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Chapter 5 Finite Control Volume Analysis

5.1 Continuity Equation

RTT can be used to obtain an integral relationship expressing
conservation of mass by defining the extensive property B = M

such that g = 1.

B =M = mass
B=dB/dM =1

General Form of Continuity Equation

dM d
—=0=— [ pdV+ [pV-dA
dt dt cv cs
or
d

[pV-dA = - — [pdV

cs dt cv

Y —
net rate of outflow rate of decrease of
of mass across CS mass within CV

Simplifications:

1. Steady flow: 24 [pdv¥ =0

tcv
2. V = constant over discrete dA (flow sections):

[ pV-dA =¥ pV-A
cs cs
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3. Incompressible fluid (p = constant)

d
VA = - — [ dv
dtCV

CS

4. Steady One-Dimensional Flow in a Conduit:

>pV-A=0
CS

—p1iViA1 + paVo A, =0
forp=constant Q;=Q,
Some useful definitions:

Mass flux m=[pV - -dA
A

Volume flux Q=[V-dA
A
Average Velocity VvV =Q/A

: 1
Average Density p = N [pdA

Note: m #pQ unless p = constant

conservation of volume
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Example

¥

f{ D=y
-

*Steady flow
Th\’s *V1,2,3 =50 fpS

*At @, V varies linearly
from zero at wall to
Vmax at pipe center

*find m,, Qs Vimax

0 *water, pw = 1.94 slug/ft’

d
JpV -dA =0=-—/fpdV .
CS Cv m4

i.e., -p1V1A1 - p2V2A2 + p3V3A3 +p IV4dA e 0

A

p = const. = 1.94 Ib-s® /ft* = 1.94 slug/ft’

m, = p_[V4dA 4= pV(Al + A, — A3) V1:V2:V3:V:5Of/3

1.94
= = x50 x — (12 + 27 ~1.5?)
144 4

= 1.45 slugs/s
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Q=m,/p=.75 ft¥/s

= [V,dA,
A4
velocity profile

r,2n r
Qs = [V, |1-— |rdodr
00 ro —

~ dA,
V. # V4(0)

lo

r r
=27 [V o [1— —}rdr
0

21 1] 1
= vamax Iy LE— EJ = —Tmnl
Vmax - 1Q4 = 286 fpS
2

Yo
° v
> vde
5 L?a

A&

(

N= \'M(\"‘ v/(ux " Aﬁ“ = VAvAS
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5.2 Momentum Equation

Derivation of the Momentum Equation

Newton’s second law of motion for a system is

time rate of change = sum of external
of the momentum forces acting on
of the system the system

Since momentum is mass times velocity, the momentum of a
small particle of mass pdV is V pd¥ and the momentum of the
entire system is fsys Vpd¥. Thus,

D
—| veav=>E,

Dt sys
Recall RTT:
DB 0
2= =— | Bpd¥+ | BpVy-dA
Dt at J.y cs
. . . dBSyS .

With Bs,s = MV and g = - =V

D

d
2| vpar=2 zpd¥+j VoV - dA
Dt -[sys ot cv CS
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Thus, the Newton’s second law becomes

d
| voav + | vove-da= Y
cv CcS l
N " net externa
rate of change net rate of flow force acting
of momentum of momentum on the CV
inthe CV through the CS

where,

V is fluid velocity referenced to an inertial frame (non-
accelerating)

Vs is the velocity of CS referenced to the inertial frame
Vr =V — Vs is the relative velocity referencedto CV

Fqy, = ), Fg + X, Fs is vector sum of all forces acting on
e CV

S ™M

Fg is body force such as gravity that acts on the entire
mass/volume of CV

Fs is surface force such as normal (pressure and

viscous) and tangential (viscous) stresses acting on the
CS
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Note that, when CS cuts through solids, Fs may also include
reaction force, Fy

(e.g., the reaction force required to hold nozzle or bend when CS
cuts through the bolts that are holding the nozzle/bend in place)

LE =pA; —pA; + R,

YF,=—-W +R,
R =R,1+ R,j = resultant
force on fluid in CV due to p,,

and t,,, i.e. reaction force on
fluid

Free body diagram
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Important Features (to be remembered)

