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Chapter 5 Mass, Bernoulli, and Energy Equations 
 
 
5.1 Flow Rate and Conservation of Mass 
 
1. cross-sectional area oriented normal to velocity vector 

(simple case where V ⊥ A) 
 

 
U = constant:  Q = volume flux = UA [m/s × m2 = m3/s] 
U ≠ constant:  Q = ∫

A
UdA  

Similarly the mass flux = ∫ρ=
A

UdAm  

 
 
2. general case 

 
 

  
∫ θ=

∫ ⋅=

CS

CS

dAcosV

dAnVQ
 

( )∫ ⋅ρ=
CS

dAnVm  
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average velocity:  
A
QV =  

 
 
Example: 
At low velocities the flow through a long circular tube, i.e. pipe, 
has a parabolic velocity distribution (actually paraboloid of 
revolution). 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2

max R
r1uu  

i.e., centerline velocity 
 
 
 

 
a) find Q and V  
 

∫=∫ ⋅=
AA

udAdAnVQ  

 

∫ ∫ ∫ θ=
π

A

2

0

R

0
drrd)r(uudA  

      = ∫π
R

0
rdr)r(u2    

dA = 2πrdr     

u = u(r) and not θ ∴ ∫ π=θ
π2

0
2d   
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Q = ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−π

R

0

2

max rdr
R
r1u2   = 2

max Ru
2
1

π   

maxu
2
1V =  

 
 
Continuity Equation 
 
RTT can be used to obtain an integral relationship expressing 
conservation of mass by defining the extensive property B = M 
such that β = 1. 
 
  B = M = mass 
  β = dB/dM = 1 
 
General Form of Continuity Equation 
 

∫ ∫ ⋅ρ+ρ==
CV CS

dAVVd
dt
d0

dt
dM  

or 

∫ρ−=⋅∫ρ
CVCS

Vd
dt
ddAV  

 
net rate of outflow   rate of decrease of 
of mass across CS  mass within CV 
 
 
 
Simplifications: 
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1. Steady flow:  0Vd
dt
d

CV
=∫ρ−  

 
2. V = constant over discrete dA (flow sections): 
 

∫ ∑ ⋅ρ=⋅ρ
CS CS

AVdAV  

 
3. Incompressible fluid (ρ = constant) 

CS CV

dV dA dV
dt

⋅ = −∫ ∫    conservation of volume 

 
4. Steady One-Dimensional Flow in a Conduit: 

∑ =⋅ρ
CS

0AV  

 
−ρ1V1A1 + ρ2V2A2 = 0 
 
for ρ = constant Q1 = Q2 

 
 
Some useful definitions: 
 
Mass flux   ∫ ⋅ρ=

A
dAVm  

 
Volume flux  ∫ ⋅=

A
dAVQ  

 
Average Velocity A/QV =  
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Average Density ∫ρ=ρ dA
A
1  

 
Note:  m Q≠ ρ  unless ρ = constant 
 

Example 

 
*Steady flow 

*V1,2,3 = 50 fps 

*@  V varies linearly   
  from zero at wall to  
  Vmax at pipe center 
*find 4m , Q4, Vmax 

0  *water, ρw = 1.94 slug/ft3 

∫ρ−=∫ =⋅ρ
CVCS

Vd
dt
d0dAV  

        

i.e.,  -ρ1V1A1 - ρ2V2A2 + ρ3V3A3 + ρ ∫
4A

44dAV = 0   

ρ = const. = 1.94 lb-s2 /ft4 = 1.94 slug/ft3 

 
∫ρ= 444 dAVm = ρV(A1 + A2 – A3)      V1=V2=V3=V=50f/s 

    = ( )222 5.121
4

50
144

94.1
−+

π
××   

 = 1.45 slugs/s 

4m  
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Q4 = 75.m4 =ρ  ft3/s 
 
     = ∫

4A
44dAV  

velocity profile 
 

Q4   = ∫ ∫ θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

πor

0

2

0 o
max drrd

r
r1V   

 
 

 
max

2
o

2
omax

r

0o

3r

0

2

max

r

0 o

2

max

r

0 o
max

Vr
3
1

3
1

2
1rV2

r3
r

2
rV2

dr
r
rrV2

rdr
r
r1V2

o0

o

o

π=⎥⎦
⎤

⎢⎣
⎡ −π=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−π=

∫ ⎥
⎦

⎤
⎢
⎣

⎡
−π=

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−π=

 

