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Chapter 5 Mass, Bernoulli, and Energy Equations

5.1 Flow Rate and Conservation of Mass

1. cross-sectional area oriented normal to velocity vector
(simple case where V L A)

7 A
_——@U’l: %szﬁ —~—— Y
s

U = constant: Q = volume flux = UA [m/s x m* = m*/s]
U = constant: Q = [UdA
A

Similarly the mass flux = m = [pUdA
A

2. general case

e o
Cs
A= 2Rk = [|V|cos6dA

CS
m= [p(V-n)dA
CS

<.s.
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Q

average velocity: V = N

Example:

At low velocities the flow through a long circular tube, i.e. pipe,
has a parabolic velocity distribution (actually paraboloid of
revolution).

I.e., centerline velocity

Q"L‘:‘:{, s ; ) T = uTl
C) : L -~ \l—;\. . %Q spe
a) find Q and V

Q= [V-ndA = [udA ~
A A

21 R

fudA = | Ju(r)rdodr
A 00

R
= 2nfu(r)rdr
0
dA = 2nrdr
21
u=u(r)andnot 6 .. [dO=2x
0
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2
R
r 1

Q=2n[u,,|1-| =| [dr ==Zu,, 7R"

0 R 2
— 1
V= E U max

Continuity Equation

RTT can be used to obtain an integral relationship expressing
conservation of mass by defining the extensive property B = M
such that g = 1.

B = M = mass
B=dB/dM =1

General Form of Continuity Equation

M_0=2  pav+ [pv-da
dt dt cv cs
or
d

[pV-dA = —— [pd¥

cs dt cv

H_J %K—J
net rate of outflow rate of decrease of
of mass across CS mass within CV

Simplifications:
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1. Steady flow: _d [pdV¥ =0
dt cv

2. V = constant over discrete dA (flow sections):

[pV-dA=3pV-A
CS CS

3. Incompressible fluid (p = constant)

d
Jv-da=——[dv conservation of volume
CS dt Ccv

4. Steady One-Dimensional Flow in a Conduit:
>pV-A=0
CS

—p1ViA1 + poV A, =0

forp=constant Q;=Q;

Some useful definitions:

Mass flux m=[pV-dA
A

Volume flux Q=[V-dA
A

Average Velocity V=Q/A
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Average Density p= % [pdA

Note: m=#pQ unless p = constant

Example
f{ D=y
*Steady flow
*V1'2'3 =50 fpS
@-» *@ ~ V varies linearly
Q=av||

from zero at wall to
Vmax at pipe center
*flnd m41 Q41 Vmax

0 *water, pw = 1.94 slug/ft’

jpv-da=0=- fpav _
cs cv m,

, -P1V1A1 - P2V A + p3VsAs Hp j V,dA,=0

p = const. = 1.94 Ib-s° /ft* = 1.94 slug/ft3
M, =p[V,dA, = pV(AL+ As—Ag)  Vi=V,=Va=V=50f/s

=19 50x (12 4+ 22 ~1.52)
144774

= 1.45 slugs/s
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=S

feT Vo
vde
Q4= 5 o.75 ft'/s @,

Ad
A4

velocity profile

=

0 2T r
= V... |1—— |rdOdr
o= vl s
- _ dA,

—~—

V4 * V4(9)

r.O
=27 |V pax [1—Lerr
0 o

Vi=2=

r 2 5

=21V |:r — r_:|dr A TErO
rO

max I
rO
0 ]

0

f'o
r3

3r,

I,2
= ZTCVmaX ?
0
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5.2 Mechanical Enerqgy, Efficiency, Bernoulli Equations,
Application, and Limitations

Assume irrotational, inviscid, and incompressible flow = ideal
flow theory

Also, assume steady flow

NA=VxV=0=V=Vop Irrotational

a=-V(plp+gz), V-V=0 inviscid, incompressible
0

a=V -VV=VHV .V + Vg (VxV) steady

= V,\/? VizV-V

vive_ —V(E + gzj
2 p

V(EV2 +E+gzj =0
2 p

i.e., p+Y¥%pV?+yz=B = constant
Py + YopVi® +y21 = Py + YpVo© + 72
Also, from continuity and irrotational

