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Chapter 5 Mass, Bernoulli, and Energy Equations
5.1 Flow Rate and Conservation of Mass
1. cross-sectional area oriented normal to velocity vector

(simple case where V ( A)
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FIGURE 7.6

Drop in EGL and HGL
due to turbine.

Gradual expansion of conduit allows
kinetic energy to be converied to pressure
head with much smaller &, at the outiet;
hence the HGL. approaches the EGL.

k. head given
up to turbine





U = constant:  Q = volume flux = UA [m/s ( m2 = m3/s]

U ( constant:  Q = 
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Similarly the mass flux = 
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2. general case
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average velocity:  
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Example:

At low velocities the flow through a long circular tube, i.e. pipe, has a parabolic velocity distribution (actually paraboloid of revolution).
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i.e., centerline velocity
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a) find Q and 
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dA = 2(rdr





u = u(r) and not ( ( 
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Q = 
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Continuity Equation
RTT can be used to obtain an integral relationship expressing conservation of mass by defining the extensive property B = M such that ( = 1.



B = M = mass



( = dB/dM = 1

General Form of Continuity Equation
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Simplifications:

1. Steady flow:  
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2. V = constant over discrete dA (flow sections):
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3. Incompressible fluid (( = constant)
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conservation of volume

4. Steady One-Dimensional Flow in a Conduit:
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((1V1A1 + (2V2A2 = 0

for ( = constant
Q1 = Q2
Some useful definitions:

Mass flux



[image: image22.wmf]ò

×

r

=

A

dA

V

m

&


Volume flux
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Average Velocity
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Average Density
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Note:  
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*Steady flow

*V1,2,3 = 50 fps

*@ ( V varies linearly  

  from zero at wall to 

  Vmax at pipe center

*find 
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i.e.,  -(1V1A1 - (2V2A2 + (3V3A3 + (
[image: image29.wmf]ò

4

A

4

4

dA

V

= 0



( = const. = 1.94 lb-s2 /ft4 = 1.94 slug/ft3
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 = 1.45 slugs/s

Q4 = 
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velocity profile
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Vmax = 
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5.2 Mechanical Energy, Efficiency, Bernoulli Equations, Application, and Limitations
Assume irrotational, inviscid, and incompressible flow = ideal flow theory

Also, assume steady flow

( = ( ( V = 0  (  V = ((

irrotational

a = ( ((p/( + gz),  ( ( V = 0 

inviscid, incompressible

[image: image128.jpg]MGURE §..§
Wagnation fube.

,
:









0

a = V ((V = (½V ( V + V ( (( ( V)

steady

  = (½V2

V2 = V ( V

[image: image37.wmf]÷

ø

ö

ç

è

æ

+

r

-Ñ

=

Ñ

gz

p

V

2

1

2



[image: image38.wmf]0

gz

p

V

2

1

2

=

÷

ø

ö

ç

è

æ

+

r

+

Ñ


i.e.,  p + ½(V2 + (z = B = constant

p1 + ½(V12 + (z1 = p2 + ½(V22 + (z2 

Also, from continuity and irrotational


( ( V = 0


V = (( = 
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( ( (( = 0

( = velocity potential

(2( = 0


i.e., governing differential 

equation for ( is Laplace equation

Application of Bernoulli’s Equation
Stagnation Tube
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at (  V = 0
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z1 = z2
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Pitot Tube
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V1 = 0
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h = piezometric head
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h1 – h2 from manometer 

or pressure gage

for gas flow 
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5.3 Derivation of the Energy Equation
The First Law of Thermodynamics
The difference between the heat added to a system and the work done by a system depends only on the initial and final states of the system; that is, depends only on the change in energy E: principle of conservation of energy



(E = Q – W

(E = change in energy

Q = heat added to the system

W = work done by the system

E = Eu + Ek + Ep = total energy of the system

[image: image138.png]FIGURE 7.5 EGL

Rise in EGL and HGL Abrupt rise in

EGL equal
due to pump. o4,




[image: image139.png]HGL and EGL £GL

V2
Large 3 because
smaller pipe here
Steeper EGL and HGL

because greater 4,
per length of pipe

Head ioss
at outlet

~ EGL and HGL

~e
/

FIGURE 7.8
Change in EGL and HGL
due to change in
diameter of pipe.







potential energy




kinetic energy
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The differential form of the first law of thermodynamics expresses the rate of change of E with respect to time
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Energy Equation for Fluid Flow

The energy equation for fluid flow is derived from Reynolds transport theorem with

Bsystem = E = total energy of the system (extensive property)

( = E/mass = e = energy per unit mass (intensive property)