1) Vector equation to get component in any direction must use
dot product

Carefully define coordinate

X equation system with forces positive in
SF, = a [pud¥+ [puVy -dA positive direction of

*dt gy ce T coordinate axes
y equation

d
> F,=— [pvdV¥+ [pvVy -dA
dt cv cs

Z equation

d
YF, =— JpwdV+ [pwVg -dA
dt cv cs

2) Carefully define control volume and be sure to include all
external body and surface faces acting on it.
~ For example,

2\, * ; (RX1Ry) - re_aCtion
A, __b‘ evy xR P force on fluid
w,
ta (RxRy) = reaction

Pr— .%_th . force on nozzle
{ ‘Q'J(’ l'n
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3) Velocity V and Vs must be referenced to a non-accelerating
Inertial reference frame. Sometimes it is advantageous to use
a moving (at constant velocity) reference frame: relative
inertial coordinate. Note Vr =V — V; is always relative to
CS.

4) Steady vs. Unsteady Flow

d
Steady flow = — [pVdv =0
tcv

5) Uniform vs. Nonuniform Flow

[VpVy -dA =change in flow of momentum across CS
CS

= 2VpVr-A uniform flow across A
S

Vv
f = constant, Vf=0

= 0 for p = constant and for a closed surface
I.e., always use gage pressure
7) Pressure condition at a jet exit

at an exit into the atmosphere jet
pressure must be p,

fa
- — =
——

£
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Applications of the Momentum Equation

Initial Setup and Signs

Q.

O N Gk WM

Jet deflected by a plate or a vane

Flow through a nozzle

Forces on bends

Problems involving non-uniform velocity distribution
Motion of a rocket

Force on rectangular sluice gate

Water hammer

Steady and unsteady developing and fully developed pipe
flow

Empting and filling tanks

10. Forces on transitions

11. Hydraulic jump

12. Boundary layer and bluff body drag
13. Rocket or jet propulsion

14. Propeller
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1. Jet deflected by a plate or vane

Consider a jet of water turned through a horizontal angle

B
L=Vae N T CVand CS are
£ % for jet sothat Fy
and F, are vane
reactions forces
on fluid

X-equation: Y F,

d
Fo=—[pud¥+ [puV.-dA
dt cs

F,=YpuV-A steady flow
Cs

= PV, (=VIA) +pV, (V,A,)

continuity equation: pA1V: = pAV, =pQ forAj = A,
V1 - V2
Fy = pQ(sz — le)

y-equation: ¥ F =F = CZépV\_/-A

Fy = pViy(— AiVi) + pVay(— AVy)
- p Q(VZy - Vly)

for above geometry only
where: "V =Vi Vp =-V5€080 Vo =-Vos8in@ Vi, =0
note: F« and F, are force on fluid
- Fx and -F, are force on vane due to fluid
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If the vane is moving with velocity V,, then it is convenient to
choose CV moving with the vane

l.e., VR =V -V, andV used for B also moving with vane

X-equation: F = [puVy -dA
CS

Fx = pVil-(V —W)1A1] + pVal(V —V))2A]

Continuity: 0= [pV; -dA

Le., p(V-V\)1A1 = p(V-V\)A; =p(V-V,)A

Qrel
FX = p(V-VV)A[VZX - le]
T Qrel
on fluid Vax =(V =Vo)ax | For coordinate system
Vik =(V =V | moving with vane
Power = -F,V, l.e.,=0forV, =0

Fy = pQrei(V2y — Vyy)
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2. Flow through a nozzle

Consider a nozzle at the end of a pipe (or hose). What force is
required to hold the nozzle in place?
LR CV =nozzle
4 and fluid
% Ian v o (RyRy)=
: force required

O K - & to hold nozzle
Assume elth& the plp@velocny or pr_essure% known. in place
unknown (velocity or pressure) and the exit velocity ., ... __
obtained from combined use of the continuity and Bernoulli

equations.