V. V=0 V=vp= 201 905, 90k
oXx oy o0z

V-Vo=0 ¢ = velocity potential
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Vip =0 i.e., governing differential
equation for ¢ is Laplace equation
Application of Bernoulli’s Equation

Stagnation Tube

BGURE 5.5
;hnarfanmbe.
at” V=0
4 Vs
+p—2=p,+p—= Z1=1
Py +p 5 P, +p > 1= 12
p, =vd V,=0
V2 =5(p., — 2
1 p(pz p;) 0, =y(r+d) gage

2

p Limited by length of
V, =./2g/ tube and need for free
surface reference
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Pitot Tube
Stagnaticn pressure tap— ] L
N
Static pressure tap
@
¥ \‘ f//
w
FIGURE 5.6 7
Pitot tube, @
0
V2 2
&+ZZ+Z _&+—2+z2
\’Y Yg J \’Y g Y,
at” at”
1/2
Py P> _
Y Y
hy h,

h = piezometric head
V=V, =.29(h,—h,) hy — h, from manometer
or pressure gage

for gas flow ap >> AZ

Y

v 2%

p
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5.3 Derivation of the Energy Equation

The First Law of Thermodynamics

The difference between the heat added to a system and the work
done by a system depends only on the initial and final states of
the system; that is, depends only on the change in energy E:
principle of conservation of energy

AE=Q-W

AE = change in energy
Q = heat added to the system
W = work done by the system

E = E, + Ex + E, = total energy of the system

'\ ¥potential energy
Kinetic energy

Internal energy due to molecular motion

The differential form of the first law of thermodynamics
expresses the rate of change of E with respect to time

dE . .
—=Q-W
dt \

\ rate of work being done by system

rate of heat transfer to system
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Energy Equation for Fluid Flow
The energy equation for fluid flow is derived from Reynolds
transport theorem with

Bsysem = E = total energy of the system (extensive property)

B = E/mass = e = energy per unit mass (intensive property)

Su+ect+e,
de d
a = a.fcv pedV + Icspey -dA

.. d
Q—W:ajcvp(u+ek +ep)dV+jCSp(u +e, +e,)V-dA

This can be put in a more useable form by noting the following:

_ Total KEof masswith velocityV ~ AMV?/2  V?

e 2 _
K mass AM 2 v M
E AVZ :
p Y
e. = = =0z for E, due to gravity onl
" AM ~ pAv. g (for E, gravity only)
2 2
Q—W=%jcvp(v7+gz+quV+jCSp(V7+gz+u]y-d£\

AN

rate of work rate of change flux of energy
done by system of energy in CV out of CV
(ie, across CS)

rate of heat
transfer to sysem
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Rate of Work Components: W =W, + W,

For convenience of analysis, work is divided into shaft work W
and flow work Wj

W; = net work done on the surroundings as a result of
normal and tangential stresses acting at the control
surfaces

- Wf pressure + Wf shear

W, = any other work transferred to the surroundings
usually in the form of a shaft which either takes
energy out of the system (turbine) or puts energy into
the system (pump)

Flow work due to pressure forces Wys, (for system)
Ala= Ny e
N

Note: here V' uniform over A

System at time t
Work = force x distance
at 2 W, = p,A, x VAt  (on surroundings)
rate of work= W, =p,A,V, =p,V, A,

neg. sign since pressure atl Wi =-piA; x V1AL
force on surrounding W, =p,V;-A
fluid acts in a direction

opposite to the motion

of the system boundary
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In general,

Wfp:py‘A

for more than one control surface and V not necessarily uniform
over A:

Wfp - J-CS py ) % = ICS P(Ejy ) %

Wi = Wfp + Weshear

Basic form of energy equation

Q o Ws o Wfshear o J-CS p(gjy ’ %

2 2
_d p V—+gz+u dV + |.<p V—+gz+u V.-dA
dt CcVv 2 CS 2

L d V?
Q_Ws — VWishear — ajcvp[7+gz + UjdV

Usually this term can be V2 D
eliminated by proper choice of +ICSp —+gz+u+-— [V-dA
CV, i.e. CS normal to flow lines. 2 p

Also, at fixed boundaries the
velocity is zero (no slip
condition) and no shear stress
flow work is done. Not included
or discussed in text!

