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4.5   Separation, Vortices, Turbulence,  
and Flow Classification 

 
We will take this opportunity and expand on the material 
provided in the text to give a general discussion of fluid 
flow classifications and terminology. 
 
 
1. One-, Two-, and Three-dimensional Flow 

1D:  V = î)y(u  
 
2D:  V = ĵ)y,x(vî)y,x(u +  
 
3D:  V = V(x) = k̂)z,y,x(wĵ)z,y,x(vî)z,y,x(u ++  

 
 
2. Steady vs. Unsteady Flow 

V = V(x,t)  unsteady flow 
 
V = V(x)  steady flow 

 
 
3. Incompressible and Compressible Flow 

0
Dt
D

=
ρ  ⇒  incompressible flow 

 
    representative velocity 

Ma = 
c
V  

    speed of sound in fluid 
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Ma < .3  incompressible 
 
Ma > .3  compressible 
 
Ma = 1  sonic (commercial aircraft Ma∼.8) 
 
Ma > 1  supersonic 

 
Ma is the most important nondimensional parameter for 
compressible flow     (Chapter 8 Dimensional Analysis) 

 
 
4. Viscous and Inviscid Flows 

Inviscid flow: neglect µ, which simplifies analysis but  
(µ = 0)  must decide when this is a good  

approximation (D’ Alembert paradox 
body in steady motion CD = 0!) 

     Viscous flow: retain µ, i.e., “Real-Flow Theory” more  
(µ ≠ 0)  complex analysis, but often no choice 

 
 
5. Rotational vs. Irrotational Flow 

Ω = ∇ × V  ≠  0  rotational flow 
 
Ω = 0   irrotational flow 

 
Generation of vorticity usually is the result of viscosity ∴ 
viscous flows are always rotational, whereas inviscid flows 
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are usually irrotational.  Inviscid, irrotational, 
incompressible flow is referred to as ideal-flow theory. 
 
 
6. Laminar vs. Turbulent Viscous Flows 

Laminar flow = smooth orderly motion composed of 
thin sheets (i.e., laminas) gliding smoothly over each 
other 
 
Turbulent flow = disorderly high frequency fluctuations 
superimposed on main motion.  Fluctuations are visible 
as eddies which continuously mix, i.e., combine and 
disintegrate (average size is referred to as the scale of 
turbulence). 
       Re - decomposition 
  )t(uuu ′+=  
 
 mean   turbulent fluctuation 
 motion 
 
usually u′∼(.01-.1)u , but influence is as if µ increased 
by 100-10,000 or more. 
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Example:  Pipe Flow (Chapter 10 = Flow in Conduits) 
Laminar flow: 

 

⎟
⎠
⎞

⎜
⎝
⎛−

µ
−

=
dx
dp

4
rR)r(u

22
 

u(y),velocity profile in a paraboloid 
 
 

 
Turbulent flow:  fuller profile due to turbulent mixing 
extremely complex fluid motion that defies closed form 
analysis. 
 

 
 
Turbulent flow is the most important area of motion fluid 
dynamics research. 
 
 
The most important nondimensional number for describing 
fluid motion is the Reynolds number (Chapter 8) 
 

Re = 
ν

=
µ
ρ VDVD V = characteristic velocity 

D = characteristic length 
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For pipe flow 
 V = V  = average velocity 
 D = pipe diameter 
  
 Re < 2000 laminar flow 
 Re > 2000 turbulent flow 
 
Also depends on roughness, free-stream turbulence, etc. 
 