1 2

. 1
Bernoulli: P, +7Z, + Ele —p,+yZ,+ Epvz2 21=2,

L V.2 1 V.2
p,+—pV, =—p
1 2 1 2 2

Continuity: ~ AV: = AV, =0Q

_2p1 I

|
R
JECA]

To obtain the reaction force R, apply momentum equation in x-
direction

Say p; known: V,
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d
> F.=— JupdV¥+ [puV.-dA

dt cv cs _
=y puV- A steady flow and uniform
cs flow over CS

Rx + p1A1 — P2A2 = pVi(-ViA1) + pVa(VLAY)
= pQ(V2 - V1)
Rx = pQ(V2 - Vi) - piAs

To obtain the reaction force R, apply momentum equation in y-
direction

>F,=XpvV-A=0 since no flow in y-direction
CS

Ry—Wi—Wy=0 ie.,R, =W+ Wy

Numerical Example: Oil with S = .85 flows in pipe under
pressure of 100 psi. Pipe diameter is 3” and nozzle tip diameter

s 17

Sy
p=—=1.65
g
V, = 14.59 ft/s °
V, = 131.3 ft/s bid=3
- E(L] v
R, = 141.48 — 706.86 = —569 Ibf al12 ) 2
R, = 10 Ibf = .716 ft°/s

This is force on nozzle
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3. Forces on Bends

Consider the flow through a bend in a pipe. The flow is
considered steady and uniform across the inlet and outlet
sections. Of primary concern is the force required to hold the
bend in place, i.e., the reaction forces Ryand Ry which can be
determined by application of the momentum equation.

”A’L "’.\/r

k\\/\: ‘A,_\JL:'Q

'?uA\ “\DLALU"CQ + Q?& = QQ_&VI,—VW\

Ry, Ry = reaction force on
bend i.e., force
required to hold
bend in place

Continuity: 0=YpV-A=-pV,A, +pV,A,
l.e., Q =constant= V,A, = V,A,

X-momentum: > F, =X puV - -A
P A —p,A,c08 0+R, =pV, (-V,A)+pV,, (V,A,)
- pQ(VZX _le)

y-momentum: ¥ F, =¥ pvV- A
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P,A,Sin0+R, —w—w, =pV, (-V,A)+pV, (V,A,)
= pQ(VZy _Vly)

4. Force on a rectangular sluice gate

The force on the fluid due to the gate is calculated from the x-
momentum equation:

v 4 $\)~'~N4.—'— . I i GA
% Y i |
J’ i J/‘ (,—La_nw.‘.gk s u-:\x.....,\,\
i/
I/ S & c
H [ /\5l ;—_—PF(:VJ: W et 5{.\ A e
- [é —> <
i ’//_T;' . aJ \A = \:J\JJA(\ b/% (‘)\w T oy - F
___T.;__p z“”’“&::-"“““”"*“‘“‘ 2 == = = =% i; A EN

@ ¢..S, ‘L —Z‘=?L&«mv SAaa @
‘})’uw— o> @ wh @ e R
E ‘& \)\ = (AMSLW»* MV\LA’”&: 4€tM & 'x_.’ LN ii
| POT g =Ry

> F, =2XpuV-A

Fi+Fow —Fue —F2 = Pvl(_ V1A1)+ pV, (VzAz)

usually can be neglected
Fow =F, —F + PQ(Vz - V1)+ F/{

y y
= Yf'yzb_y?l'ylerpQ(Vz_VJ
1
Fow = D1ly; = ¥i)+ pQ(V, - Vi) v _Q
- ~ J 1_
y,b
v, -2

y,b
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pQ” ( 11 j
b \y, ¥:
5. Application of relative inertial coordinates for a moving but
non-deforming control volume (CV)

The CV moves at a constant velocity v ., with respect to

the absolute inertial coordinates. If v, represents the
velocity in the relative inertial coordinates that move
together with the CV, then:

Ve =V =V

Reynolds transport theorem for an arbitrary moving deforming
CV.

dBgys
dt

For a non-deforming CV moving at constant velocity, RTT for
incompressible flow:

:%J‘ﬁpd‘v’+ Iﬂp\/_R-ﬂdA
cs

sts 0
i =pI—'BdV+pIﬁ\LR-QdA
dt o, ot 2
1) Conservation of mass
By =M ,and g=1:
dM
——=p [V, -ndA
dt —

For steady flow:
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2) Conservation of momentum
Bsyst =M (E“‘“!cs) and ﬂ = dESyst/dM =V_R+V£

0(Ve +Ves)
dt “LE=r j
For steady flow with the use of continuity:
> E=p[(Ve+Ves )V -ndA

—CS

d[M (v +V )

Example (use relative inertial coordinates):.

dV + p [ (Vg +Vq )V

R —

-ndA

Ex) A jet strikes a vane which moves to the right at constant velocity v. on a
frictionless cart. Compute (a) the force r, required to restrain the cart and (b)
the power p delivered to the cart. Also find the cart velocity for which (c) the

force r, is a maximum and (d) the power p is a maximum.