——
h=enthalpy
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5.4 Simplified Forms of the Energy Equation

Energy Equation for Steady One-Dimensional Pipe Flow
Consider flow through the pipe system as shown

s

Ll y

Energy Equation (steady flow)
2
Q-W, :jcsp(V?+gz+E+uJy-d_A
p

Q- W, +IA1(F:)1+gzl+u1jp1VA + [, p1
= (p2+gz +uj VLA, +], P22 dA
Ao\ o 2 P2 A, 2

*Although the velocity varies across the flow sections the
streamlines are assumed to be straight and parallel;
consequently, there is no acceleration normal to the streamlines
and the pressure is hydrostatically distributed, i.e., p/p +gz =
constant.

*Furthermore, the internal energy u can be considered as
constant across the flow sections, i.e. T = constant. These
quantities can then be taken outside the integral sign to yield
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L \VA
Q-W;+ (% +0Z; + U1JPIA1 VidA, + ij171dAl

P2 V5
= (? +0Z; + UszfAz VL,dA; +p]a, 7dA2

Recallthat Q=[V-dA=VA

So that p[V-dA=pVA=m mass flow rate
3 —3 —2
Define: ij—dA:apVA:av m
A 2 2 2

H_J H_J — .
K.E. flux K.E. flux for V=V =constant across pipe

3
l.e., o= 1 j(gj dA = Kinetic energy correction factor
AAlV

< . [py Vil [p, Va |
Q-W+ —+gzl+u1+al7 m= —+gzz+u2+a27 m
p p

1 vZ 2
E(Q—W)+&+gzl+U1+OL171=&+QZZ +U, +0c272

note that: a =1 if V iIs constant across the flow section
a > 1i1f V is nonuniform

|
Lj
e
b
e

laminar flow o = 2 turbulent flow o = 1.05 ~ 1 may
be used
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Shaft Work

Shaft work is usually the result of a turbine or a pump in the
flow system. When a fluid passes through a turbine, the fluid is
doing shaft work on the surroundings; on the other hand, a pump
does work on the fluid

W, =W, -W,  where W, and W, are

magnitudes of power (work)

time

Using this result in the energy equation and deviding by g
results in

W —2 . —2 _ .
.—'O+&+zl+oc1v1 :Wt+|02+22+oc2 Vo  Up=Uy Q
mg vy 2 mg vy 2 g mg

——mechanical part——————— thermal part—

Note: each term has dimensions of length
Define the following:

Wp Wp Wp
" mg pQg  ¥Q
ht:ﬂ

mg
A e Q _ headloss

9 mg
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Head Loss

In a general fluid system a certain amount of mechanical energy
Is converted to thermal energy due to viscous action. This effect
results in an increase in the fluid internal energy. Also, some
heat will be generated through energy dissipation and be lost
(i.e. -Q). Therefore the term

/ from 2" law

h, ="2"t Q >0
g gm

represents a loss in
mechanical energy due
to viscous stresses

Note that adding Q to system will not make h, = 0 since this

also increases Au. It can be shown from 2" law of
thermodynamics that h, > 0.

Drop — over V and understand that \V in energy equation refers
to average velocity.

Using the above definitions in the energy equation results in
(steady 1-D incompressible flow)

2 2
&+a1\2/—1+21+hp =|O—2+oc2\2/—2+22+ht+hL
& g Y g -

form of energy equation used for this course!
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Comparison of Energy Equation and Bernoulli Equation:

Apply energy equation to a stream tube without any shaft work

Vo
Vl - Infinitesimal stream tube = oL;=0l,=1
3.
Py 2 P vy
Energy eq : +zg+z = y+2g+22+hL

elf h, =0 (i.e., u = 0) we get Bernoulli equation and
conservation of mechanical energy along a streamline

eTherefore, energy equation for steady 1-D pipe flow can be
interpreted as a modified Bernoulli equation to include viscous
effects (h.) and shaft work (h, or hy)
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5.5 Concept of Hydraulic and Energy Grade Lines

