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4.5   Separation, Vortices, Turbulence, 

and Flow Classification
We will take this opportunity and expand on the material provided in the text to give a general discussion of fluid flow classifications and terminology.

1. One-, Two-, and Three-dimensional Flow

1D:  V = 
[image: image41.jpg]



2D:  V = 
[image: image2.wmf]j

ˆ

)

y

,

x

(

v

i

ˆ

)

y

,

x

(

u

+


3D:  V = V(x) = 
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2. Steady vs. Unsteady Flow

V = V(x,t)

unsteady flow

V = V(x)

steady flow

3. Incompressible and Compressible Flow
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representative velocity
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Ma = 
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speed of sound in fluid

Ma < .3

incompressible

Ma > .3

compressible

Ma = 1

sonic
(commercial aircraft Ma(.8)

Ma > 1

supersonic

Ma is the most important nondimensional parameter for compressible flow     (Chapter 8 Dimensional Analysis)

4. Viscous and Inviscid Flows

Inviscid flow:
neglect (, which simplifies analysis but 

(( = 0)

must decide when this is a good 

approximation (D’ Alembert paradox body in steady motion CD = 0!)

     Viscous flow:
retain (, i.e., “Real-Flow Theory” more 

(( ( 0)

complex analysis, but often no choice

5. Rotational vs. Irrotational Flow

( = ( ( V  (  0

rotational flow

( = 0 

irrotational flow

Generation of vorticity usually is the result of viscosity ( viscous flows are always rotational, whereas inviscid flows are usually irrotational.  Inviscid, irrotational, incompressible flow is referred to as ideal-flow theory.

6. Laminar vs. Turbulent Viscous Flows

Laminar flow = smooth orderly motion composed of thin sheets (i.e., laminas) gliding smoothly over each other

Turbulent flow = disorderly high frequency fluctuations superimposed on main motion.  Fluctuations are visible as eddies which continuously mix, i.e., combine and disintegrate (average size is referred to as the scale of turbulence).
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mean


turbulent fluctuation


motion

usually 
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, but influence is as if ( increased by 100-10,000 or more.

Example:  Pipe Flow (Chapter 10 = Flow in Conduits)

Laminar flow:
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u(y),velocity profile in a paraboloid

Turbulent flow:  fuller profile due to turbulent mixing extremely complex fluid motion that defies closed form analysis.
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Turbulent flow is the most important area of motion fluid dynamics research.

The most important nondimensional number for describing fluid motion is the Reynolds number (Chapter 8)
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For pipe flow


V = 
[image: image11.wmf]V

 = average velocity


D = pipe diameter


Re < 2000
laminar flow


Re > 2000
turbulent flow

Also depends on roughness, free-stream turbulence, etc.

7. Internal vs. External Flows

Internal flows = completely wall bounded; 

Usually requires viscous analysis, except near entrance (Chapter 10)

External flows = unbounded;  i.e., at some distance from body or wall flow is uniform  (Chapter 9, Surface Resistance)


External Flow exhibits flow-field regions such that both inviscid and viscous analysis can be used depending on the body shape and Re.

Flow Field Regions (high Re flows)

Important features:

1) low Re viscous effects important throughout entire fluid domain:  creeping motion

2) high Re flow about streamlined body viscous effects confined to narrow region:  boundary layer and wake

3) high Re flow about bluff bodies:  in regions of adverse pressure gradient flow is susceptible to separation and viscous-inviscid interaction is important

8.  Separated vs. Unseparated Flow





Flow remains attached 

Streamlined body



w/o separation

Bluff body



Flow separates and creates

the region of reverse 

flow, i.e. separation

4.6 Basic Control-Volume Approach and RTT
[image: image12.png]Laws of mechanics are written for a system, i.e., a fixed
amount of matter.
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2. Conservation of momentum: F=Ma= 3
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3. Conservation of energy: i—’f =Q-W
AE=heat added — work done
Also

dHq
Conservation of angular momentum: ':iT =Mg
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Second Law of Thermodynamics: T TQ +6
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[image: image13.png]In fluid mechanics we are usually interested in a region of
space, i.e, control volume and not particular systems.
Therefore, we need to transform GDE’s from a system to a
control volume, which is accomplished through the use of
RTT (actually derived

eg inthermodynamics for
v & ™ CV forms of continuity
e and 1% and 2™ laws, but

not in general form or
referred to as RTT).

Note GDE’s are of form:

< (M,MV,E)=RHS
dt — ——

system extensive properties By, depend on mass

sys

d
i.e., involve which needs to be related to changes in

CV. Recall, definition of corresponding system intensive
properties

B=(,V,¢) independent of mass
where

B= [Bdm = [Bpdv




Reynolds Transport Theorem (RTT)
Need relationship between 
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1 = time rate of change of B in CV =
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2 = net outflux of B from CV across CS = 
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General form RTT for moving deforming control volume

Special Cases:

1)  Non-deforming CV moving at constant velocity
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2)  Fixed CV
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Greens Theorem:  
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Since CV fixed and arbitrary 
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3)  Steady Flow:  
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4)  Uniform flow across discrete CS (steady or unsteady)
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(- inlet, + outlet)
Continuity Equation:

B = M = mass of system

β = L


[image: image27.wmf]0

=

dt

dM


by definition, system = fixed amount of mass

Integral Form:
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Rate of decrease of mass in CV = net rate of mass outflow across CS

Note simplifications for non-deforming CV, fixed CV, steady flow, and uniform flow across discrete CS


Incompressible Fluid:  ρ =  constant


[image: image30.wmf]dA

n

v

d

dt

d

CS

R

CV

ò

×

=

ò

"

-


“conservation of volume”

Differential Form:
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Called the continuity equation since the implication is that ρ and v are continuous functions of x.


Incompressible Fluid:  ρ =  constant
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V = characteristic velocity


D = characteristic length


























� EMBED Equation.3  ���





� EMBED Equation.3  ���








_998810250.unknown

_1156660197.unknown

_1156661589.unknown

_1156662192.unknown

_1156662954.unknown

_1168066711.unknown

_1156662605.unknown

_1156662805.unknown

_1156662613.unknown

_1156662198.unknown

_1156661932.unknown

_1156662075.unknown

_1156661706.unknown

_1156660454.unknown

_1156661457.unknown

_1156660340.unknown

_1156659578.unknown

_1156660062.unknown

_1156660070.unknown

_1156659896.unknown

_1156660042.unknown

_1156658784.unknown

_1156659561.unknown

_1007149094.unknown

_1007149134.unknown

_985287093.unknown

_985636771.unknown

_998810081.unknown

_985287175.unknown

_985287422.unknown

_985287148.unknown

_985286292.unknown

_985286466.unknown

_985286262.unknown

