Rx, Ry) = force required to hold nozzle in place





steady flow and uniform 


flow over CS





� EMBED Equation.3  ���


D/d = 3


Q = � EMBED Equation.3  ���


    = .716 ft3/s 











Rx, Ry = reaction force on


     bend i.e., force 


     required to hold 


     bend in place





usually can be neglected
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continutity eq.


V1A1 = V2A2


    � EMBED Equation.3  ���





(note: if p2 = 0 same as nozzle)





continuity	A1V1 = A2V2


			� EMBED Equation.3  ���


			i.e.	V2 > V1
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