Vmax = 86.2
r

3
1

Q
2

o

4 =
π

fps 

V4 ≠ V4(θ) 
dA4 

2
o

max
2
o

4
r

Vr
3
1

A
QV

π

π
==

       = maxV
3
1  
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5.2 Mechanical Energy, Efficiency, Bernoulli Equations, 
Application, and Limitations 
 
Assume irrotational, inviscid, and incompressible flow = ideal 
flow theory 
 
Also, assume steady flow 
Ω = ∇ × V = 0  ⇒  V = ∇ϕ  irrotational 
 
a = − ∇(p/ρ + gz),  ∇ ⋅ V = 0   inviscid, incompressible 
      0 
a = V ⋅∇V = ∇½V ⋅ V + V × (∇ × V)  steady 

  = ∇½V2  V2 = V ⋅ V 
 

⎟
⎠

⎞
⎜
⎝

⎛
+

ρ
−∇=∇ gzpV

2
1 2  

 

0gzpV
2
1 2 =⎟

⎠

⎞
⎜
⎝

⎛
+

ρ
+∇  

 
i.e.,  p + ½ρV2 + γz = B = constant 
 
p1 + ½ρV1

2 + γz1 = p2 + ½ρV2
2 + γz2  

 
Also, from continuity and irrotational 

 ∇ ⋅ V = 0   V = ∇ϕ = k̂
z

ĵ
y

î
x ∂

ϕ∂
+

∂
ϕ∂

+
∂
ϕ∂  

∇ ⋅ ∇ϕ = 0  ϕ = velocity potential 
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∇2ϕ = 0   i.e., governing differential  
equation for ϕ is Laplace equation 

Application of Bernoulli’s Equation 
 
Stagnation Tube 
 
 
 
 
 
 
 
 
 
 
 
 
 
       at   V = 0 
 

2
Vp

2
Vp

2
2

2

2
1

1 ρ+=ρ+    z1 = z2 

 

 ( )12
2

1 pp2V −
ρ

=    ( )dp
dp

2

1

+γ=
γ=

 

 

       = ( )γ
ρ
2  

  g2V1 =  

V2 = 0 
gage 

Limited by length of 
tube and need for free 
surface reference 
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Pitot Tube 
 
 
 
 
 
 
 
 
 
  0 

2

2
22

1

2
11 z

g2
Vpz

g2
Vp

++
γ

=++
γ

 

       at          at  
2/1

2
2

1
1

2 zpzpg2V
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+

γ
−⎟

⎠

⎞
⎜
⎝

⎛
+

γ
=   V1 = 0 

 
   h1    h2 
       h = piezometric head 

( )212 hhg2VV −==    h1 – h2 from manometer  
or pressure gage 

 

for gas flow zp
∆>>

γ
∆  

 

ρ
∆

=
p2V  
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5.3 Derivation of the Energy Equation 
 
The First Law of Thermodynamics 
The difference between the heat added to a system and the work 
done by a system depends only on the initial and final states of 
the system; that is, depends only on the change in energy E: 
principle of conservation of energy 
 
  ∆E = Q – W 
 
∆E = change in energy 
Q = heat added to the system 
W = work done by the system 
 
E = Eu + Ek + Ep = total energy of the system 
    potential energy 
   kinetic energy 
 
 
 
The differential form of the first law of thermodynamics 
expresses the rate of change of E with respect to time 
 

 WQ
dt
dE

−=  

rate of work being done by system 
 

rate of heat transfer to system 
 
 
 
 

Internal energy due to molecular motion  
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Energy Equation for Fluid Flow 
The energy equation for fluid flow is derived from Reynolds 
transport theorem with 
 
Bsystem = E = total energy of the system (extensive property) 
 
β = E/mass = e = energy per unit mass (intensive property) 
   = u + ek + ep 
 

∫ ⋅ρ+∫ ρ= CSCV dAVeVed
dt
d

dt
dE  

∫ ⋅++ρ∫ +++ρ=− CS pkCV pk dAV)eeu(Vd)eeu(
dt
dWQ  

 
This can be put in a more useable form by noting the following: 
        