P Vi 4
— V.= constant
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Solution:

Assume relative inertial coordinates with non-deforming CV i.e. CV moves
at constant translational non-accelerating

VCS == uCS/i + vcsj + Wcsk = Vci

then V ; =V -V s . Also assume steady flow v = v(® with p = constant and neglect
gravity effect.

Continuity:

Bernoulli without gravity:

o 1 ) o 1 )
/pl/ +EpVR1:)}2/ +EpVR2

VRl :VRZ
Since PV AL = PV, A,
A1 = Az = Aj

Momentum:
2E=p| VgVg-ndA

cs~

> Eo=-F, = pj ViaVi - A
cS -

—F, = pVg 1(=Vz141) + pVp > (Vz245)

O=pj Vi -ndA
c

e
—pVr1A1 + pVroA2; =0
Vrid1 = Vpa Ay = (VJ - Vc)Aj

VR1=VR,1=V;—V¢
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—Fe = p(V; = Ve)[=(V; = Ve) 4] + p(V; = Ve) cos 6 (V; — Ve )4;

F, = p(V, = V)" 4[1 — cos 6]

Power =V_.FE, = VCp(Vj — VC)ZA]-(l —cos @)

Fepax = PV?Aj(1—cosB), V=0
o
> — =
max dVC

P =Vep(V? - 2V.V; + VZ)A;(1 — cos 6)
= p(V2Ve — 2V2V; + V#)A;(1 — cos 6)

dP
e p(V2 —4V.V; +3V2)A;(1—cos6) = 0

3VZ —4VVe + V=0

2 2
+4V; + \/16]/]- — 12V,

V. = _ AV 2V
¢ 6 6
V.
Ve=7
V. 2V
Poax =§]p(?j) A;(1 — cos )

4
= EVJ-BpA]-(l —cos 0)
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5.3 Energy Equation

Derivation of the Energy Equation

The First Law of Thermodynamics

The difference between the heat added to a system and the work
done by a system depends only on the initial and final states of
the system; that is, depends only on the change in energy E:
principle of conservation of energy

AE=Q-W

AE = change in energy
Q = heat added to the system
W = work done by the system

E = E, + Ex + E, = total energy of the system

\ ¥ potential energy
Kinetic energy

Internal energy due to molecular motion

The differential form of the first law of thermodynamics
expresses the rate of change of E with respect to time

dE : :
— Q _ W
\ \ rate of work being done by system

rate of heat transfer to system

dt
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Enerqgy Equation for Fluid Flow

The energy equation for fluid flow is derived from Reynolds
transport theorem with

B,ysem = E = total energy of the system (extensive property)

B = E/mass = e = energy per unit mass (intensive property)
=0 +e+ €p

dE d
E = EICV pedV+ jCSpe\_/-dA

. . d A A
Q-W = ajcvp(u +e, +ep)dv—+jcsp(u +e, +e )V -dA

This can be put in a more useable form by noting the following:

Total KE of mass with velocity V.= AMV 12 V? )
mass AM 2

E
p_YAVZ _ 9z (for E, due to gravity only)

ep =
AM pAV

.- d (v? n (v? )
-W = — pL—+gz+quV—+J' pL—+gz+uJ\L-d_A
dt CcVv Cs

\ TN "
rate of work rate of change flux of energy

done by system of energy in CV out of CV
(ie, across CS)

»
>

rate of heat
transfer to sysem
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Rate of Work Components: W = W_ + W,
For convenience of analysis, work is divided into shaft work W
and flow work Wk

W; = net work done on the surroundings as a result of
normal and tangential stresses acting at the control
surfaces

- Wf pressure + Wf shear

W, = any other work transferred to the surroundings
usually in the form of a shaft which either takes
energy out of the system (turbine) or puts energy into
the system (pump)

Flow work due to pressure forces Ws, (for system)
A%y = Ny >z
_‘il.