 
7. Internal vs. External Flows 

Internal flows = completely wall bounded;  
Usually requires viscous analysis, except near entrance 
(Chapter 10) 
 
External flows = unbounded;  i.e., at some distance from 
body or wall flow is uniform  (Chapter 9, Surface 
Resistance)  
 
External Flow exhibits flow-field regions such that both 
inviscid and viscous analysis can be used depending on 
the body shape and Re. 
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Flow Field Regions (high Re flows) 

 
 
Important features: 

1) low Re viscous effects important throughout entire 
fluid domain:  creeping motion 

2) high Re flow about streamlined body viscous effects 
confined to narrow region:  boundary layer and wake 

3) high Re flow about bluff bodies:  in regions of adverse 
pressure gradient flow is susceptible to separation and 
viscous-inviscid interaction is important 

 
 
8.  Separated vs. Unseparated Flow 
 

    Flow remains attached  
Streamlined body    w/o separation 

 
 
 
Bluff body    Flow separates and creates 

the region of reverse  
flow, i.e. separation 
 

forceviscous
forceinertiaVcRe =

ν
=  
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4.6 Basic Control-Volume Approach and RTT 
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Reynolds Transport Theorem (RTT) 
 
Need relationship between ( )sysB

dt
d  and changes in 

∫ ∀=∫=
CVCV

ddmcvB βρβ . 

 

1 = time rate of change of B in CV = ∫ ∀=
CV

d
dt
d

dt
cvdB

βρ   

 
2 = net outflux of B from CV across CS =  

DAnv R
CS

⋅∫ βρ  
 

dAnvd
dt
d

dt
dB

R
CSCV

SYS ⋅∫+∫ ∀= βρβρ  

 
General form RTT for moving deforming control volume 
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Special Cases: 
 
1)  Non-deforming CV moving at constant velocity 
 

( ) dAnvd
tdt

dB
R

CSCV

SYS ⋅∫+∫ ∀
∂
∂

= βρβρ  

 
2)  Fixed CV 
 

( ) dAnvd
tdt

dB
CSCV

SYS ⋅∫+∫ ∀
∂
∂

= βρβρ  

 

 Greens Theorem:  
CV CS

b d b n dA∇⋅ ∀ = ⋅∫ ∫  

 
( ) ( ) ∀∫ ⎥⎦

⎤
⎢⎣
⎡ ⋅∇+
∂
∂

= dv
tdt

dB
CV

SYS βρβρ  

 
Since CV fixed and arbitrary 

0
lim

→∀d
gives differential eq. 

 
3)  Steady Flow:  0=

∂
∂
t

 

 
4)  Uniform flow across discrete CS (steady or 
unsteady) 
 

∑ ⋅=∫ ⋅
CSCS

dAnvdAnv βρβρ  (- inlet, + outlet) 
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Continuity Equation: 
 
B = M = mass of system 
β = L 
 

0=
dt

dM  by definition, system = fixed amount of mass 

 
Integral Form: 
 

dAnvd
dt
d

dt
dM

CS
R

CV
∫ ⋅+∫ ∀== ρρ0  

 
dAnvd

dt
d

CS
R

CV
∫ ⋅=∫ ∀− ρρ  

 
Rate of decrease of mass in CV = net rate of mass outflow across 

CS 
 

Note simplifications for non-deforming CV, fixed CV, 
steady flow, and uniform flow across discrete CS 
 
 Incompressible Fluid:  ρ =  constant 
 

dAnvd
dt
d

CS
R

CV
∫ ⋅=∫ ∀−  

 
“conservation of volume” 
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Differential Form: 
 

( ) 0=⋅∇+
∂
∂ v

t
ρρ  

 

0=∇⋅+⋅∇+
∂
∂ ρρρ vv

t  

 
0=⋅∇+ v

Dt
D ρρ  

 

01
=

∀
∀

∂
∂+

∂
∂+

∂
∂

⋅∇+

unitper
changeofrate

z
w

y
v

x
u

v

unitper
changeofrate
Dt
D

ρ
ρ

ρ
ρ  

 
Called the continuity equation since the implication is that 
ρ and v are continuous functions of x. 
 
 Incompressible Fluid:  ρ =  constant 
 

  
0

0

=
∂
∂

+
∂
∂

+
∂
∂

=⋅∇

z
w

y
v

x
u

v
 

 

Dt
D

Dt
D

dd
dddM

dM

∀
∀

−=

=
∀
∀

−

=∀+∀=
∀=

11

0

ρ
ρ

ρ
ρ

ρρ
ρ