2
V

M
2/MV

mass
VvelocitywithmassofKETotale

22

k =
∆

∆
==  

gz
V
zV

M
E

e p
p =

∆ρ
∆γ

=
∆

=   (for Ep due to gravity only) 

 

∫ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ρ∫ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ρ=− Cs

2

CV

2
dAVugz

2
VVdugz

2
V

dt
dWQ  

  
 rate of work   rate of change  flux of energy 
 done by system  of energy in CV  out of CV 
         (ie, across CS) 
rate of heat 
transfer to sysem

VV2 =  
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System at time t + ∆t 

System at time t 

CS 

Rate of Work Components:  fs WWW +=  
For convenience of analysis, work is divided into shaft work Ws 
and flow work Wf 
 
Wf = net work done on the surroundings as a result of  

 normal and tangential stresses acting at the control  
 surfaces 

     = Wf pressure + Wf shear 
 
Ws = any other work transferred to the surroundings  

 usually in the form of a shaft which either takes  
 energy out of the system (turbine) or puts energy into  
 the system (pump) 

 
 
Flow work due to pressure forces  Wf p  (for system) 
          

 

 

 

        

       

  
Work = force × distance 

     at 2 W2 = p2A2 × V2∆t 
rate of work⇒ 2222222 AVpVApW ⋅==   

 
at 1 W1 = −p1A1 × V1∆t  
 1111 AVpW ⋅=   

 

Note: here V  uniform over A  

(on surroundings) 

neg. sign since pressure 
force on surrounding 
fluid acts in a direction 
opposite to the motion 
of the system boundary 

CV 



57:020 Mechanics of Fluids and Transport Processes                                                     Chapter 5 
Professor Fred Stern    Typed by Stephanie Schrader   Fall 2005 13

In general, 
   
  AVpWfp ⋅=  
 
for more than one control surface and V not necessarily uniform 
over A: 
 

  ∫ ⋅⎟
⎠

⎞
⎜
⎝

⎛
ρ

ρ=∫ ⋅= CSCSfp dAVpdAVpW  

  fshearfpf WWW +=  
 
Basic form of energy equation 

∫ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ρ+∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ρ=

∫ ⋅⎟
⎠

⎞
⎜
⎝

⎛
ρ

ρ−−−

CS

2

CV

2

CSfshears

dAVugz
2

VVdugz
2

V
dt
d

dAVpWWQ

 

∫ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

+++ρ+

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ρ=−−

CS

2

CV

2

fshears

dAVpugz
2

V

Vdugz
2

V
dt
dWWQ

   

        h=enthalpy 
 
 
 
 
 

Usually this term can be 
eliminated by proper choice of 
CV, i.e. CS normal to flow lines.  
Also, at fixed boundaries the 
velocity is zero (no slip 
condition) and no shear stress 
flow work is done.  Not included 
or discussed in text! 
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5.4 Simplified Forms of the Energy Equation 
 
Energy Equation for Steady One-Dimensional Pipe Flow 
Consider flow through the pipe system as shown 
 
 
 
 
 
 
 
Energy Equation (steady flow) 

∫ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ρ
++ρ=− CS

2

s dAVupgz
2

VWQ  

∫ ∫
ρ

+ρ⎟
⎠

⎞
⎜
⎝

⎛
++

ρ
=

∫ ∫
ρ

+ρ⎟
⎠

⎞
⎜
⎝

⎛
++

ρ
+−

2 2

1 1

A A 2

3
22

22222
2

A A 1

3
11

11111
1

s

dA
2
VAVugzp

dA
2
VAVugzpWQ

 

 
*Although the velocity varies across the flow sections the 
streamlines are assumed to be straight and parallel; 
consequently, there is no acceleration normal to the streamlines 
and the pressure is hydrostatically distributed, i.e., p/ρ +gz = 
constant. 
 