- Note: here V uniform over A
> Va2

System at time t + At

System at time t
Work = force x distance
at2 W, =p,A; x VLAt  (on surroundings)
rate of work= W, =p,A,V, =p,V, A,

neg. sign since pressure atl Wi =-pA; x V1AL
force on surrounding W, =p,V, A,
fluid acts in a direction

opposite to the motion

of the system boundary
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In general,
Wfp =pV-A

for more than one control surface and V not necessarily uniform
over A:

Basic form of energy equation

Q _Ws _Wfshear - csp(gj!'d—A

d (v? ) % )
= — pL—+gz+quV—+J. pL—+gz+uJ\L-d_A
dt Ccv 2 CS 2

SR d (v? )
Q-W. -W/ .. =—| p|—+09z+U |dV
atter?| 2 )

Usually this term can be (v 2 0 \
eliminated by proper choice of + pl—+9gz+0G+— |V -dA
CV, i.e. CSnormal to flow lines. cs L 2 o, J -
Also, at fixed boundaries the e

velocity is zero (no slip h=enthalpy
condition) and no shear stress

flow work is done. Not included

or discussed in text!
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Simplified Forms of the Energy Equation

Enerqgy Equation for Steady One-Dimensional Pipe Flow

Consider flow through the pipe system as shown

PG

Energy Equation (steady flow)

| O

S A VA P
Q-W,=| p|—+09z+—+U0|V-dA
s 2 o)
. . 3
Q—WS+.'A1{%+ gzl+L]1j,01V1A1+J‘A1 '01;/1 dA
—j [—Jrgz +4, Jpzv j 22dA
o,

*Although the velocity varies across the flow sections the
streamlines are assumed to be straight and parallel;
consequently, there is no acceleration normal to the streamlines

and the pressure is hydrostatically distributed, i.e., p/p +gz =
constant.
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*Furthermore, the internal energy u can be considered as
constant across the flow sections, i.e. T = constant. These
quantities can then be taken outside the integral sign to yield

3

Q-W, +{%+ gz, + GlJpJAlvldAlJr ,o_[}\l\%dAl

3

(p, ) V,
L; 9z, +qudeA +pj —2dA,

Recallthat Q=[V.dA =VA

So that p[V-dA =pVA =m mass flow rate
V3 VAV
Define: p j—dA . =o—Mm
K.E. flux K.E. flux for V=V =constantacross pipe
3
: 1 (V o .
Le., o=— j[:] dA = Kinetic energy correction factor
o v ( v
Q-W +L&+ gz, + 0, + a, —1Jn'"| :L&+ 9z, +U, + a, —ZJrﬁ
Yo, 2 Yo, 2
—.(Q—W) p+gz +0, +a, 1:|O—+gz +4, +a—2
yo, 2 yo, 2
Note that: o = 1 1f V is constant across the flow section

a > 1 1f V is nonuniform

——

laminar flow oo = 2 turbulent flow o =1.05 ~ 1 may be used
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Shaft Work

Shaft work is usually the result of a turbine or a pump in the
flow system. When a fluid passes through a turbine, the fluid is
doing shaft work on the surroundings; on the other hand, a pump
does work on the fluid

W, =W, - W, where W, and W are

time
Using this result in the energy equation and deviding by g
results in

magnitudes of power (Work j

V. W V., 4, -
— Lz a2 :.t+p2+22+052 2 4 2 Q9
mg y 2. mg vy 2 g mg
mechanical part thermal part

Note: each term has dimensions of length
Define the following:

Wt
h,=—=t
mg
G, -4, Q
h =-2 1—,theadloss.
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Head Loss
In a general fluid system a certain amount of mechanical energy
Is converted to thermal energy due to viscous action. This effect
results in an increase in the fluid internal energy. Also, some
heat will be generated through energy dissipation and be lost
(i.e. -Q). Therefore the term

from 2™ law

represents a loss in
h, = -—>0 mechanical energy due
to viscous stresses

Note that adding Q to system will not make h_ = 0 since this

also increases Au. It can be shown from 2™ law of
thermodynamics that h, > 0.