   = u + ek + ep

[image: image51.wmf]ò

×

r

+

ò

r

=

CS

CV

dA

V

e

V

ed

dt

d

dt

dE



[image: image52.wmf]ò

×

+

+

r

ò

+

+

+

r

=

-

CS

p

k

CV

p

k

dA

V

)

e

e

u

(

V

d

)

e

e

u

(

dt

d

W

Q

&

&


This can be put in a more useable form by noting the following:
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(for Ep due to gravity only)
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rate of work


rate of change

flux of energy


done by system

of energy in CV

out of CV










(ie, across CS)

rate of heat

transfer to sysem

Rate of Work Components:  
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For convenience of analysis, work is divided into shaft work Ws and flow work Wf
Wf = net work done on the surroundings as a result of 

 normal and tangential stresses acting at the control 

 surfaces

     = Wf pressure + Wf shear
Ws = any other work transferred to the surroundings 

 usually in the form of a shaft which either takes 

 energy out of the system (turbine) or puts energy into 

 the system (pump)

Flow work due to pressure forces  Wf p  (for system)













Work = force ( distance






at 2
W2 = p2A2 ( V2(t

rate of work( 
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at 1
W1 = (p1A1 ( V1(t 
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In general,
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for more than one control surface and V not necessarily uniform over A:
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Basic form of energy equation
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h=enthalpy

5.4 Simplified Forms of the Energy Equation
Energy Equation for Steady One-Dimensional Pipe Flow
Consider flow through the pipe system as shown

Energy Equation (steady flow)
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*Although the velocity varies across the flow sections the streamlines are assumed to be straight and parallel; consequently, there is no acceleration normal to the streamlines and the pressure is hydrostatically distributed, i.e., p/( +gz = constant.

*Furthermore, the internal energy u can be considered as constant across the flow sections, i.e. T = constant.  These quantities can then be taken outside the integral sign to yield
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Recall that
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mass flow rate

Define:
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K.E. flux              K.E. flux for V=
[image: image70.wmf]V

=constant across pipe

i.e.,
      
[image: image71.wmf]ò

÷

ø

ö

ç

è

æ

=

a

A

3

dA

V

V

A

1

 = kinetic energy correction factor


[image: image72.wmf]m

2

V

u

gz

p

m

2

V

u

gz

p

W

Q

2

2

2

2

2

2

2

1

1

1

1

1

&

&

&

&

÷

÷

ø

ö

ç

ç

è

æ

a

+

+

+

r

=

÷

÷

ø

ö

ç

ç

è

æ

a

+

+

+

r

+

-


[image: image73.wmf](

)

2

V

u

gz

p

2

V

u

gz

p

W

Q

m

1

2

2

2

2

2

2

2

1

1

1

1

1

a

+

+

+

r

=

a

+

+

+

r

+

-

&

&

&


note that:

( = 1 if V is constant across the flow section

( > 1 if V is nonuniform

 laminar flow ( = 2
       turbulent flow ( = 1.05  ( 1 may 

    be used

Shaft Work
Shaft work is usually the result of a turbine or a pump in the flow system.  When a fluid passes through a turbine, the fluid is doing shaft work on the surroundings; on the other hand, a pump does work on the fluid
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where 
[image: image75.wmf]t

W

&

 and 
[image: image76.wmf]p

W

&

 are






magnitudes of power
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Using this result in the energy equation and deviding by g results in 
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mechanical part


    thermal part

Note: each term has dimensions of length

Define the following:
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Head Loss

In a general fluid system a certain amount of mechanical energy is converted to thermal energy due to viscous action.  This effect results in an increase in the fluid internal energy.  Also, some heat will be generated through energy dissipation and be lost (i.e. -
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).  Therefore the term







from 2nd law
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Note that adding 
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 to system will not make hL = 0 since this also increases (u.  It can be shown from 2nd law of thermodynamics that hL > 0.

Drop ( over 
[image: image85.wmf]V

 and understand that V in energy equation refers to average velocity.

Using the above definitions in the energy equation results in (steady 1-D incompressible flow)
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    form of energy equation used for this course!

Comparison of Energy Equation and Bernoulli Equation:

Apply energy equation to a stream tube without any shaft work

Energy eq :
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(If hL = 0 (i.e., ( = 0) we get Bernoulli equation and conservation of mechanical energy along a streamline

(Therefore, energy equation for steady 1-D pipe flow can be interpreted as a modified Bernoulli equation to include viscous effects (hL) and shaft work (hp or ht)

5.5 Concept of Hydraulic and Energy Grade Lines
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Define 
HGL = 
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EGL = 
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HGL corresponds to pressure tap measurement + z

EGL corresponds to stagnation tube measurement + z



pressure tap:  
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stagnation tube:  
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EGL1 + hp = EGL2 + ht + hL
EGL2 = EGL1 + hp ( ht ( hL