2 2
&+alv—1+zl+hp =|O—2+oc2V—2+22+ht+hL
Y 29 Y 29

3
Define HGL = P42
! >
P 2

CtzZ4o—
Y 29 )

point-by-point
application is
graphically

EGL = displayed

HGL corresponds to pressure tap measurement + z
EGL corresponds to stagnation tube measurement + z

oS, — EGL=HGLIfV=0

EGL, =EGL, +he S i & [
forhp=h;=0

GL |_ V2
hL = f-——
D 2g

o/

HGL A

Lo
™~

i.e., linear variation in L for D,
V, and f constant

L
Vi
w2
2g

—~ f = friction factor
) = T f=1f(Re)

FIGURE 7.4 1
EGL and HGL in a l

straight pipe. Datum

pressure tap: P2 _ h
Y

Vi _

29

P2
Y

stagnation tube: +a

EGLl + hp - EGL2 + ht + h|_
EGL2 - EGL1 + hp — ht — hL
H_J
abrupt

change due
to h, or h;

h

>

h = height of fluid in
tap/tube

T v

D 29
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Helpful hints for drawing HGL and EGL

1.  EGL =HGL + aV?2g=HGL for V =0

2
2.&3. h :f%V— in pipe means EGL and HGL will slope

29
downward, except for abrupt changes due to h; or hj,

EGL

FIGURE 7.5 _
Rise in FGL and HGL Abrupt rise in
EGL equal

due to pump. i
B
HGL and EGL
2 2
Vi Py Vv,
— 4zt =" +Zy+—+h
k. head given
Zg Y 2 g up to turbine
HGI—Z = EGL]_ - hL
2
V -
h| = ——for abrupt expansion
Zg Gradual expansion of conduil allows R
o S

due to turbine. hence the HGL approaches the EGL.
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4.p=0=HGL=z

L V?
5.forh, =f ——— =constantxL . .
D 2g l.e., linearly
\ Increased for
EGL/HGL slope downward |ncrea5|ng2L with
fVv

r\lnr\n

6. for change in D = change in V

.
e. VI AI=V,A o
' TCEZ ? Zan change in distance between
V,—Lt=V,—2% = HGL & EGL and slope
24 , 4 change due to change in h,

Va
Large :?Tg— betause
smaller pipe here

Steeper EGL and HGL
because greater i,
per length of pipe

Head loss

af outlet
il EGL and HGL
Y ~
- e e ]
T h— |

EIGURE 7.8 .
Change in EGL and HGL
due to change in

diameter of pipe.
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7. IfHGL <zthenp/y<0 i.e., cavitation possible

HGL and EGL

P P
Positive 7 Negative ¥

Ve
FGURE?7.9 . . 2
Subatmospheric pressure
z=0

when pipe is above HGL.

condition for cavitation:

N
P=Pys = 2000—2
m
N
gage pressure Py, g =Pa —Pam ® ~Pam = _100’00()?
Pyag ~—-10m
Y

\ 9810 N/m?
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Summary of the Energy Equation

The energy equation is derived from Reynolds Transport

Theorem with
B = E = total energy of the system

B =e=E/M =energy per unit mass

=u+ lV2+gz

T

internal KE PE

dEe d

— =— [pedV+ [peV-dA=Q-W

dt dtcjvp stp V-0A=2
heat work
add  done

Neglected in text presentation

W:WS+W|D+W‘V

o 1N\

shaft work
done on or pressure Viscous stress
by system  work done work on CS
(pump or on CS
turbine)
W, = [pV-dA=[p(p/p)V-dA
CVv CS

W, = W, — W,

from 1% Law of
Thermodynamics
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Q-W, +W, =& [pedv+ [p(e-+p/e)V-dA
dtcv cs

e:u+%vz+gz

For steady 1-D pipe flow (one inlet and one outlet):
1)  Streamlines are straight and parallel
= p/p +gz = constant across CS