Drop — over Vv and understand that V in energy equation refers
to average velocity.

Using the above definitions in the energy equation results in
(steady 1-D incompressible flow)

2 2
P \4 p \Y
a4z vh ="t do, 4z, +h +h

2 2
( g Y g /

form of energy eqlMJsed for this course!
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Comparison of Enerqy Equation and Bernoulli Equation

Apply energy equation to a stream tube without any shaft work

b g Tz
S
/
Infinitesimal stream tube = al;=0L=1

Y ‘,

2

Y% v/
Energy eq : IO—1+—1+21:'D—2+—2+22 +h,
Y 29 Y 29

elf h. =0 (i.e., u = 0) we get Bernoulli equation and
conservation of mechanical energy along a streamline

eTherefore, energy equation for steady 1-D pipe flow can be
interpreted as a modified Bernoulli equation to include viscous
effects (h.) and shaft work (h, or hy)

Summary of the Energy Equation

The energy equation is derived from RTT with

B = E = total energy of the system

B =e=E/M =energy per unit mass
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= +£V2+gz
2
]

internal KE PE

de d : :
— = — [pedV+ [peV-dA =Q - W from 1% Law of
et dtcv cs  t  Thermodynamics
heat  work
add  done

D, V!

Neglected in text presentation

W= W+ W+ W,

shaft vﬁ [ \

done on or pressure Viscous stress
by system  work done work on CS

(pump or on CS
turbine)

W, = [pV-dA = [p(p/p)V -dA
CVv CS
W, =W, - W,
. . . d
Q-W,+W_ =— [pedV+ [p(e+p/e)V-dA
dt cv cs

-1
e=U+—V" +9z
2

For steady 1-D pipe flow (one inlet and one outlet):
1) Streamlines are straight and parallel
= p/p +gz = constant across CS
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2) T =constant = u = constant across CS

3

: 1 (V :
3) define oa=—] [:] dA = KE correction factor
A s\ V
v v
= Pivida-=aPA-a—m
2 2 2
mechanical energy Thermal
i / energy
V& V5
p—1+oc1—1+zl+hp =p—2+a2—2+22+ht+h|_
Y 29 Y 29
. Note: each term
h, =W_/m
p = W, /mg has
. units of length
h, =W, /mg | |
V is average velocity
i —d 0 (vector dropped) and
h, =—2 ; L e head loss corrected by o

> 0 represents loss in mechanical energy due to viscosity
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Concept of Hydraulic and Energy Grade Lines

2 2
p—1+oc1—1+zl+hp :p—2+a2—2+22+ht+h|_
Y 29 Y 29
A
Define HGL=".; point-by-point
Y > application is
, :
D Vv graphically
EGL=~-+z+a— di
isplayed
Y 29 ) play
HGL corresponds to pressure tap measurement + z
EGL corresponds to stagnation tube measurement + z
FGL and HGL EGL =HGL if V=0
EGL; = EGL; + h_ T O EGL L v2
for hp:hTZO \\/ HGL ) hy=f——
4 4 D 2g
N ie., linear variation in L for D,
TNIb V, and f constant
Do
T \-\»\“ f = friction factor
. = X f=1(Re)
FIGURE 7.4 J e
B6L and HGL in 4 l
straight pipe. Datum
. P 2 3
pressure tap: —==nh
! . | h=height of fluid in
stagnation tube: "2 1 o 2—2 = h tap/tube
Y g

EGL1 + hp — EGL2 + ht + h|_
EGL2 — EGL1 + hp — ht — h|_

H_J
abrupt \ L v?2

change due f——
to h, or hy
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Helpful hints for drawing HGL and EGL

