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4.5   Separation, Vortices, Turbulence, 

and Flow Classification
We will take this opportunity and expand on the material provided in the text to give a general discussion of fluid flow classifications and terminology.

1. One-, Two-, and Three-dimensional Flow

1D:  V = 
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2D:  V = 
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3D:  V = V(x) = 
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2. Steady vs. Unsteady Flow

V = V(x,t)

unsteady flow

V = V(x)

steady flow

3. Incompressible and Compressible Flow
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representative velocity
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Ma = 
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speed of sound in fluid

Ma < .3

incompressible

Ma > .3

compressible

Ma = 1

sonic
(commercial aircraft Ma(.8)

Ma > 1

supersonic

Ma is the most important nondimensional parameter for compressible flow     (Chapter 8 Dimensional Analysis)

4. Viscous and Inviscid Flows

Inviscid flow:
neglect (, which simplifies analysis but 

(( = 0)

must decide when this is a good 

approximation (D’ Alembert paradox body in steady motion CD = 0!)

     Viscous flow:
retain (, i.e., “Real-Flow Theory” more 

(( ( 0)

complex analysis, but often no choice

5. Rotational vs. Irrotational Flow

( = ( ( V  (  0

rotational flow

( = 0 

irrotational flow

Generation of vorticity usually is the result of viscosity ( viscous flows are always rotational, whereas inviscid flows are usually irrotational.  Inviscid, irrotational, incompressible flow is referred to as ideal-flow theory.

6. Laminar vs. Turbulent Viscous Flows

Laminar flow = smooth orderly motion composed of thin sheets (i.e., laminas) gliding smoothly over each other

Turbulent flow = disorderly high frequency fluctuations superimposed on main motion.  Fluctuations are visible as eddies which continuously mix, i.e., combine and disintegrate (average size is referred to as the scale of turbulence).
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turbulent fluctuation
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usually 
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, but influence is as if ( increased by 100-10,000 or more.

Example:  Pipe Flow (Chapter 10 = Flow in Conduits)

Laminar flow:
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u(y),velocity profile in a paraboloid

Turbulent flow:  fuller profile due to turbulent mixing extremely complex fluid motion that defies closed form analysis.

[image: image40.jpg]
Turbulent flow is the most important area of motion fluid dynamics research.

The most important nondimensional number for describing fluid motion is the Reynolds number (Chapter 8)
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For pipe flow


V = 
[image: image11.wmf]V

 = average velocity


D = pipe diameter


Re < 2000
laminar flow


Re > 2000
turbulent flow

Also depends on roughness, free-stream turbulence, etc.

7. Internal vs. External Flows

Internal flows = completely wall bounded; 

Usually requires viscous analysis, except near entrance (Chapter 10)

External flows = unbounded;  i.e., at some distance from body or wall flow is uniform  (Chapter 9, Surface Resistance)


External Flow exhibits flow-field regions such that both inviscid and viscous analysis can be used depending on the body shape and Re.

Flow Field Regions (high Re flows)

Important features:

1) low Re viscous effects important throughout entire fluid domain:  creeping motion

2) high Re flow about streamlined body viscous effects confined to narrow region:  boundary layer and wake

3) high Re flow about bluff bodies:  in regions of adverse pressure gradient flow is susceptible to separation and viscous-inviscid interaction is important

8.  Separated vs. Unseparated Flow





Flow remains attached 

Streamlined body



w/o separation

Bluff body



Flow separates and creates

the region of reverse 

flow, i.e. separation

4.6 Basic Control-Volume Approach and RTT
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Reynolds Transport Theorem (RTT)
Need relationship between 
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1 = time rate of change of B in CV =
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2 = net outflux of B from CV across CS = 
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General form RTT for moving deforming control volume

Special Cases:

1)  Non-deforming CV moving at constant velocity
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2)  Fixed CV
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Greens Theorem:  
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Since CV fixed and arbitrary 
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gives differential eq.

3)  Steady Flow:  
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4)  Uniform flow across discrete CS (steady or unsteady)
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(- inlet, + outlet)
Continuity Equation:

B = M = mass of system

β = L
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by definition, system = fixed amount of mass

Integral Form:
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Rate of decrease of mass in CV = net rate of mass outflow across CS

Note simplifications for non-deforming CV, fixed CV, steady flow, and uniform flow across discrete CS


Incompressible Fluid:  ρ =  constant
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“conservation of volume”

Differential Form:
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Called the continuity equation since the implication is that ρ and v are continuous functions of x.


Incompressible Fluid:  ρ =  constant
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V = characteristic velocity

D = characteristic length

















� EMBED Equation.3  ���



� EMBED Equation.3  ���
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