2) T =constant = u = constant across CS

3
3) define o _1 | (Xj dA = KE correction factor
Acs\V

2

pV V

= Pivida=o - A=om
5 2
_ Thermal
h I
mechanical energy . / energy
2 V&
&+o¢ 4z, 4h, =P2 10,22 47, 4h +h
1 1 ? Lot
o Note: each term
=W, /mg has
. units of length
V Is average velocity
A (vector dropped) and
h, =42 g 1_ o = head loss corrected by o

> 0 represents loss in mechanical energy due to viscosity
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W8 4 Epergy Considerations in Steady Flow
4.15 METHOD OF SOLUTION OF FLOW PROBLEMS

For the solutions of probiems of liquid flow there are two fundamental equa-
tions, the equation of continuity {3.10} and the energy equation in one of the
forms from Eqs. (4.5) to (4.10), The following procedure may be employed:

1. Choose a datum plane through any convenient point.

2. Note at what sections the velocity is known or is to be assumed. If at any
point the section area is great compared with its value elsewhere, the velocity
head is s0 small that it may be disregarded.

3, Note at what points the pressure is known or is to be assumed. In a body of
liquid af rest with a free surface the pressure is known at every point within
the body. The pressure in a jet is the same as that of the medium surrounding
the jet.

4. Note whether or not there is any point where all three terms, pressure, ele-
vation, and velocity, are known.

5. Note whether or not there is any point where there is only one unknown
quantity.

it is generally possible Lo write an energy equation that wil} fulfill conditions
4 and 3. If there ate two unknowns in the equation, then the continuity equation
must be used aiso. The application of these principles is shown in the foilowing
itlustrative examples.

Huserative Example 4.7 A mipeline with 2 pump leads to a nozzle 28 shown in the ACCOMmMPAnY-
ing fgure Figd the flow rate when the nump develops a head of 30 fi. Assume that the head loss in
the &-in-dismeter pipe may be expressed by h, = TFE129, whils the head loss in the d-in-diameter pipe
is iy = 127}/29. Sketch the energy line and bydraulic grade line, and find the pressure head at the
suction side of the pump.

Select 1he datum as the elevation of the water susfage i the reservoir. Note from continuity that

Vo = {§7F, = 0251, and V. = (FP ¥, = 05631,

where 1, 13 the jet velocity. Writing an epergy cquation from the surface of the reservoir to the jer,

yl VI
'(z, +%+4)mkan+h,—hhﬂ33+?+i
I

2g i
'|;r2 Vl V.i
P+0+0 -5 480 - 122 = 1040wt

2g g i

Express ail velacities in terms of ¥,

02517 B.56835° Ki

MME._._ﬂ.,_gg_ iz.{_u_a_?:",,..,.—“m+_._i

2g 23 2g

by = 297 ps

3 I
G= Ay = g(ﬁ) 207 = 145 cfs

iy
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4.15 Method of Solution of Flaw Problems 109

K Head toss in sustion pipe:

Pl 2g g

% Head loss in discharge pipe:

¥i o 120.563%,3
by w 120s < 2RO
g g

- ¥ vi ¥}
Zenrn Zodin Zonsehxoon
g 2g g

The energy bne and hydraulic grade Hne are drawn on the figure 10 scale. Inspection of the fgurs
shows 1hat the pressure head on the suction side of the pump i8 ppi7 = 148 1. Likewise, the pressure
head a1 any poini in the Fipe may be found if the figure is to scale.

v

S
Elev 80
oo

I" diam jat\_z

Biev, 70

A
A’ “/-\{‘3

= fs Ve 2 s
iHestrative Exsmple 4.7 o ....?‘* - R T e =D P 44.%
e TR WLTTS

Hbayteative Example 48 Given the two-dimensional flow as shown in the accorpanying figure,
Determine the flow rate. Assume no head toss.

*

4 L M )

2 : ) LT F9N
Vl'fzg ' L ),JEE—’?J‘-‘} ;_% = ?"j""-—""‘“% L
e ? A

V:f.'!g . \'!l.%'j .‘\%253

20 m i LS
Il B e . I
08m
8 alte
i i “

% Hustracive Exampie 4.8