1. EGL =HGL + aV*¥/2g = HGL for V=0

2

2.&3.h =f %\2/— in pipe means EGL and HGL will slope
g

downward, except for abrupt changes due to h; or h,

FIGURE 7.5 EGL
Rise in EGL and HGL Abrupt rise in
due to pum EGL equal - ——
pump. to k, \ ———
HGL and EGL
2 2
PV PV
+ Z 1 + = + Z 2 + + L _—
 head given
2 9 v 2 9 up to turbine
HGL2 = EGL1 - h|_
2
\Y%
h = — for abrupt expansion
2 g Gradual expansion of conduil allows
Drop in EGL and HGL kinetic energy to be converied to pressure

head with much smaller &; at the cutiet;
due to turbine. hence the HGL approaches the EGL.
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4.p=0=>HGL =z

LV?
5.for h, =f ——— =constant x L

D 2 . :
: T~ I.e., linearly increased for
2
EGL/HGL slope downward increasing L with slope %Z—
g

6. for change in D = change in V

\
e Vifu , Ve , change in distance between
vlﬂzv2 D, » = HGL & EGL and slope
4 4 change due to change in h,
VlDl2 = Vng )

Va
Large Eg— because

smaller pipe here
Steeper EGL and HGL

because greater A,
per length of pipe

Head loss
at outlet

EGL and HGL

]

d

FIGURE 7.8 .
Change in EGL and HGL
due to change in

diameter of pipe.
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7. IfHGL <zthenp/y<0 I.e., cavitation possible

HGL and EGL

P v &
Positive 7 Negative ¥

Z
Ve
HGURE 7.9 . . _ 2
Subatmospheric pressure
z=0

when pipe is above HGL.

condition for cavitation:;

N
p=p, = 2000 —
m

N
gage pressure p,, =Pa —Pypy ~ —Pam = —100,000 —
m

\ 9810 N/m®
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W8 4 Energy Considerarions im Steady Flow
415 METHOD OF SOLUTION OF FLOW PROBLEMS

For the solutions of probiems of liguid flow there are two lundamental equa-
tions, the equation of continuity {3.10} and the energy equation in one of the
forms from Eqs. 4.5} to (4103 The following procedure may be employed:

1. Choose a datum plane through any convenient point.

4. Mote at what sections the velocity is known or is o be assumed. If at any
point the section area is great compared with its value elsewhere, the velocity
head is so small that it may be disregarded.

3, Note at what points the pressure is known or is to be assumed. In a body of
liquid af rest with a free surface the pressure is known at every point within
the body. The pressure in a jet is the same as that of the medium surroundiag
the jet.

4. Note whether or not there is any point where all three terms, pressure, cle-
vation, and velocity, are known.

5. Note whether or not there is any point where there is only one unknown
quantity.

it is generally possible Lo write an energy equation that wili fulfill conditions
4 and 3. If there are two unknowns in the equation, then the continuity equation
must be used aise. The application of these principles is shown in the following
illustrative examples.

Hlustrative Example 4.7 A pipeline with 2 pump leads to a nozzle as shown in the ACCOMPAny-
tng Agure. [ oW rate w he pump develons 3 head of 30 . Assume thai the head loss in
the é-in-dizmeter pipe may be expressed by b, = %2y, whils the head loss in the 4-in-diameter pip=
& Ry = 12¥%2g, Sketch the epergy line and hydraulic grade line, and find the pressure head at the
suction side of the pump.

Sefecr the datum as the elevation of the water surface in the reserveir. Note from continuity that

Vo= (BP0, = 025K, and ¥, = 3PV, = 0.563¥,

where 1 18 the jet velocity. Writing an epergy cquation from the surface of the veservoir to the iet,

yl VI
'(zt +£_;i+—r‘-)-ukh+h,—hh=z_‘+%‘-+—3
I

g 29
Vi Vi Vi
G+ e0—5ul 480 — 122 = 10+ 0 & ot

2g 2 g

Express ait velocities in terms of ¥,

50,258, nLXE A V3

,“.E..._ﬂ.,,gg_ 12.{2..._3_31_,—..11)+_J_

g 27 g

V, = 197 fps

3 T
0= 4% = E‘(ﬁ) 207 = 145 fs
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4.15 Method of Solution of Flow Problems 109

K Head toss in sustion pipe:

VIS025KF 031273
W g
= 431

hL=f§

% Head loss in discharge pipe:

¥i o 12(0.563%,3
by w12t < 2RO G
g g

- ¥ vi ¥}
Zenrn Zodin Zonsehxoon
g 2g g

The energy bne and hydraulic grade Hne are drawn on the figure 10 scale. Inspection of the fgurs

shows that the pressure head on the suction side of the pump is pg/y = 1.8 {1, Likgwise, the pressure
head a1 any poini in the Fipe may be found if the figure is to scale.

v
.