Helpful hints for drawing HGL and EGL

1. EGL = HGL + (V2/2g = HGL for V = 0

2.&3. 
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 in pipe means EGL and HGL will slope 

  downward, except for abrupt changes due to ht or hp


4. p = 0 ( HGL = z

5. for 
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EGL/HGL slope downward

6. for change in D ( change in V


 i.e.
V1A1 = V2A2
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7.  If HGL < z then p/( < 0 
i.e., cavitation possible


condition for cavitation:
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Summary of the Energy Equation
The energy equation is derived from Reynolds Transport Theorem with 

B = E = total energy of the system

( = e = E/M  = energy per unit mass


 = u + 
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For steady 1-D pipe flow (one inlet and one outlet):

1) Streamlines are straight and parallel 


( p/( +gz = constant across CS

2) T = constant ( u = constant across CS

3)
define
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 head loss

   > 0  represents loss in mechanical energy due to viscosity

[image: image113.png]108 4 Energy Considerations in Steady Flow
415 METHOD OF SOLUTION OF FLOW PROBLEMS

For the solutions of problems of liquid flow there are two lundamental equa-
tions, the equation of continuity (3.10} and the energy equation in one of the
forms from Eqs. (4.5) to 4.10), The following procedure may be employed:

1. Choose a datum plane through any convenient point.

2. Note at what sections the velocity is known or is to be assumed. If at any
point the section area is great compared with its value elsewhere, the velocity
head is so small that it may be disregarded.

3. Note at what paints the pressure is known or is to be assumed. In a body of
liquid at rest with a free surface the pressure is known at every point within
the body. The pressure in 2 jet is the same as that of the medium surrounding
the jet.

4. Note whether or not there is any point where all three terms, pressure, ele-
vation, and velocity, are known.

5. Note whether or not there is any point where there is only one unknown
quantity.

It is generally possible Lo write an energy equation that wil fulfill conditions
4 and 5. If there are two unknowns in the equation, then the continuity equation
must be used aiso. The application of these principles is shown in the following
illustrative examples.

lustrative Example 4.7 A pipeline with & pump leads to & noczle as shown in the accompany-
ing Agure. £ low rate when the pusmp develops 3 head of 80 1. Assume that the head loss in
the 6-in-diameter pipe may be exprossed by hy = V4729, while the head loss in the d-in-diametet pipe
is i, = 12V4729. Sketch the energy line and hydrastic grade line, and find the pressure head at the
suction side of the pump.

Sglecy the datum as the lovation of the water surfae fn the reservoir. Note from continuity that

Vo= (7% = 025%,  and o= 3PV, = 0563V,

sehere V5 s the jet velocity. Writing an engrg equation from the sarface of the veservois to the jor,

v: vi vi
04040 -5:5480 122104042
2 2 23

Express ail velocities in terms of ¥,

v 56312 3

L N . 7
2 2 2%
¥ = 2971ps

(3

Q= dy¥y = 297 = 145 s
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� EMBED Equation.3  ���





System at time t + (t





� EMBED Equation.3  ���


	      = � EMBED Equation.3  ���














� EMBED Equation.3  ���





Internal energy due to molecular motion 








Note: here � EMBED Equation.3  ��� uniform over � EMBED Equation.3  ���





Limited by length of tube and need for free surface reference





V2 = 0


gage








System at time t





CS





CV





(on surroundings)





neg. sign since pressure force on surrounding fluid acts in a direction opposite to the motion of the system boundary





Usually this term can be eliminated by proper choice of CV, i.e. CS normal to flow lines.  Also, at fixed boundaries the velocity is zero (no slip condition) and no shear stress flow work is done.  Not included or discussed in text!





represents a loss in mechanical energy due to viscous stresses





Infinitesimal stream tube ( (1=(2=1





point-by-point application is graphically displayed





EGL1 = EGL2 + hL


for hp = ht = 0





hL = � EMBED Equation.3  ���


i.e., linear variation in L for D,


V, and f constant





EGL = HGL if V = 0





f = friction factor 


f = f(Re)





h = height of fluid in


      tap/tube





� EMBED Equation.3  ���





abrupt change due to hp or ht





� EMBED Equation.3  ���


HGL2 = EGL1 - hL


� EMBED Equation.3  ���for abrupt expansion





i.e., linearly increased for increasing L with slope � EMBED Equation.3  ���





change in distance between HGL & EGL and slope 


change due to change in hL 





(





from 1st Law of Thermodynamics





work done





heat add� EMBED Equation.3  ���ed





Neglected in text presentation





pressure work done on CS





shaft work done on or by system (pump or turbine)





Viscous stress work on CS





mechanical energy





Thermal energy





Note: each term has 


  units of length





V is average velocity (vector dropped) and 


 corrected by (
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