*Furthermore, the internal energy u can be considered as 
constant across the flow sections, i.e. T = constant.  These 
quantities can then be taken outside the integral sign to yield 
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∫ρ+∫ρ⎟
⎠

⎞
⎜
⎝

⎛
++

ρ
=

∫ρ+∫ρ⎟
⎠

⎞
⎜
⎝

⎛
++

ρ
+−

22

11

A 2

3
2

A 2222
2

A 1

3
1

A 1111
1

s

dA
2

VdAVugzp

dA
2

VdAVugzpWQ
 

 
Recall that AVdAVQ =∫ ⋅=  
So that  mAVdAV =ρ=∫ ⋅ρ   mass flow rate 
 

Define:  m
2

V
2

AVdA
2

V 23

A

3
α=

ρ
α=∫ρ  

   K.E. flux              K.E. flux for V= V =constant across pipe 
 

i.e.,       ∫ ⎟
⎠
⎞

⎜
⎝
⎛=α

A

3

dA
V
V

A
1  = kinetic energy correction factor 

 

m
2

Vugzpm
2

VugzpWQ
2
2

222
2

2
1

111
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α+++

ρ
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
α+++

ρ
+−

( )
2

Vugzp
2

VugzpWQ
m
1 2

2
222

2
2
1

111
1 α+++

ρ
=α+++

ρ
+−  

 
note that:  α = 1 if V is constant across the flow section 

α > 1 if V is nonuniform 
 
 
 

 
 laminar flow α = 2        turbulent flow α = 1.05  ∼ 1 may  

    be used 
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Shaft Work 
Shaft work is usually the result of a turbine or a pump in the 
flow system.  When a fluid passes through a turbine, the fluid is 
doing shaft work on the surroundings; on the other hand, a pump 
does work on the fluid 
 pts WWW −=   where tW  and pW  are 

     magnitudes of power ⎟
⎠
⎞

⎜
⎝
⎛

time
work  

 
Using this result in the energy equation and deviding by g 
results in  
 

gm
Q

g
uu

2
Vzp

gm
W

2
Vzp

gm
W 12

2
2

22
2t

2
1

11
1p −

−
+α++

γ
+=α++

γ
+  

   mechanical part       thermal part 
 
Note: each term has dimensions of length 
Define the following: 
 

Q
W

Qg
W

gm
W

h ppp
p γ

=
ρ

==  

 

gm
Wh t

t =  

 

losshead
gm

Q
g

uuh 12
L =−

−
=  



57:020 Mechanics of Fluids and Transport Processes                                                     Chapter 5 
Professor Fred Stern    Typed by Stephanie Schrader   Fall 2005 17

Head Loss 
In a general fluid system a certain amount of mechanical energy 
is converted to thermal energy due to viscous action.  This effect 
results in an increase in the fluid internal energy.  Also, some 
heat will be generated through energy dissipation and be lost 
(i.e. -Q).  Therefore the term 
      from 2nd law 
 

 0
mg
Q

g
uuh 12

L >−
−

=   

 
Note that adding Q to system will not make hL = 0 since this 
also increases ∆u.  It can be shown from 2nd law of 
thermodynamics that hL > 0. 
 
Drop ⎯ over V and understand that V in energy equation refers 
to average velocity. 
 
Using the above definitions in the energy equation results in 
(steady 1-D incompressible flow) 
 

Lt2

2
2

2
2

p1

2
1

1
1 hhz

g2
Vphz

g2
Vp

+++α+
γ

=++α+
γ

 

 
    form of energy equation used for this course!

represents a loss in 
mechanical energy due 
to viscous stresses 
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Comparison of Energy Equation and Bernoulli Equation: 
 
Apply energy equation to a stream tube without any shaft work 
 
 
 
 
 
 
 
 

Energy eq : L2

2
22

1

2
11 hz

g2
Vpz

g2
Vp

+++
γ

=++
γ

 

 
•If hL = 0 (i.e., µ = 0) we get Bernoulli equation and 
conservation of mechanical energy along a streamline 
 
•Therefore, energy equation for steady 1-D pipe flow can be 
interpreted as a modified Bernoulli equation to include viscous 
effects (hL) and shaft work (hp or ht) 

Infinitesimal stream tube ⇒ α1=α2=1 
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abrupt 
change due 
to hp or ht 

g2
V

D
Lf

2
 

5.5 Concept of Hydraulic and Energy Grade Lines 
 

Lt2

2
2

2
2

p1

2
1

1
1 hhz

g2
Vphz

g2
Vp

+++α+
γ

=++α+
γ

 