Y
Elev 80
8

I" diam jat\l

Elev, 70

fHestrative Exsmpie 4.7 ?.
&

Hbaytrative Example 48 Given the two-dimensional flow as shown in the accorpanying figure,
Determine the flow rate. Assume no head loss.

*

4 L M )

Ve - e, de
1 ¥ __E_ T h - = 7 -
: EL o Gl L N
By e i <

V:fﬂg . H.%’j-‘\“«kﬁ

20 m i i
b TR e . oo
0.8m
8 2ty
A o o

% Hustrative Exampie 4.8
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Application of the Enerqy, Momentum, and
Continuity Equationsin Combination

In general, when solving fluid mechanics problems, one should
use all available equations in order to derive as much
information as possible about the flow. For example, consistent
with the approximation of the energy equation we can also apply
the momentum and continuity equations

Energy:
V& V5
p—1+oc1—1+zl+hp :p—2+a2—2+22+ht+h|_
Y 29 Y 29
Momentum: \
2F = PV22A2 - pV12A1 = PQ(Vz - Vl) one inlet and
» one outlet
Continuity: p = constant
AV: = AV, =Q = constant
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Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like
to know h. = h. (V1,V2). Analytic solution to exact problem is
extremely difficult due
to the occurrence of
flow separations and
turbulence. However, if
the assumption is made
that the pressure in the
separation region
remains approximately
constant and at the
value at the point of
separation, i.e, p;, an approximate solution for h, is possible:

Apply Energy Eq from 1-2 (o; = o, = 1)

A v/
p—1+zl+—l=p—2+22+—2+hL
Y 29 v 29

Momentum eg. For CV shown (shear stress neglected)

>F =p,A,-p,A,-Wsin a,=> puV-A

/ =pVi(=V;A) +pV,(V,A,)
A

7 — \y2 2
yA,L — =pV A, —pVi Ay
L

W sin o

next divide momentum equation by yA;
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. VZ VZA, VZA. (A
TYAz p—l—p_z—(zl—zz) 2 Vi 1 _ V1 1[ 1_1j
Y Y g g Az g Az Az
from energy equation
\/22 \/12 \/22 12 Al
—2 L 4h, _
29 29 g g A,
vV, V([ 2A,
L=t 11—
290 2¢ A,
1 ) , AL continutity eq.
hL = E{VZ +V1 2V1 A—ZJ V1A1 — V2A2
— ALV,
—2V1V2 L AZ Vl
1 2
h L — _[Vz - Vl]
29
If V, << Vi,
1
h, =—V/]
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Forces on Transitions
Example 7-6
30-cm diameter j— 3
FH 20-cm diameter Q 707 m /S 9
| W vV
head loss = .12
29

(empirical equation)

= Fx\ - Fluid = water
ma SRS = p: = 250 kPa
plAlg ;pzAz —x D]_ - 30 Cm
— _ - D, =20cm
s vaves S

Control surface

First apply momentum theorem

2R, =2puVv-A

Fx + piA;1 — P2A2 = pVi(-ViAL) + pVa(VLA)
Fx = pQ(V2 — Vi) — piAs + PoA,

\ force required to hold transition in place
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The only unknown in this equation is p,, which can be obtained
from the energy equation.

—+——="=+—"4+h, note:z; =z, anda=1

RYZERA :
P, =P, —yL———+ hLJ drop in pressure

20 29

29 2¢

— g
—~—

P2 (note: if p, = 0 same as nozzle)

| v, V)
=F, =pQ(V, -V )+ A,|p, -y ———-——+h_||-p,A,

In this equation, continuity AV: = ANV,
A
V; = Q/A; =10 m/s V, = A—lvl
\, = =22. _ 2
) Q/Ag 22.5 m/s e V>V,
\Y}
h, =.1—2%=2.58m
29
Fy = -8.15 kN IS negative x direction to hold

transition in place