Define  HGL = zp
+

γ
 

  EGL = 
g2

Vzp 2
α++

γ
 

 
HGL corresponds to pressure tap measurement + z 
EGL corresponds to stagnation tube measurement + z 

 
 
 
 
 
 
 
 
 

pressure tap:  hp2 =
γ

 

stagnation tube:  h
g2

Vp 2
22 =α+

γ
 

 
EGL1 + hp = EGL2 + ht + hL 
EGL2 = EGL1 + hp − ht − hL

point-by-point 
application is 
graphically 
displayed 

h = height of fluid in 
      tap/tube 

EGL = HGL if V = 0 

hL = 
g2

2V
D
Lf  

i.e., linear variation in L for D, 
V, and f constant 

EGL1 = EGL2 + hL 
for hp = ht = 0 

f = friction factor  
f = f(Re) 
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Helpful hints for drawing HGL and EGL 
 
1. EGL = HGL + αV2/2g = HGL for V = 0 
 

2.&3. 
g2

V
D
Lfh

2

L =  in pipe means EGL and HGL will slope  

  downward, except for abrupt changes due to ht or hp 
 

  

Lh
g2

2
2V

2z2p

g2

2
1V

1z1p
+++

γ
=++

γ
 

HGL2 = EGL1 - hL 

g2

2
V

Lh = for abrupt expansion 
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⇒ 

4. p = 0 ⇒ HGL = z 
 

5. for 
g2

V
D
Lfh

2

L =  = constant × L 

 
EGL/HGL slope downward 

 
6. for change in D ⇒ change in V 

 
 i.e. V1A1 = V2A2 

  
4
DV

4
DV

2
2

2

2
1

1
π

=
π  

  2
21

2
11 DVDV =  

 

 

i.e., linearly 
increased for 
increasing L with 

slope Vf 2

change in distance between 
HGL & EGL and slope  
change due to change in hL  
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7.  If HGL < z then p/γ < 0  i.e., cavitation possible 
 

 
 
 

condition for cavitation: 
 

  2va m
N2000pp ==  

 

gage pressure 2atmatmAg,va m
N000,100pppp −=−≈−=  

 

   m10
p g,va −≈
γ

 

 
      9810 N/m3 
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heat 
add

Neglected in text presentation 

Summary of the Energy Equation 
 
The energy equation is derived from Reynolds Transport 
Theorem with  
 
B = E = total energy of the system 
 
β = e = E/M  = energy per unit mass 
 

  = u + 2V
2
1 +gz 

 
 internal   KE      PE 
 

WQdAVeVed
dt
d

dt
dE

CSCV
−=∫ ⋅ρ+∫ρ=    

       
 
 

vps WWWW ++=  
 
 
 
 
 
 

( )∫ ⋅ρρ∫ =⋅=
CSCV

p dAVpdAVpW    

 
pts WWW −=  

work 
done 

from 1st Law of 
Thermodynamics 

shaft work 
done on or 
by system 
(pump or 
turbine) 

pressure 
work done 

on CS 

Viscous stress 
work on CS 
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mechanical energy 
Thermal 
energy 

Note: each term 
has  

  units of length 
 

V is average velocity 
(vector dropped) and  
 corrected by α 

( )∫ ⋅+ρ+∫ρ=+−
CSCV

pt dAVepeVed
dt
dWWQ  

gzV
2
1ue 2 ++=  

 
For steady 1-D pipe flow (one inlet and one outlet): 
1) Streamlines are straight and parallel  

 ⇒ p/ρ +gz = constant across CS 
 
2) T = constant ⇒ u = constant across CS 
 

3) define ∫ ⎟
⎠
⎞

⎜
⎝
⎛=α

CS

3

dA
V
V

A
1  = KE correction factor 

  

 ⇒ ∫ α=
ρ

α=
ρ m

2
VA

2
VdAV

2

23
3  

   
 

Lt2

2
2

2
2

p1

2
1

1
1 hhz

g2
Vphz

g2
Vp

+++α+
γ

=++α+
γ

 

 
gmWh pp =  

 
gmWh tt =  

 

=−
−

=
gm

Q
g

uuh 12
L  head loss 

   > 0  represents loss in mechanical energy due to viscosity
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